
Transact Workshop --- August 2007

Beyond Transactions
The Evolution of Transactional Memory

Christos Kozyrakis

Computer Systems Lab
Stanford University

http://csl.stanford.edu/~christos



Need Some HW Support for TM?

 IMHO: Yes!

 Reason #1: parallel programming is about
performance
 Can we afford a 2x overhead for SW TM?
 Short-term: reward for extra coding effort
 Long-term: energy efficiency

 Reason #2: TM hardware has good uses
beyond concurrency
 These uses put significant stress on TM system
 If they cause slowdowns, users will turn them off



TM Uses Beyond Concurrency
 TM = mechanisms for ACI

 Atomicity, isolation, and consistency

 ACI are the building blocks for
 Debugging: deterministic replay, watchpoints, bookmarks
 Tuning: contention & locality monitoring
 Security: isolated execution, canaries
 Fault-tolerance: undo-on-error, checkpointing
 Dynamic binary translation: fix metadata races

 What is different with these “transactions”?
 They vary significantly in duration, read/write-set size
 Some exhibit no locality; other difficult to analyze
 May want to have transactions on all the time



The HW/SW Interface for TM
(see McDonald et.al at ISCA’06)

 The interface mechanisms
 SW handlers on all TM events

 Abort, conflict, two-phase commit
 Multiple (potentially nested) transactions

 Allow concurrent uses (parallelism, security, …)
 Support for system & PL tools

 Ways to turn versioning/conflict detection on/off
 Fine-grain & coarse-grain

 Use them to build higher levels of abstraction
 E.g. TM-safe collection classes [PPoPP’07]

 Many HW systems match this interface
 “Hardware TMs” and “hybrid TMs”



Are HW Signatures Sufficient?
 Issue #1: performance guarantees

 We already deal with some unpredictability
 Caches, predictors, schedulers, routing schemes, etc

 Can alleviate with SW and new HW

 Issue #2: loss of information
 Uncertainty about address, false conflicts …

 Maybe OK for parallelism but not for other uses
 Solution: HW signatures as a first-level filter

 Retrieve more accurate info with SW techniques
 Further work needed, but I believe it will work

 My conclusion: thumbs up for signatures
 Difficult to beat their cost-effectiveness
 Can always combine with other SW/HW schemes



Beyond Memory Transactions
 TM is good but not good enough

 Users want generalized transactions
 Atomic{} that access memory, files, network, …

 System-level transactions
 Use transactional mechanisms with all resources

 Mem ⇒ TM, FS ⇒ LFS, Net ⇒ message queues, DBMS
 Coordinate transactions across multiple resources
 General transaction model with few(er) restrictions (?)

 Historical example: IBM’s Quicksilver (‘80s)
 Coordinated transactions across files, network, …
 Pre-TM 


