
MLS 1

Evolving Beyond Transactions?
Michael L. Scott

University of Rochester

Thoughts for closing panel
TRANSACT ‘07

 But we aren’t even there yet!
 Maybe how we get there will help us move beyond

MLS 2

TM Design Philosophies
 All SW

» needed for legacy HW anyway
» might turn out to be enough
» HW GC and type checking were premature

 Best-effort HW
» fast most of the time
» correct all the time
» “merely correct” part runs on legacy machines

 All HW
» arguably fastest, and more predictable:
» avoid anomalies due to SW fallback
» for multiple policies, parameterize the HW

MLS 3

A Different Kind of Hybrid

RTM [TR Dec.’05, TRANSACT ’06,
 PPoPP ’07 poster, SPAA ’07, ISCA ’07]

 Leave policy in SW; accelerate with HW
» ﻿decouple conflict detection from speculative writes
» perform the latter on “real” data, former on metadata

 AOU jumps to handler on conflicting metadata write
 PDI permits cache inconsistency under SW control

» enable lazy resolution of RW and even WW conflicts
(as in RSTM, FSTM, and TL2)

MLS 4

Policy/Mechanism Split

 Maximizes freedom in programming model design
 Avoids pitfall of putting wrong policy in HW
 Facilitates dynamic tuning/adaptation
 May increase opportunities to use the HW for

other purposes

 But metadata management is costly — ~2X hit
compared to HTM

MLS 5

FlexTM
 (recent work; not yet published: Arrvindh Shriraman and

Sandhya Dwarkadas)
 ﻿Do conflict detection on real data, but decouple from

conflict tracking and resolution (and from buffering of
speculative state)

 HW read / write signatures for every processor
 Additional bit vectors to record conflicts with other

processors
 SW can choose to trap to handler on conflict or to poll the

vectors later (e.g. at commit, which remains local)
 All structures visible in main memory, so OS can virtualize

» Vectors that summarize signatures of descheduled threads

MLS 6

Other Uses
(See PPoPP poster & TR version of our ISCA paper)
 ﻿AOU for

» fast mutexes
» active messages
» rollback in ad hoc nonblocking algorithms
» ABA avoidance
» debugger watchpoints
» misc. security and fault-containment mechanism

 PDI for ordered thread-level speculation
(for performance or reliability)

 CSTs? not sure yet

www.cs.rochester.edu/research/synchronization/

PPoPP'08
The 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming

20–23 February 2008
Salt Lake City, Utah (co-located with HPCA-14)

Submission deadline:
13 (abstracts) / 20 Aug. 2007

www.ppopp.org

MLS 9

MLS 10

Concurrency Design Space

Credit: Bill Scherer

MLS 11

Transactional Sharing Models
 Contract between the user & the system

» Cf. programmer-centric memory consistency models
» ideally enforced by compiler

 Transactions appear to be strongly isolated if
programmer follows the rules
» static partition — too restrictive
» partition within global consensus phases

– e.g. via barriers
» privatizing transactions

– multiple possible implementations
» strong isolation

– probably too expensive for software — overkill

