Nested Parallelism in Transactional Memory

Kunal Agrawal

Jeremy T. Fineman

Jim Sukha

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

Abstract

This paper describes XCilk, a runtime-system design for
software transactional memory in a Cilk-like parallel pro-
gramming language, which uses a work-stealing sched-
uler. XCilk supports transactions that themselves can con-
tain nested parallelism and nested transactions, both of un-
bounded nesting depth. Thus, XCilk allows users to call
a library function within a transaction, even if that func-
tion itself exploits concurrency and uses transactions. XCilk
provides transactional memory with strong atomicity, eager
updates, eager conflict detection and lazy cleanup on aborts.
XCilk uses a new algorithm and data structure, called
XConflict, to facilitate conflict detection between transac-
tions. Using XConflict, XCilk guarantees provably good per-
formance for closed-nested transactions of arbitrary depth in
the special case when all accesses are writes and there is no
memory contention. More precisely, XCilk executes a pro-
gram with work Ty and critical-path length T., in O(T1/p+
pTe) time on p processors if all memory accesses are writes
and all concurrent paths of the XCilk program access dis-
joint sets of memory locations. Although this bound holds
only under rather optimistic assumptions, to our knowledge,
this result is the first theoretical performance bound ona TM
system that supports transactions with nested parallelism.

1. INTRODUCTION

Transactional memory (TM) [17] represents a collection
of hardware and software mechanisms that help provide a
transactional interface for accessing memory to program-
mers writing parallel code. Recently, TM has been an ac-
tive area of study; for example, researchers have proposed
many designs for transactional memory systems, with sup-
port for TM in hardware (e.g. [4, 15, 20]), in software
(e.g., [1, 16, 19]), or hybrids of hardware and software
(e.g., [10,18]).

Most work on transactional memory focuses exclusively
on the case when each transaction executes serially. This
assumption restricts the composability of parallel programs
that use transactions. A parallel program cannot call a paral-

This research was supported in part by NSF Grants CNS-0615215 and
CNS-0540248 and a grant from Intel Corporation.

1 cilk void foo() { atonmic { b++, ... } }
2 cilk void bar() { atomic { ...,b++ } }

3 cilk void proc() {

4 atonmc { Il transaction X
5 b++;

6 spawn foo(); // transaction Y1
7 spawn bar(); [// transaction Y2
8 b++;

9 sync;

10 }

11}

Figure 1. A transaction X with nested parallelism. As Y2
executes, it should conflict with Y1 but not with X.

lel library function f from a transaction without serializing
f . In addition, programs written using these TM systems are
constrained by the requirement that the abstract parallelism
of the program follows the structure of threads created by
the program.

For languages such as Cilk [7,21], however, a program’s
abstract parallelism is decoupled from the number of avail-
able threads. In Cilk, the programmer specifies parallelism
abstractly using spawn statements. The Cilk runtime system
uses a work-stealing to dynamically schedule the program
on p processors, where p is specified when the execution
of the program begins. The Cilk scheduler guarantees that a
program with “work” T1 and “critical-path” length T,, com-
pletes in O(T1/p+ Tw) time.

A natural extension of TM and Cilk is to allow Cilk
functions to use transactions. This extension leads to the
idea of nested parallel transactions inside transactions, as
shown in Figure 1. Here, a transaction X spawns two other
methods that also contain transactions. According to Cilk
semantics, the calls to f oo and bar can execute in parallel.
But they must execute in isolation with respect to each other.
Thus, the notion of conflict detection generalizes to nested
subtransactions; the calls to f oo and bar conflict with each
other since they write to the same memory location b.

Incorporating transactions into a language such as Cilk
poses several challenges for conflict detection. In a Cilk pro-
gram, the state information of a transaction (e.g., its readset

TRANSACT 2007

and writeset), can no longer be directly associated with a
particular thread; thus, we cannot detect a conflict between
two memory operations by simply checking whether differ-
ent worker threads performed those operations. Consider a
Cilk execution of pr oc from Figure 1, and suppose the trans-
action X starts executing on worker 0, which first increments
b. When encountering the first spawn, worker 0 pushes the
continuation of pr oc (starting immediately after line 6) onto
its deque then continues executing Y1. While worker 0 is ex-
ecuting Y1, worker 1 may steal from worker 0 and continue
executing proc. It immediately pushes the continuation of
proc (starting after line 7) on the deque and executes Y2.
When Y2 increments b, there is a conflict with Y1, which is
running in parallel with Y2 and modifies the same variable
b. Since Y2 is nested inside X, however, Y2 does not conflict
with X, even though X also modifies b. Thus, we cannot di-
rectly check for conflicts by comparing worker ids. Instead,
checking for conflicts requires us to be able to efficiently de-
termine online whether one transaction is an ancestor of the
other. Again, worker 3 might now steal the continuation of
proc and execute line 8. The increment of b on line 8 again
belongs to X, but it conflicts with Y1 and Y2 if the TM system
supports strong atomicity [8].%

This paper describes XCilk, a runtime system design for
a software TM system that supports nested parallel trans-
actions with strong atomicity [8]. XCilk supports transac-
tions with nested parallelism in a Cilk-like language that
uses a work-stealing scheduler. XCilk performs eager con-
flict detection (i.e., detects conflicts as soon as they occur),
thereby minimizing wasted work. XCilk uses a novel algo-
rithm, called XConflict, for fast conflict detection. In addi-
tion, XCilk performs eager updates and makes the (hope-
fully) common case of commits run fast at the expense of
slow aborts. XCilk also supports lazy cleanup on aborts.
Moreover, when a transaction X aborts, other transactions
can help roll back the memory updates performed by X.

Our design for XCilk also provides a provable perfor-
mance guarantee in the special case of an XCilk program
that experiences no contention on any memory accesses as-
suming all accesses are writes, and for which no transac-
tion aborts. Suppose the program has T; work and critical-
path length T.. Then XCilk executes the program in time
O(T1/p+ pTw) When run on p processors. Although this re-
sult requires extremely optimistic assumptions, a straightfor-
ward scheme for supporting closed-nested transactions with
parallelism may potentially increase the work of the com-
putation by a factor proportional to maximum transaction
nesting depth. In the worst case, for XCilk programs, the
maximum transaction nesting depth can be Q(T1).

The remainder of this paper is organized as follows.
XCilk uses a computation tree to model a computation with

1When transactions have nested parallelism, we adopt the defi nition of
strong atomicity which treats every individual memory operation asits own
transaction which always commits.

nested parallel transactions; Section 2 describes the com-
putation tree and how the XCilk runtime system maintains
this computation tree online. Section 3 describes the high-
level transactional memory implementation by XCilk and its
use of the XConflict conflict-detection algorithm. Section 4
gives an overview of the XConflict algorithm. Sections 5-8
provide details on data structures used by XConflict. Finally,
Section 9 claims that XConflict, and hence XCilk, is efficient
for programs that experience no conflicts or contention.

2. THE XCilk COMPUTATION TREE

The XCilk runtime system supports computations with
transactions which contain nested parallelism, and schedules
these computations using work-stealing. Such computations
can be represented using a computation tree [2]. This sec-
tion first describes the structure of this computation tree.
Then we briefly describe how the XCilk system maintains
this computation tree online, and how XCilk performs work-
stealing in the context of this computation tree framework.

Structure of the Computation Tree

The transactional-computation framework described in [2]
represents the execution of a program as a computation
tree ¢. Structurally, a computation tree ¢ is an ordered
tree with two types of nodes: memory-operation nodes
memOps(C) at the leaves, and control nodes spNodes(c) as
internal nodes. The root of the tree is represented by root(¢).
Each leaf node u € memOps(c) represents a single read
or write of a memory location ¢ € 4/ . The internal nodes
spNodes(c¢) of ¢ represent the parallel control structure of
the computation, as well as the nested structure of trans-
actions. In the manner of [13], each internal node A €
spNodes(c) is labeled as either an S-node or P-node to
capture fork/join parallelism. All the children of an S-node
are executed in series from left to right, while the children
of a P-node can be executed in parallel.

We define several structural notations on the computation
tree . If Ais an internal node of the tree, then children(A)
is the ordered set of A’s children, ances(A) is the set of
A’s ancestors and desc(A) is A’s descendants. In this paper,
whenever we refer to the set of ancestors or descendants of
anode A, we include A in this set.

Transactions are specified in a computation tree ¢ by
marking a subset of S-nodes as transactions. A computation-
tree node A is a descendant of a particular transaction node
X if and only if the execution of A is contained in X’s
transaction. A transaction Y is said to be nested inside a
transaction X if X € ances(Y). We restrict our attention to
computations with only closed-nested transactions.

Building the Computation Tree

XCilk abstractly builds the computation tree dynamically as
the computation unfolds. The computation tree built by an
XCilk program has a canonical form in that each P-node

TRANSACT 2007

has exactly two children, and both these children are non-
transactional S-nodes. Figure 3 illustrates a canonical XCilk
computation tree. We shall not describe the construction of
the tree, since it is relatively straightforward.

As the XCilk runtime system executes a computation, it
maintains the following fields for all internal nodes A that it
has encountered. Each internal node also knows whether it
is an S-node, a P-node, or a transaction.

e parent[A]: A’s parent in the computation tree.

e xparent[A]: The deepest transactional ancestor of A.

e nsParent[A]: The deepest nontransactional S-node an-
cestor of A.2

e If Aisa P-node, then it maintains pointers to both its chil-
dren. If it is an S-node, it maintains a linked list of all the
children it has seen so far. In addition if A is an S-node,
it remembers its current active child, activeChild[A].

e status[A]: The status is either PENDI NG, PENDI NG_ABORT,
COW TTED or ABORTED.

A node whose status is PENDI NG or PENDI NG_ABORT is
considered active. A node is considered complete if its sta-
tus is COW TTED or ABORTED. The XCilk runtime guaran-
tees that a node A can become complete only after all the
descendants of A have completed.

Work-Stealing

An XCilk computation is scheduled using work-stealing.
Consider a computation that executes on p worker threads,
numbered 0,1,...p — 1, with worker 0 corresponding to the
program’s main thread. Every worker i maintains a field
running(i), which stores the a pointer to the S-node S that i
is currently running. Every worker i also maintains a deque
of waiting S-nodes, denoted as the set waiting(i), repre-
senting work that can stolen. Note that P-nodes are never
considered as running or waiting.

Each worker starts by working on an S-node and executes
this S-node’s subtree in a depth-first manner. When a worker
encounters a P-node, it starts working on the left child of the
P-node, and adds the right child to the bottom of the worker’s
ready deque. When it needs more work, it removes the S-
node from the bottom of its deque and starts executing that
S-node’s subtree. If it runs out of work, it randomly picks
some other worker and tries to steal the S-node from the top
of this other worker’s deque.

Initially, the root of the tree is on worker 0’s deque, and
all the other workers have empty deques. Worker 0 starts
executing the root, and the other workers try to steal work.

Figure 3 illustrates a canonical XCilk computation tree.

3. XCilk TRANSACTIONAL MEMORY
The TM provided by XCilk has three important features:

2For convenience, we treat root(c) as both a transactional and non-
transactional S-node.

. Border (status)
[0 Xaction
|:| Active
O Nontransactional S-node
D Complete
(O P-node =
il Active or complete
O Trace o
Waiting

Figure2. A legend for computation-tree figures.

Figure3. Asample computation tree ¢ generated by XCilk.

e Eager Updates: When transaction X writes to a memory
location ¢, ¢ is immediately updated, and the old value
of the ¢ is added to X’s log. This update enables fast
commits and slow aborts.

e Eager Conflict Detection: When a memory operation u
generates a conflict, the conflict is immediately detected.
Therefore, XCilk minimizes wasted work.

e Lazy Cleanup on Aborts: Since XCilk performs eager
updates, when a transaction X aborts, the memory loca-
tions changed by X have to be rolled back to their pre-
vious state. This rollback is not instantaneous. In XCilk,
other transactions that access these memory locations can
help in this cleanup.

This section describes how the XCilk handles aborts, com-
mits, reads and writes to provide these three features.

Committing and Aborting a Transaction

The status field status[X] for the transaction X is the loca-
tion in the XCilk that indicates whether the transaction has
successfully committed or aborted. To commit a transaction
X, the worker running X performs an xend operation which
simply changes status[X] from PENDI NG to COVWM TTED.
This change represents the commit point of the transaction,

TRANSACT 2007

and therefore must happen atomically. Note that all of X’s
descendants must complete before X can attempt a commit.

Since a worker may signal an abort of a transaction run-
ning on a (possibly different) worker whose descendants
have not yet completed, the XCilk protocol for a trans-
action abort is more involved than for a commit. Sup-
pose worker i wishes to abort an active transaction X
running on a different worker. Then worker i performs a
si gabort operation on X. The si gabort is implemented
as follows. First the worker i changes status[X] from
PENDI NG to PENDI NG_ABORT. Again, this change must hap-
pen atomically, since it might interfere with the commit of X.
Worker i then walks X’s active subtree, changing status[Y]|
to PENDI NG_ABORT, for all active Y € desc(X).

For reasons specific to the XConflict data structure XCilk
uses for conflict detection, COW TTED transactions Y <
desc(X) must be marked as ABORTED, since they are closed
nested inside X. (Section 7 describes how to optimize this
operation a little, avoiding a walk of the entire completed
subtree of X.) XConflict guarantees that other transactions
can no longer detect conflicts with X anytime after XCilk
changes the status of a transaction X to ABORTED.

When the worker j executing X “discovers” that X’s sta-
tus has changed to PENDI NG_ABCRT, or when X aborts itself,
all of X’s descendants have completed. Thus, j performs an
xabort operation that atomically changes status[X] from
PENDI NG_ABORT to ABORTED.

In XCilk, the rollback of memory locations on abort occur
lazily, and thus is decoupled from an xabort operation.
Once the status of a transaction X changes to ABORTED, other
transactions which try to access the same memory location
modified by X may help with cleanup for that location.

Handling Reads and Writes

XCilk performs eager conflict detection, meaning that it
checks for conflicts and successfully completes a read or
wr i t e instruction only if the operation does not cause a con-
flict. Conceptually, in XCilk, a successful r ead instruction
from a memory location £ issued by a transaction X adds
the location ¢ to X’s readset. Similarly, a successful write
instruction adds ¢ to X’s writeset. At any point in time, let
readers(¢) and writers({) be the sets of active transac-
tions X that have memory location £ in its readset or writeset,
respectively.® Then, using the computation tree, we define
conflicts as follows:

DEFINITION 1. At any point in time, we say a memory op-
eration v generates a conflict if

1. v reads memory location ¢, and 3X € writers({)

such that X ¢ ances(v), or
2. vwrites to memory location ¢, and 3X € readers(/)

such that X ¢ ances(v).

3We assume the writeset is always a subset of the readset.

If there is such a transaction X, then we say that v conflicts
with X. If v belongs to the transaction X', then we say that X
and X' conflict with each other.

The XCilk runtime maintains the invariant that a program
execution is always conflict-free, according to Definition 1.
XCilk supports closed-nested transactions; when a transac-
tion X commits, it conceptually merges its readset and write-
set into that of its transactional parent, xparent[X], and
when X aborts, it discards its readset and writeset. One can
show that when transactions have nested parallel transac-
tions, TM with eager conflict detection according to Defi-
nition 1 satisfies the transactional-memory model of prefix
race-freedom defined in [2].4 As shown in [2], prefix race-
freedom and serializability are equivalent if one can safely
“ignore” the effects aborted transactions.®

Definition 1 directly implies the following lemma about
a conflict-free execution.

LEMMA 1. For a conflict-free execution, the following in-
variants hold for any memory location ¢:

1. All transactions X € writers(¢) fall along a single
root-to-leaf path in ¢. Let lowest(writers({)) de-
note the unique transaction Y € writers(¢) such that
writers(f) C ances(Y).

2. All transactions X € readers(¢) are either along the
root-to-leaf path induced by the writers or are descen-
dants of the lowest(writers(?)).

We use Lemma 1 to argue that one can check for conflicts
for a memory operation u by looking at one writer and only
a small number of readers. Since all the transactions fall on a
single root-to-leaf path, by Lemma 1, Invariant 1, the trans-
action lowest(writers(f)) belongs to writers(¢) and is
a descendant of all transactions in writers(¢). Similarly,
let Q = lastReaders({¢) denote the set of readers Q C
desc(lowest(writers(¢))) implied by Invariant 2. If a
memory operation u tries to read ¢, abstractly, there is no
conflict exactly if and only if Lowest(writers({)) isanan-
cestor of u. Similarly, when u tries to write to ¢, by Invari-
ant 2, there is no conflict if for all Z € 1astReaders(?), Z
is an ancestor of u.®

TM Using Access Stacks

Using Lemma 1, one simple way TM can perform conflict
detection is to explicitly store all readers and writers of a
location ¢ on an access stack, denoted by accessStack (¢).
Conceptually, every element on the stack is either a single

4The proof isaspecia case of the proof for the operational model described
in[2], without any open-nested transactions.

5 Note that this equivalence may not holdin TM systemswith explicitret ry
constructs that are visible to the programmer.

6 Note that being confict freeimplies strong atomicity (generalized to trans-

actions with nested parallelism). Suppose a transaction X; nested inside its
parent Xz has written to amemory location £. If the parent X triesto read or
write to ¢ directly, in parallel with X3, then this access generates a confict.

TRANSACT 2007

transaction X € writers(¢), or a set Q of transactions, with
Q C readers(?). Every accessSt ack (¢) maintains the in-
variants that for any transaction Y on the stack (or Y € Q
where Q is a list of readers on the stack), every transaction
below Y in the stack is an ancestor of Y, and no two ad-
jacent entries on the stack are both lists of readers. Also,
accessSt ack (¢) always satisfies the property that either the
top entry of the stack is lowest(writers(¢)), or the top is
lastReaders(¢) and the second-from-top entry of the stack
is lowest(writers(?)).

To handle aborts, every access-stack entry for ¢ corre-
sponding to a write also has a pointer to the old value of
¢ before the write. Assuming that every read or wite in-
struction to a location ¢ appears to happen atomically (e.g.,
because it holds a lock on accessSt ack(¢)), one can use
access stacks to implement TM.

XCilk does not use this simple TM directly, however,
because it does not allow for fast commits and lazy cleanup
on aborts. Suppose Y = lowest(writers(¢)) is at the top
of the stack. Then, when Y commits, xparent[Y] becomes
lowest(writers(¢)). For the top of the stack to always be
either lowest(writers(¢)) or lastReaders({), we must
update the top of all stacks for all locations accessed by Y.
Similarly, on an abort of Y, the TM system would have to
clean up all the memory locations accessed by Y before any
other transaction can access these memory locations.

Lazy Access Stacks

In XCilk, therefore, we use a lazy access stack, in which
the top of accessSt ack (¢) does not change immediately on
the commit or abort of a transaction. Instead, we use data
structures to detect conflicts in a more sophisticated manner.
At any point in time, if the program execution has been
conflict-free up until that point, then a new read operation v
does not generate a conflict with a transaction X that writes
to £ if and only if

1. some transactional ancestor of X is ABORTED, or
2. the X’s closest active transactional ancestor is also an
ancestor of v.

XCilk performs conflict detection by using the XConflict
data structure to answer this query.’

Similarly, a write operation w does not generate a conflict
if and only if one of the above conditions holds true for all
transactions Y satisfying status[Y] # ABCRTED in reader
lists which appear above X in accessSt ack (¢).

We present code describing how to manipulate lazy ac-
cess stacks in Figure 4, assuming for simplicity that all mem-
ory accesses behave as writ e instructions.® Incorporating

7 Recall that we consider X to be an ancestor of itself. Thus, Case 1includes
the case when X itself is ABORTED. Also, since the root of the computation
tree is aways an active transaction, Case 2 includes the case where the top-
level transaction containing X has committed.

8The access code in Figure 4 assumes X Cilk locks the access stack before
every access to amemory location. It is possible to optimize this operation

ACCESS(u, /)

1 Z < xparent|U]

2 if status[Z] = PENDI NG.ABORT return XABORT
> Otherwise assume active

3 accessStack(¢).Lock()

> Set X to be the top writer on the stack.

4 X «—accessStack(¢).Tor()

5 if(X=2)

6 then goto line 23

7 result «— XCONFLICT-ORACLE(X,u)

8 if result is no conflict due to abort

9 then accessStack (¢).UNLOCK()
10 CLEANUP(?)
11 return RETRY

12 if result is no conflict due to ancestor
13 then goto line 20

> Otherwise, we have a conflict with transaction result.B
14 if choose to abort self
15 then accessSt ack (¢).UNLOCK()

16 return XABORT

17 else accessStack(¢).UNLOCK()
18 sigabort(result.B)

19 return RETRY

> Log the access
20 ADDTOWRITESET(Z,{)
21 LOGVALUE(Z,?)
22 accessStack(£).PusH(Z)

> Actually perform the write operation
23 Perform the write
24 accessStack(¢).UNLocCK()
25 return SUCCESS

Figure 4. Code for a transaction Z which performs a mem-
ory access to location ¢, assuming all accesses are treated
as writes. ACCESS(u,£) returns XABORT if Z should abort,
RETRY if the access should be retried, or SUCCESS if the
memory operation succeeded.

readers into the access stacks is more complicated, but con-
ceptually similar. Note that for a conflict due to “nontrans-
actional” code running in parallel with a transaction, line 14
in Figure 4 must choose to abort the transaction.

such that a transaction X only needs to lock the stack on the fi rst access
to the location. We create an accessor fi eld for the stack which is changed
using a CAS operation. A transaction X that is the accessor of ¢ conceptu-

aly owns the stack lock on ¢, and can only release if it commits or aborts,

or if one its nested transactions steals the lock from X. This scheme can

be extended to support strong atomicity by setting the accessor fi elds to be
nontransactional S-nodes as well.

TRANSACT 2007

CLEANUP(?)

1 accessStack(¢).Lock()

2 X < accessStack(¢).Tor()

3 if status[X] = ABORTED

4 then RESTOREVALUE(X,¢) > Restore ¢ from X’s log
5 accessStack (¢).Por()

6 accessStack(£).UNLOCK()

Figure5. Code for cleaning up an aborted transaction from
the top of accessSt ack (¢), assuming all accesses are writes.

XCONFLICT-ORACLE(X,u)

> Forany X € nodes(¢) and any u € memOps(C)

with parent|[u] = running(i) on some worker i.
1 if 3Y € ances(X) such that status[Y] = ABORTED
2 then return no conflict due to abort
3 else Y’ « closest active transactional ancestor of X
4 if Y/ € ances(u)
5 then return no conflict due to ancestor
6
7

else BSet < (ances(Y’) —ances(LCA(Y',u))).

return any transaction B in BSet

Figure 6. Query answered by XConflict data structure. In
line 6, if Y’ is not an ancestor of Z, then XConflict returns
any transaction B on the path between Y’ and LCA(Y’,Z);
since B and Z are both active, they must run in parallel.

The code for a memory access calls a cleanup subroutine,
shown in Figure 5. The code also assumes the existence of
a function that can answer the query described in Figure 6.
In Section 4, we describe the details of XConflict, the data
structure for answering this query.

Note that while the ACCESS method is running, transac-
tions running on different workers from u can continue to
commit or abort. The commit or abort of such a transaction
can eliminate a conflict with u, but never create a new con-
flict with u. Thus, concurrent changes may introduce spuri-
ous aborts, but do not affect correctness.

4. XCilk CONFLICT DETECTION

This section describes the high-level XConflict scheme for
conflict detection in XCilk. As the computation tree dynam-
ically unfolds during an execution, our algorithm dynami-
cally divides the computation tree into “traces,” where each
trace consists of memory operations (and internal nodes) that
execute on the same worker. Our algorithm uses several data
structures that organize either traces, or nodes and trans-
actions contained in a single trace. This section describes
traces and gives a high-level algorithm for conflict detection.

By dividing the computation tree into traces, we reduce
the cost of locking on shared data structures. In particular,

all our data structures allow queries without locks. Updates
on a data structure whose elements belong to a single trace
are also performed without locks because these updates are
performed by a single worker. We do, however, globally
lock on updates to data structures whose elements are traces.
Since these traces are created only on steals, however, we
can bound the number of traces by O(pT.)—the number of
steals performed by the Cilk runtime system.

The technique of splitting the computation into traces
and having two types of data structures—“global” data struc-
tures whose elements are traces and “local” data structures
whose elements belong to a single trace—appears in Ben-
der et al’s [6] SP-hybrid algorithm for series-parallel main-
tenance (later improved in [14]). Our traces differ slightly,
and our data structures are a little more complicated, but the
analysis technique is similar.

Trace Definition and Properties

XConflict assigns computation-tree nodes to traces in the
essentially the same fashion as the SP-hybrid data struc-
ture described in [6, 14]. We briefly describe the structure of
traces here. Since our computation tree has a slightly differ-
ent canonical form from the canonical Cilk parse tree use for
SP-hybrid, XConflict simplifies the trace structure slightly
by merging some traces together.

Formally, each trace U C nodes(¢) is a disjoint subset
of nodes of the (a posteriori) computation tree. We let @ de-
note the set of all traces. Q partitions the nodes of the com-
putation tree ¢. Initially, the entire computation belongs to
a single trace. As the program executes, traces dynamically
split into multiple traces whenever steals occur.

A trace itself executes on a single worker in a depth-first
manner. Whenever a steal occurs, a trace U splits into three
traces Up, U1, and U (i.e., @ <+ Q U{Up,U1,Uz} —{U}),
and a worker steals the right subtree of a P-node P € U.
Each of the left and right subtrees of P become traces U;
and Uy, respectively. The trace Ug consists of those nodes
remaining after P’s subtrees are removed from U. Notice
that although the worker performing the steal begins work
on only the right subtree of P, both subtrees become new
traces. Figure 7 gives an example of traces resulting from a
steal. The left and right subtrees of the highest uncompleted
P-node P, are the roots of two new traces, Uy and Uo.

Traces in XCilk satisfy the following properties.

PROPERTY 1. Every trace U € @ has a well-defined head
nontransactional S-node S = head[U] € U such that for all
A €U, we have S € ances(A).

For a trace U € Q, we use xparent[U] as a shorthand for
xparent|head[U]]. We similarly define nsParent[U].

PROPERTY 2. The computation-tree nodes of atrace U € @
form a tree rooted at S = head[U].

PROPERTY 3. Trace boundaries occur at P-nodes; either
both children of the P-node and the node itself belong to

TRANSACT 2007

Figure 7. Traces of a computation tree ¢ (a) before
and (b) after a worker steal action. Before the steal,
only one worker 0 is executing (running(0) = X7), with
waiting(0) = {S2,Se}. Since Sy is at the top of 0’s
deque, when worker 1 performs a successful steal, we get
running(l) = Ss.

different traces, or all three nodes belong to the same trace.
All children of an S-node, however, belong to the same trace.

The partition @ of nodes in the computation tree ¢
induces a tree of traces J(c) as follows. For any traces
U,U’ € @, there is an edge (U,U’) € J(¢) if and only if
parentfhead[U’]] € U.% The properties of traces and the
fact that traces partition ¢ into disjoint subtrees together
imply that J(¢) is also a tree.

We say that a trace U is active if and only if head[U] is
active. The following lemma states if a descendant trace U’
is active, than U’ is a descendant of all active nodes in U.
The proof (omitted due to space constraints) relies on the
fact that traces execute serially in a depth-first manner.

LEMMA 2. Consider active traces U,U’ € Q, withU #U’.
Let B € U’ be an active node, and suppose B € desc(head[U])
(i.e.,U’ is a descendant trace of U). Then for any active node
A €U, we have A € ances(B).

XConflict Algorithm

XCilk instruments memory accesses, testing for conflicts
on each memory access by making performing queries of
XConflict data structures. In particular, XConflict must test
whether a recorded access by node A conflicts with the cur-
rent access by node u. Suppose that A does not have an
aborted ancestor. Then recall that in Figure 6, a conflict oc-
curs if only if the nearest uncommitted transactional ancestor
of A is not an ancestor of u.

9The function parent|] refers to the parent in the computation tree ¢, not
in the trace tree J(C).

XCONFLICT(A,u)

> For any A € nodes(¢) and any u € memOps(C)
with parent[u] = running(i) on some worker i.

> Test for simple base cases

if trace(A) = trace(u)
then return no conflict

if some ancestor transaction of A is aborted
then return no conflict due to abort

~wnN P

5 Let X be the nearest transactional ancestor of A
belonging to an active trace.
if X =null
then return no conflict > committed at top level
8 Ux « trace(X)

~N o

9 LetY be the highest active transaction in Uy

10 ifY #null andY isan ancestor of X
11 then if Uy is an ancestor of u

12 then return no conflict due to ancestor
13 else return conflict with Y

14 else Z — xparent|[Ux]

15 if Z=null ortrace(Z) is an ancestor of u
16 then return no conflict due to ancestor
17 else return conflict with Z

Figure 8. Pseudocode for the XConflict algorithm.

A straightforward algorithm for conflict detection finds
the nearest uncommitted transactional ancestor of A and
determines whether this is an ancestor of u. Maintaining
such a data structure subject to parallel updates is costly (in
terms of locking overheads).

XConflict performs a slightly simpler query that takes ad-
vantages of traces. XConflict does not explicitly find the
nearest uncommitted transactional ancestor of A; it does,
however, still determine whether that transaction is an an-
cestor of u. In particular, let Z be the nearest uncommitted
transactional ancestor of A, and let Uz be the trace that con-
tains Z. Then XConflict finds Uz (without necessarily find-
ing Z). Testing whether Uz is an ancestor of u is sufficient to
determine whether Z is an ancestor of u.

XConflict does not lock on any queries. Many of the
subroutines (described in later sections) need only perform
simple ABA tests to see if anything changed between the
start and end of the query.

The XCoNFLICT algorithm is given by pseudocode in
Figure 8. lines 1-4 handle the simple base cases. If A and
u belong to the same trace, they are executed by a single
worker, so there is no conflict. If A is aborted, there is also
no conflict.

TRANSACT 2007

Edge shape Edge style

. . No traces on path
i No active xaction on path p

2 Active xactions on path

Figure 9. The definition of arrows used to represent paths
in Figures 10, 11 and 12.

1
* Active traces only

"
W Complete traces only

a)

Figure 10. The three possible scenarios in which X is the
nearest transactional ancestor of A that belongs to an ac-
tive trace. Arrows represent paths between nodes (i.e., many
nodes are omitted): see Figures 2 and 9 for definitions.
In both (a) and (b), A belongs to an active trace. In (a),
xparent[A] belongs to the same active trace as A. In (b),
xparent[A] belongs to an ancestor trace of trace(A). In (c),
A belongs to a complete trace, U is the highest completed
ancestor trace of A, and X is the xparent[U].

Suppose A is not aborted, and A and u belong to different
traces. XCONFLICT first finds X, the nearest transactional
ancestor of A that belongs to an active trace, in line 5. The
possible locations of X in the computation tree are shown in
Figure 10. Let Ux = trace(X). Notice that Ux is active, but
X may be active or inactive. For cases (a) or (b), we find X
with a simple lookup of xparent[A]. Case (c) involves first
finding U, the highest completed ancestor trace of trace(A),
then performing a simple looking of xparent[U]. Section 7
describes how to find the highest completed ancestor trace.

Line 9 finds Y, the highest active transaction in Ux. If
Y exists and is an ancestor of X, as shown in the left of
Figure 11, then XCONFLICT is in the case given by lines
11-13. If Uy is an ancestor of u, we conclude that A has
committed to an ancestor of u. Figure 11 (a) and (b) show
the possible scenarios where Ux is an ancestor of u: either X
is an ancestor u, or X has committed to some transaction Z
that is an ancestor of u.

Suppose instead that Y is not an ancestor of X (or that
Y does not exist), as shown in the left of Figure 12. Then
XCoNFLICT follows the case given in lines 15-17. Let Z
be the transactional parent of Ux. Since X has no active
transactional ancestor in Uy, it follows that X has committed

Figure 11. The possible scenarios in which the highest ac-
tive transaction Y in Uy is an ancestor of X, and Uy is an
ancestor of u (i.e., line 11 of Figure 8 returns true). Arrows
represent paths between nodes (i.e., many nodes are omit-
ted): see Figures 2 and 9 for definitions. The block arrow
shows implication from the left side to either (a) or (b).

Figure12. The scenario in which the highest active transac-
tionY in Uy is not an ancestor of X, and Z = xparent|Ux]
is an ancestor of u (i.e., line 15 of Figure 8 returns true).
The block arrow shows implication from the left side to the
situation on the right.

to Z. Thus, if trace(Z) is an ancestor of u, we conclude that
A has committed to an ancestor of u, as shown in Figure 12.

Section 5 describes how to find the trace containing a
particular computation-tree node (i.e., computing trace(A)).
Section 6 describes how to maintain the highest active trans-
action of any trace (used in line 9). Section 7 describes how
to find the highest completed ancestor trace of a trace (used
for line 5), or find an aborted ancestor trace (line 3). Comput-
ing the transactional parent of any node in the computation
tree (xparent[A]) is trivial. Section 8 describes a data struc-
ture for performing ancestor queries within a trace (line 10),
and a data structure for performing ancestor queries between
traces (lines 11 and 15).

The following theorem states that XConflict is correct.

THEOREM 3. Let A be a node in the computation tree, and

let u be a currently executing memory access. Suppose that A
does not have an aborted ancestor. Then XCONFLICT(A,u)

TRANSACT 2007

reports a conflict if and only if the nearest (deepest) active
transactional ancestor of A is an ancestor of u.

PrROOF. If A has an aborted ancestor, then XCONFLICT
properly returns no conflict.

Assume that no XConflict data-structural changes occur
concurrently with a query. The case of concurrent updates
is a bit more complicated and omitted from this proof. The
main idea for proving correctness subject to concurrent up-
dates is as follows. Even when trace splits occur, if a con-
flict exists, XCONFLICT has pointers to traces that exhibit
the conflict. Similarly, if XCONFLICT acquires pointers to
a transaction (Y or Z) deemed to be active, that transaction
was active at the start of the XCONFLICT execution.

Let Z be the nearest active transactional ancestor of A. Let
Uz be the trace containing Z; since Z is active, Uz is active.
Lemma 2 states that Uz is an ancestor of u if and only if Z is
an ancestor of u. It remains to show that XConflict finds Uz.

XConflict first finds X, the nearest transactional ancestor
of A belonging to an active trace (line 5). The nearest active
ancestor of A must be X or an ancestor of X. Let Ux be the
trace containing X, and let Y be the highest active transaction
in Ux. IfY is an ancestor of X, then either Z = X, or Z is an
ancestor of X and a descendant of Y (as shown in Figure 11).
Thus, XConflict performs the correct test in lines 11-13.

Suppose instead that Y, the highest active transaction in
Uy, is not an ancestor of X. Then no active transaction in
Ux is an ancestor of X. Let Z be the transactional ancestor
of Ux. Since Uy is active, Z must be active. Thus, Z is
the nearest uncommitted transactional ancestor of A, and
XConflict performs the correct test in lines 15-17. Cl

Note that XCONFLICT may return some spurious con-
flicts if transactions complete during the course of a query.

5. TRACE MAINTENANCE

This section describes how to maintain trace membership
for each node in the computation tree ¢ subject to queries
trace(A) for any A € ¢. The queries take O(1) time in the
worst case. We give the main idea of the scheme here for
completeness, but we omit details as they are similar to the
local-tier of SP-hybrid [6, 14].

To support trace membership queries, XConflict orga-
nizes computation-tree nodes belonging to a single trace as
follows. Nodes are associated with their nearest nontransac-
tional S-node ancestor. These S-nodes are grouped into sets,
called “trace bags.” Each bag b has a pointer to a trace, de-
noted traceField[b], which must be maintained efficiently.
A trace may contain many trace bags.

Bags are merged dynamically as the program executes
using a disjoint-sets data structure [9, Chapter 21]. Since
traces execute on a single worker, we do not lock the data
structure on update (UNION) operations. Bags are merged in
a way similar to the SP-bags [13, 14] used by the local tier
of SP-hybrid [6, 14]. The difference in our setting is that we
use only one kind of bag (instead of two in SP-bags).

When steals occur, a global lock is acquired, and then
a trace is split into multiple traces, as in the global tier of
SP-hybrid [6, 14]. The difference in our setting is that traces
split into three traces (instead of five in SP-hybrid). It turns
out that trace splits can be done in O(1) worst-case time by
simply moving a constant number of bags. When the trace
constant-time split completes (including the split work in
Sections 6 and 8), the global lock is released.

To query what trace a node A belongs to, we perform the
operations traceField[FIND-BAG(nsParent|[B])]. These
queries (in particular, FIND-BAG) take O(1) worst-case time
as in SP-hybrid [6, 14]. Merging bags takes O(1) amortized
time, but an optimization [14] gives a technique that im-
proves UNIONS to worst-case O(1) time whenever the amor-
tization might adversely increase the program’s critical path.

6. HIGHEST ACTIVE TRANSACTION

This section describes how to maintain the highest active
transaction in a trace, used in line 9 of Figure 8. In particular,
XConflict finds highest active transaction in O(1) time.

For each nontransactional S-node S, we have a field
nextx[S] that stores a pointer to the nearest active descen-
dant transaction of S. Maintaining this field for all S-nodes
is expensive, so instead we maintain it only for some S-
nodes as follows. Let S € U be an active nontransactional
S-node such that either S = head[U], or S is the left child of
a P-node and S’s nearest S-node ancestor (which is always a
grandparent) is a transaction. Then nextx[S] is defined to be
the nearest, active descendant transaction of S in U. Other-
wise, nextx[S] = nul | .

Finding the highest active transaction is simply a call to
nextx[head[U]], which takes O(1) time. The complication is
maintaining the nextx values, especially subject to dynamic
trace splits.

To maintain nextx, we keep a stack of S-nodes in U for
which nextx is defined. Initially push head[U] onto the stack.
For each of the following scenarios, let S be the S-node
on the top of the stack. Whenever encountering a transac-
tional S-node X, check nextx[S]. If nextx[S] = nul | , then set
nextx[S] < X. Otherwise, do nothing. Whenever complet-
ing a transaction X, check nextx[S]. If nextx[S] = X, then set
nextx[S] < nul | . Otherwise, do nothing. Whenever encoun-
tering a nontransactional S-node S'. If nextx[S] = nul | , do
nothing. Otherwise, push S’ onto the stack. Whenever com-
pleting a nontransactional S-node S, pop S’ from the stack
if it is on top of the stack.

Finally, XConflict maintains these nextx values even sub-
ject to trace splits. Consider a split of trace U into three
traces Uy, Uz, and Ug, rooted at S, Sp, and Sy, respectively.
Since XCilk steals from the highest P-node in the compu-
tation tree, S; must be the highest, active, nontransactional
S-node descendant of S that is the left child of a P-node.
Thus, either Sq is the second S-node on U’s stack, or S is
not on U’s stack.

TRANSACT 2007

If S1 is on U’s stack, then nextx[S] is defined to be an
ancestor of S, and we leave it as such. Moreover, since Sq is
on the stack, nextx[S1] is defined appropriately. Simply split
the stack into two just below S to adjust the data structure
to the new traces. Suppose instead that S is not on U’s
stack. Then the nextx[S] may be a descendant of Sy (or it
is undefined). Set nextx[S1] < nextx[S] and nextx[S] < nul | .
Then split the stack below S, and prepend S; at the top of
its stack. The necessary stack splitting takes O(1) worst-
case time. This splitting occurs while holding the global lock
acquired during the steal (as in Section 5).

7. SUPERTRACES

This section describes XConflict’s data structure to find the
highest completed ancestor trace of a given trace (used as
a subprocedure for line 5 in Figure 8, illustrated by U in
Figure 10 (c)). To facilitate these queries, XConflict groups
traces together into “supertraces.” Grouping traces into su-
pertraces also facilitates faster aborts—when aborting a
transaction in trace U, we need only abort some of the super-
trace children of U, not the entire subtree in ¢. This section
also provides some details on performing the abort.

All update operations on supertraces take place while
holding the same global lock acquired during the steal (as
in Sections 5, 6, and 8). Note that unlike the data structures
in Sections 5, 6, and 8, the updates to supertraces do not
occur when steals occur. To prove good performance (in
Section 9), we use the fact that the number of supertrace-
update operations is asymptotically identical to the number
of steals. This amortization is similar to the “global tier” of
SP-hybrid [6].

At any point during program execution, a completed trace
U € q belongs to a supertrace K = strace(U) C Q.. In par-
ticular, the traces in K form a tree rooted at some representa-
tive trace rep[K], which is an ancestor of all traces in K. Our
structure of supertraces is such that either rep|[strace(U)] is
the highest completed ancestor trace of U (i.e., as used by
line 5 in Figure 8), or U has an aborted ancestor. We prove
this claim in Lemma 4 after describing how to maintain su-
pertraces.

Supertraces are implemented using a disjoint-sets data
structure [9, Chapter 21]. In particular, we use Gabow and
Tarjan’s data structure that supports MAKE-SET, FIND (im-
plementing strace(U)), and UNION operations, all in O(1)
amortized time when unions are restricted to a tree structure
(as they are in our case).

When a trace U is created, we create an empty super-
trace for U (so strace(U) = 0). When the trace completes
(i.e., at a j oi n operation), we acquire the global lock. We
then add U to U’s supertrace (giving strace(U) = {U}).
Next, we consider all child traces U’ of U (in the tree of
traces J(¢)).1% If head[U'] is ABORTED, then we skip U’. If

1O Maintaining alist of al child traces is not diffi cult. We keep alinked list
for each node in the trace tree and add to it whenever atrace splits.

10

head[U’] is COWM TTED, we merge the two supertraces with
UNION(strace(U), strace(U’)). Thus, for U’ (and all rele-
vant descendants), rep[strace(U’)] = rep|strace(U)] = U.
Once these updates complete, the global lock is released.
Later, U’s supertrace may be merged with its parents,
thereby updating rep[strace(U)].

A naive algorithm to abort a transaction X must walk the
entire computation subtree rooted at X, changing all of X’s
COW TTED descendants to ABORTED. Instead, we only walk
the subtree rooted at X in U, not ¢. Whenever hitting a trace
boundary (i.e., A€ U, B € children(A), B U’ £ U), we
set that root of the child trace (B) to be aborted and do not
continue into its descendants. Thus, we enforce all descen-
dants of B have a supertrace with an aborted representative.

The following lemma (proof omitted) states that either
the representative of U’s supertrace is the highest completed
ancestor trace of U, or U has an aborted ancestor.

LEMMA 4. Forany completed traceU € @, let K = strace(U),
and letU’ = rep[K]. Exactly one of the following cases holds.

1. Either head|U’] is ABORTED, or
2. head|U’] is COWM TTED and trace(parent|head[U']])
is active.

8. ANCESTOR QUERIES

This section describes how XConflict performs ancestor
queries. XConflict performs a “local” ancestor query of two
nodes belonging to the same trace (line 10 of Figure 8) and
a “global” ancestor query of two different traces (lines 11
and 15 of Figure 8). Both of these queries can be performed
in O(1) worst-case time. The global lock is acquired only on
updates to the global data structure, which occurs on trace
splits (i.e., steals). Many details are omitted due to space
constraints.

Local ancestor queries

XCilk executes a trace on a single worker, and each trace is
executed in depth-first order. We thus view a trace execution
as a depth-first execution of a computation (sub)tree (or a
depth-first tree walk).

To perform ancestor queries on a depth-first walk of a
tree, we associate with each tree node u the discovery time
d[u], indicating when u is first visited (i.e., before visiting
any of u’s children), and the finish time f[u], indicating
when u is last visited (i.e., when all of u’s descendents have
finished). (This same labeling appears in depth-first search
in [9, Section 22.3].) These timestamps are sufficient to
perform ancestor queries in constant time.

In the context of XConflict, we simply need associate a
“time” counter with each trace. Whenever a trace splits, this
counter’s value is copied to the new traces.

Global ancestor queries

Since the computation tree does not execute in a depth-
first manner, the same discovery/finish time approach does

TRANSACT 2007

not work for ancestor queries between traces. Instead, we
keep two total orders on the traces dynamically using order-
maintenance data structures [5, 11]. These two orders give
us enough information to query the ancestor-descendant re-
lationship between two nodes in the tree of traces. These
total orders are updated while holding the global lock ac-
quired during the steal, as in Sections 5 and 6. Since our
global ancestor-query data structure resembles the global
series-parallel-maintenance data structure in SP-hybrid [6],
we omit the details of the data structure. As in SP-hybrid,
each query has a worst-case cost of O(1), and trace splits
have an amortized cost of O(1).

9. PERFORMANCE CLAIMS

The following theorem bounds the running time of an XCilk
program in the absence of conflicts. The bound includes the
time to check for conflicts assuming that all accesses are
writes and to maintain the relevant data structures. Checking
for conflicts with multiple readers, however, increases the
runtime. Additionally, aborts add more work to the compu-
tation. Those slowdowns are not included in the analysis.

The proof technique here is similar to the proof of perfor-
mance of SP-hybrid in [14], and we omit the details due to
space constraints. The key insight in this analysis technique
is to amortize the cost of updates of global-lock-protected
data structures against the number of steals. One important
feature of XConflict’s “global” data structures is that they
have O(# of traces) total update cost. Another is that when-
ever a steal attempt occurs, the worker being stolen from
is making progress on the original computation. (That is,
whenever stealable, a worker performs only O(1) additional
work for each step of the original computation.) The proof
makes the pessimistic assumption that while the global lock
is held, only the worker holding the lock makes any progress.

The following theorem states the running time of an
XCilk program under nice conditions. We give bounds for
both Cilk’s normal randomized work-stealing scheduler, and
for a round-robin work-stealing scheduler (as in [14]).

THEOREM 5. Consider an XCilk program with T work and
critical-path length T, in which all memory accesses are
writes. Suppose the program, augmented with XConflict, is
executed on p and that no transaction aborts or memory
contention occur.

1. When using a randomized work-stealing scheduler,
the program runs in O(Ty/p+ p(Tw +1g(1/€))) time

with probability at least 1 — €, for any € > 0,
2. When using a round-robin work-stealing scheduler,

the program runs in O(T1/p + pTe) Worst-case time.

For illustration, consider a program where all concur-
rent paths access disjoint sets of memory locations. The
overhead of maintaining the XConflict data structures is
O(T1/p+ pTw). Each memory access queries the XConflict

1

data structure at most once. Since each query requires only
O(1) time, the entire program runs in O(T1/p + pTw) time.

Another way of viewing these bounds is as the overhead
of XConflict algorithm itself. These bounds nearly match
those of a Cilk program without XConflict’s conflict detec-
tion. The only difference is that the To, term is multiplied by
a factor of p. In most cases, we expect pT. < T1/p, S0 these
bound represents only constant-factor overheads beyond op-
timal. We would also expect the first bound to have better
constants hidden in the big-O.

The XCilk design we describe does not provide any rea-
sonable performance guarantees when we allow multiple
readers. Even in the case where transactions do not conflict
with each other, and when concurrent read operations never
wait to acquire an access stack lock, it appears that write
operation may check for conflicts against potentially many
readers in a reader list (some of which might have already
committed). Therefore, a write operation is no longer a con-
stant time operation, and it seems the work of the compu-
tation might increase proportional to the number of parallel
readers to a memory location. It is part of future work to
improve the XCilk design and analysis in the presence of
multiple readers.

10. CONCLUSIONS

The XCilk model presented in Section 3 describes one ap-
proach for implementing a software transactional memory
system that supports transactions with nested fork-join par-
allelism. XCilk design was guided by a few major goals.

e Supporting nested transactions of arbitrary depth.

e Small overhead when there are no aborts.

e Avoid asymptotically increasing the work or the critical
path of the computation too much.

We believe that we have achieved these goals to some extent,
since the XCilk guarantees provably good completion time
in the case when there are no aborts or contention, and all
accesses are treated as writes.

XCilk support eager updates and eager conflict detection
in order to achieve to these design goals. A TM system with
lazy updates has to write back its changes when a transaction
commits. Similarly, a TM system with lazy conflict detection
must validate a transaction upon its commit. In both cases,
the commit of a transaction X may perform work propor-
tional to the memory footprint of X. Therefore, operations
performed by an X that are nested k-deep may have to be
written back/validated k times (once for each ancestor of X),
potentially increasing the work k-fold.

XCilk also has a problem with memory footprint. Due to
lazy cleanup on aborts, and fast commits, the access stack for
a memory location may grow and require space proportional
to the number of accesses to that location. Also, access
stacks may contain pointers to transaction logs that persist
long after the transactions committed or aborted. Thus, a
computation’s memory footprint can become quite large.

TRANSACT 2007

In practice, implementing a separate, concurrent thread for
“garbage-collection” of metadata may help.

It would be interesting to see if XCilk-like mechanisms
are useful for high-performance languages like Fortress [3]
and X10 [12]. Both these languages support transactions and
fork-join parallelism. The language specification for Fortress
also permits nested parallel transactions. These are richer
languages than Cilk, however, and may require more com-
plicated mechanisms to support nested parallel transactions.

Finally, we do not claim that XCilk’s design is particu-
larly efficient as currently written. For example, one might
be able to implement transactions with nested parallelism
more efficiently or simply by limiting the nesting depth. We
would like to implement the system in the Cilk runtime sys-
tem to evaluate its practical performance and explore ways
to optimize the implementation.

References

[1] A.-R. AdI-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman. Compiler and runtime support for
effi cient software transactional memory. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 26—-37, Jun 2006.

K. Agrawal, C. E. Leiserson, and J. Sukha. Memory models
for open-nested transactions. In Proceedings of the ACM
S GPLAN Wbrkshop on Memory Systems Performance
and Correctness (MSPC), October 2006. In conjunction
with International Conference on Architectutal Support for
Programming Languages and Operating Systems.

E. Allen, D. Chase, J. Hllett, V. Luchango, J.-W. Magssen,
S. Ryu, G. L. S. J., and S. Tobin-Hochstadt. The fortress
language specifi cation, version 1.0 3. Technical report, Sun
Microsystems, Inc., March 2007.

[2

—

(3

—_

[4] C.S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie. Unbounded transactional memory. |EEE Micro,

26(1):59-69, Jan. 2006.

[5] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and
J. Zito. Two simplifi ed algorithms for maintaining order
in alist. In Proceedings of the European Symposium on
Algorithms (ESA), pages 152—-164, 2002.

[6] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson.
On-the-fly maintenance of series-parallel relationships in
fork-join multithreaded programs. In Proceedings of the
ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 133-144, Barcelona, Spain, June 2004.

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An €ffi cient multithreaded
runtime system. Journal of Parallel and Distributed
Computing, 37(1):55-69, August 25 1996.

C. Blund€ll, E. C. Lewis, and M. M. K. Martin. Subtleties
of transactional memory atomicity semantics. Computer
Architecture Letters, 5(2), Nov 2006.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press and McGraw-
Hill, second edition, 2001.

[l

[8

-

[9

—

12

[10] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Mair, and
D. Nussbaum. Hybrid transactional memory. In Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
October 2006.

[11] P. Dietz and D. Sleator. Two algorithms for maintaining
order in alist. In Proceedings of the Symposium on Theory of
Computing, pages 365-372, New York City, May 1987.

[12] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: an experimen-
tal language for high productivity programming of scalable
systems. In Proceedings of Workshop on Productivity and
Performance in High-End Computing (P-PHEC), 2005. In
conjunction with Symposium on High Performance Computer
Architecture (HPCA).

[13] M. Feng and C. E. Leiserson. Effi cient detection of
determinacy races in Cilk programs. In Proceedings of the
Symposium on Parallel Algorithms and Architectures (SPAA),
pages 1-11, Newport, Rhode Island, June22—25 1997.

[14] J. T. Fineman. Provably good race detection that runs
in parallel. Master's thesis, Department of Electrica
Engineering and Computer Science, Massachusetts I nstitute
of Technology, Cambridge, MA, August 2005.

[15] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactiona memory coherence and
consistency. In Proceedings of the International Symposium
on Computer Architecture (ISCA), page 102, Washington,
DC, USA, 2004. |[EEE Computer Society.

[16] M. Herlihy, V. Luchangco, M. Mair, and W. N. Scherer,
I11. Software transactional memory for dynamic-sized data
structures. In Proceedings of ACM Symposium on Principles
of Distributed Computing (PODC), pages 92—-101, 2003.

[17] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the International Symposium on Computer
Architecture (I1SCA), pages 289-300, 2003.

[18] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid transactional memory. In Proceedings of the ACM
S GPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), March 2006.

[19] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisen-
stat, W. N. Scherer I11, and M. L. Scott. Lowering the over-
head of nonblocking software transactional memory. In
Proceedings of the Workshop of Languages, Compilers, and
Hardware Support for Transactional Computing (TRANS
ACT), June 2006.

[20] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood.
LogTM: Log-based transactional memory. In Proceedings
of the International Symposium on High-Performance
Computer Architecture (HPCA), Feb 2006.

[21] Supercomputing Technologies Group, Massachusetts Insti-
tute of Technology Laboratory for Computer Science. Cilk
5.4.2.3 Reference Manual, Apr. 2006.

TRANSACT 2007

