MLS

Evolving Beyond Transactions?

Michael L. Scott
University of Rochester

Thoughts for closing panel
TRANSACT '07

® But we aren't even there yet!
® Maybe how we get there will help us move beyond



TM Design Philosophies

o All SW

» heeded for legacy HW anyway
» might turn out to be enough
» HW GC and type checking were premature

® Best-effort HW

» fast most of the time
» correct all the time
» "merely correct” part runs on legacy machines

o All HW

» arguably fastest, and more predictable:
» avoid anomalies due to SW fallback
» for multiple policies, parameterize the HW

MLS



MLS

A Different Kind of Hybrid

RTM [TR Dec.'05, TRANSACT '06,
PPoPP '07 poster, SPAA '07, ISCA '07]

Leave policy in SW; accelerate with HW
» decouple conflict detection from speculative writes
» perform the latter on "real” data, former on metadata

AOU jumps to handler on conflicting metadata write

PDI permits cache inconsistency under SW control

» enable lazy resolution of RW and even WW conflicts
(as inRSTM, FSTM, and TL2)



MLS

Policy/Mechanism Split

Maximizes freedom in programming model design
Avoids pitfall of putting wrong policy in HW
Facilitates dynamic tuning/adaptation

May increase opportunities to use the HW for
other purposes

But metadata management is costly — ~2X hit
compared to HTM



MLS

FlexTM

(recent work; not yet published: Arrvindh Shriraman and
Sandhya Dwarkadas)

Do conflict detection on real data, but decouple from
conflict tracking and resolution (and from buffering of
speculative state)

HW read / write signatures for every processor

Additional bit vectors to record conflicts with other
processors

SW can choose to trap to handler on conflict or to poll the
vectors later (e.g. at commit, which remains /ocal)

All structures visible in main memory, so OS can virtualize
Vectors that summarize signatures of descheduled threads



MLS

Other Uses

(See PPoPP poster & TR version of our ISCA paper)
AOQOU for

fast mutexes

active messages

rollback in ad hoc nonblocking algorithms

ABA avoidance

debugger watchpoints

misc. security and fault-containment mechanism

PDI for ordered thread-level speculation
(for performance or reliability)

CS5Ts? not sure yet



UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

www.cs.rochester.edu/research/synchronization/




PPoPP'08

The 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming

20-23 February 2008
Salt Lake City, Utah (co-located with HPCA-14)

Submission deadline:
13 (abstracts) / 20 Aug. 2007

www.ppopp.org




MLS



MLS

Concurrency Desigh Space

A

NBS

Credit: Bill Scherer

System Performance

-
Programmer Effort

10



Transactional Sharing Models

e Contract between the user & the system
» Cf. programmer-centric memory consistency models
» ideally enforced by compiler

e Transactions appear to be strongly isolated if
programmer follows the rules
» static partition — too restrictive
» partition within global consensus phases
- e.g. via barriers
» privatizing transactions
- multiple possible implementations
» strong isolation
- probably too expensive for software — overkill

MLS 11



