
Emmett Witchel
University of Texas at Austin

Transactional Memory:
Architectural Support for

Lock-Free Data Structures

Maurice Herlihy
Digital Equipment Corporation

Cambridge Research Laboratory
Cambridge, MA 02139
herlihy@crl.dec.com

J. Eliot B. Moss
Dept. of Computer Science

University of Massachusettes
Amherst, MA 01003

moss@cs.umass.edu

Transactional Memory:
Architectural Support for

Lock-Free Data Structures

Maurice Herlihy
Digital Equipment Corporation

Cambridge Research Laboratory
Cambridge, MA 02139
herlihy@crl.dec.com

J. Eliot B. Moss
Dept. of Computer Science

University of Massachusettes
Amherst, MA 01003

moss@cs.umass.edu

Transactional Memory:
Architectural Support for

Lock-Free Data Structures

Maurice Herlihy
Digital Equipment Corporation

Cambridge Research Laboratory
Cambridge, MA 02139
herlihy@crl.dec.com

J. Eliot B. Moss
Dept. of Computer Science

University of Massachusettes
Amherst, MA 01003

moss@cs.umass.edu

Transaction Interface
• Programmer transactions are consistent

– Represents some coherent unit of work
– Programmer associates metadata with

code region
• Big opportunity to leverage programmer

effort

Transactions for Security
• Transactions naturally benefit security

– Time-of-check-to-time-of-use (TOCTTOU)
bugs

 Requires strong isolation for system calls
 And a transactional (or journaling) file system

xbegin;
if(access(argv[1], R_OK) != 0) exit(1);
int fd = open(argv[1], O_RDONLY);
xend;

Transaction Capabilities
• Transactions can take memory space

capabilities
• Capabilities are OS created 64-bit hash

values
– Code regions are principles

• Capability associated with transaction,
not pointer
– Avoids many traditional capability problems

get_input(void*input_cap){
 xbegin, input_cap;
 char buf[128];
 gets(buf);
 xend;
}

in_cap =
 cap_create(RO,stack,
 RW, heap);
get_input(in_cap);

Let Us Agree (Vote?)

• Transactionalize vs. Transactify
• Strong isolation vs. Strong atomicity

– No weak isolation?

