
Transforming Policies into Mechanisms with Infokernel

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Burnett, Timothy E. Denehy,
Thomas J. Engle, Haryadi S. Gunawi, James A. Nugent, and Florentina I. Popovici

Department of Computer Sciences, University of Wisconsin - Madison
{dusseau, remzi, ncb, tedenehy, englet, haryadi, damion, popovici}@cs.wisc.edu

ABSTRACT
We describe an evolutionary path that allows operating sys-
tems to be used in a more flexible and appropriate manner
by higher-level services. An infokernel exposes key pieces of
information about its algorithms and internal state; thus,
its default policies become mechanisms, which can be con-
trolled from user-level. We have implemented two prototype
infokernels based on the Linux 2.4 and NetBSD 1.5 kernels,
called infoLinux and infoBSD, respectively. The infokernels
export key abstractions as well as basic information prim-
itives. Using infoLinux, we have implemented four case
studies showing that policies within Linux can be manipu-
lated outside of the kernel. Specifically, we show that the
default file cache replacement algorithm, file layout policy,
disk scheduling algorithm, and TCP congestion control algo-
rithm can each be turned into base mechanisms. For each
case study, we have found that infokernel abstractions can
be implemented with little code and that the overhead and
accuracy of synthesizing policies at user-level is acceptable.

Categories and Subject Descriptors:
D.4.7 [Operating Systems]: Organization and Design
General Terms: Design, Experimentation, Performance
Keywords: Policy, Mechanism, Information

1. INTRODUCTION
Separating policy and mechanism has long been a goal

of operating system design. As an informal definition, one
can view policy as the scheme for deciding what should be
done and mechanism as the tool for implementing a set of
policies. Conceptually, OS design is simpler if one can view
each as distinct from the other.
At a minimum, separating policy and mechanism allows

one to build a more modular OS. For example, when man-
aging processes on the CPU, it is traditional to view the
dispatcher, which performs the low-level context-switch, as
the mechanism, and the scheduler, which decides which pro-
cess should run when, as the policy. This conceptual division
effectively isolates the code that must change when the OS is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

ported (i.e., the dispatcher) from that which should change
to handle different workloads (i.e., the scheduler). With
more ambitious goals, this separation also enables extensible
systems, in which the kernel implements only mechanisms
and processes implement policies at user-level to suit their
needs [9, 14, 21, 26, 53]. Alternatively, one can design a
kernel that allows processes to download their ideal policies
directly into the OS [4, 42].
However, in practice it is not possible to cleanly sepa-

rate policies from mechanisms. Even the simplest mecha-
nisms often have decisions embedded within them; for ex-
ample, placing a waiting process into a queue makes a pol-
icy decision concerning where that process is inserted in the
queue [42]. Furthermore, the presence of specific mecha-
nisms dictates which policies can be efficiently or pragmati-
cally implemented above. In the words of Levin et al.: “the
decision to exclude certain policies is itself a lower-level (i.e.,
kernel) policy” [25]. Even research that explicitly strives to
push the definition of mechanism to the extreme, in which
it provides only “a safe (protected) image of a hardware op-
eration” [25] must implement policies that ensure fairness
across competitors. As a result, mechanism and policy must
be viewed as a continuum, in which policies implemented by
one component act as the mechanisms to be used by the next
layer in the system; in other words, which features are policy
and which are mechanisms depends upon one’s perspective.
We believe an important challenge for next-generation

systems is to determine how the policies implemented by
a traditional OS can be converted into useful mechanisms
for higher-level services. Given the large amount of func-
tionality, the hundreds of millions of dollars invested, and
the thousands of developer years spent on commodity op-
erating systems, one must view the existing policies of the
OS as the mechanisms for higher-level services built on top.
Instead of a radical restructuring of the operating system,
we advocate an evolutionary approach.
The thesis of this paper is that the key to transforming the

“policies” implemented by the OS into new “mechanisms”
is to export more information about the internals of the
OS. We name an operating system that has been enhanced
to expose internal information an infokernel. In this work,
we show that the functionality of the system is significantly
enhanced when an existing OS is modified to provide key
pieces of information about both its internal state and its
algorithms. With an infokernel, higher-level services that
require new policies from the OS are able to implement this
functionality outside of the OS, whereas other services can
still leverage the default OS policies.

To demonstrate the feasibility of our approach, we mod-
ify the Linux 2.4.18 kernel to create infoLinux. This im-
plementation of infoLinux exposes the values of key data
structures and simple descriptions of the algorithms that it
employs. To illustrate the power of this information, we in-
vestigate case studies where user-level services convert the
default Linux policies into more controllable mechanisms;
to illustrate the succinctness of this approach, we show that
only tens or hundreds of lines of code are required to export
the information from Linux.
Our case studies focus on some of the major components

in an OS: file cache management, file placement, disk schedul-
ing, and networking. In our first case study, we show that a
user-level service can convert the Linux 2Q-based page re-
placement algorithm into a building block for other replace-
ment algorithms such as MRU, LRU, LFU, and FIFO. In our
second example, we show that applications can turn a range
of file system allocation policies into a controllable place-
ment mechanism; this allows applications to specify which
files and directories should be placed near each other on disk.
Third, we show that the Linux C-LOOK disk scheduling pol-
icy can be transformed into a building block for other algo-
rithms, such as an idle queue scheduler or a free-bandwidth
scheduler [27]. Finally, we demonstrate that by exporting
key pieces of state information, TCP Reno can be altered
into a controllable transport mechanism, enabling user-level
policies such as TCP Vegas [5].
Our experience reveals some of the fundamental abstrac-

tions that an infokernel should support. Rather than export-
ing comprehensive information, an infokernel retains some
level of secrecy about its implementation to enable innova-
tion behind the infokernel interface and to provide portabil-
ity to applications; therefore, an infokernel strives to export
fundamental abstractions that are expected to hold across
many policies. For example, to represent a page replace-
ment algorithm, an infokernel could report the direct state
of each page (e.g., reference bits, frequency bits, and dirty
bits). However, because the relevant state depends upon
the exact algorithm, a more generalized abstraction is de-
sired, such as a list of pages ordered by which is expected
to be evicted next. The level of detail to export is a fun-
damental tension of infokernel design. For each of our case
studies, we describe an appropriate abstraction; we find that
prioritized lists provide an effective means of exporting the
requisite information. Our prototype infoBSD, derived from
NetBSD 1.5, further verifies that these abstractions can be
easily implemented across different systems.
Our case studies also uncover some of the limitations of

the infokernel approach. Although relevant kernel state can
be expressed as an ordered list, we find that it is useful if a
user-level service can directly manipulate the ordering (e.g.,
by touching a page to increase its priority). When such
primitives are not available, the types of services that can
be implemented are limited, as we see in our disk schedul-
ing and networking case studies. We also find that when the
target policy substantially differs from the underlying ker-
nel policy, it may be difficult to accurately mimic the tar-
get policy; for example, this behavior arises when emulating
MRU on top of the default Linux 2Q algorithm. Finally,
we find that when list-reordering operations are expensive
(e.g., involve disk accesses), achieving control from user-level
may be prohibitively costly; the controlled file placement
case study exhibits this property, suggesting that additional

policy-manipulation machinery may be beneficial.
By implementing infoLinux, we have also discovered a

number of information primitives that streamline the in-
teractions between user-level services and an infokernel. An
application can obtain information either through memory-
mapped read-only pages or system calls; the appropriate
interface depends upon the frequency at which this infor-
mation is needed as well as the internal structure of the OS.
An application can obtain information by either polling the
OS or by blocking until the kernel informs it that the infor-
mation has changed. Our case studies again illustrate why
each of these primitives is useful.
The structure of the remainder of this paper is as follows.

We begin in Section 2 by addressing the primary issues in
building an infokernel. In Section 3, we compare infokernels
to previous work. In Section 4, we describe details of our pri-
mary implementation, infoLinux. In Section 5, we describe
our four case studies. In Section 6, we discuss preliminary
experience with infoBSD, and we conclude in Section 7.

2. INFOKERNEL ISSUES
In this section, we discuss the general issues of an info-

kernel. We begin by presenting the benefits of exposing
more information about the policies and state of the OS to
higher-level services and applications. We then discuss some
of the fundamental infokernel tensions concerning how much
information should be exposed.

2.1 Benefits of Information
To transform a policy implemented by the OS into a mech-

anism, a user-level process must understand the behavior of
that policy under different conditions. The behavior of a
policy is a function of both the algorithms used and the cur-
rent state of the OS; thus, the OS must export information
that captures both of these aspects. Providing this infor-
mation allows user-level processes to both manipulate the
underlying OS policy and also adapt their own behavior to
that of the OS.

2.1.1 Manipulate policy
Exposing the algorithms and internal state of the OS al-

lows higher-level services running outside of the OS to imple-
ment new policies tailored to their needs. With this knowl-
edge, services can not only predict the decisions that the OS
will make given a set of inputs and its current state, but also
change those decisions. Specifically, a new service can be
implemented in a user-level library that probes the OS and
changes its normal inputs, so that the OS reacts in a con-
trolled manner. For example, consider an application that
knows the file system performs prefetching after observing
a sequential access pattern. If the application knows that it
does not need these blocks, it can squelch prefetching with
an intervening read to a random block.
One can think of a policy as containing both limits and

preferences, where limits ensure some measure of fairness
across competing processes and preferences use workload be-
havior to try to improve overall system performance. Con-
verting a source infokernel policy into a target user-level
policy implies that the limits imposed by the source policy
cannot be circumvented, but its preferences can be biased.
In general, the more the service tries to bias the preferences
of the source policy, the more overhead it incurs; thus, there
is an appropriate disincentive for obtaining control that goes

against the system-wide goals of the OS.
Consider a file system with an allocation policy that takes

advantage of the higher bandwidth on the outer tracks of a
multi-zone disk by giving preference to large files in the outer
zone; however, for fairness, this file system also limits the
space allocated to each user in each zone. A process that
wishes to allocate a small file on the outer tracks can only
do so if it has not yet exceeded its (or the user’s) per-zone
quota; however, the process could bias the behavior of the
file system by padding the file to a larger size. In this case,
the process pays time and space overhead to create the large
file, since its actions do not match the default preferences of
the file system.

2.1.2 Enable adaptation
A secondary benefit of providing information is that appli-

cations can adapt their own behavior to that of the OS for
improved performance. For example, a memory-intensive
application that knows the amount of physical memory cur-
rently available can process its data in multiple passes, lim-
iting its working set to avoid thrashing. As a more extreme
example, a process that knows the amount of time remain-
ing in its time slice may decide not to acquire a contentious
lock if it expects to be preempted before finishing its critical
section. Given that it is more straightforward for services to
directly adapt their own behavior than to indirectly manipu-
late the behavior of the OS, we focus on the more challenging
issue of controlling policy in this paper.

2.2 Tensions in Design
Within an infokernel, a number of design decisions must

be made. We now discuss some of the issues pertaining to
the amount of information that is exposed, exposing infor-
mation across process boundaries, and exposing information
instead of adding new mechanisms.

2.2.1 Amount of information
One tension when designing an infokernel is to decide

what information should be exported. On the one hand,
exporting as much information as possible is beneficial since
one cannot always know a priori what information is useful
to higher-level services. On the other hand, exposing infor-
mation from the OS greatly expands the API presented to
applications and destroys encapsulation. Put simply, knowl-
edge is power, but ignorance is bliss.
There are unfortunate implications for both the applica-

tion and the OS when the API is expanded in this way [12].
For example, consider a new user-level service that wants
to control the page replacement algorithm and must know
the next page to be evicted by the OS. If the service is de-
veloped on an infokernel that uses Clock replacement, then
the application examines the clock hand position and the
reference bits. However, if this service is moved to an info-
kernel with pure LRU replacement, the service must instead
examine the position of the page in the LRU list. From the
perspective of the user-level service, a new API implies that
either the service no longer operates correctly or that it must
be significantly rewritten. From the perspective of the OS,
a fixed API discourages developers from implementing new
algorithms in the OS and thus constrains its evolution.
Therefore, for application portability, an infokernel must

keep some information hidden and instead provide abstrac-
tions. However, for the sake of OS innovation, these abstrac-

tions must be at a sufficiently high level that an operating
system can easily convert new internal representations to
these abstractions.
We believe that precisely determining the correct info-

kernel abstractions requires experience with a large number
of case studies and operating systems. In this paper, we take
an important first step toward defining these abstractions by
examining four major components of an operating system:
file cache management, file placement, disk scheduling, and
networking. For each of our case studies, we describe a use-
ful abstraction for an infokernel to export. For example, to
represent the file cache replacement algorithm, we find that
a prioritized list of resident pages allows user-level services
to efficiently determine which pages will be evicted next.
Our implementation illustrates that implementing these ab-
stractions for an existing OS is relatively simple and involves
few lines of code.

2.2.2 Process boundaries
Another tension when designing an infokernel is to deter-

mine the information about competing processes that should
be exposed to others. On the one hand, the more informa-
tion about other processes that is exposed, the more one
process can optimize its behavior relative to that of the en-
tire system. On the other hand, more information about
other processes could allow one process to learn secrets or
to harm the performance of another process.
Clearly, some information about other processes must be

hidden for security and privacy (e.g., the data read and writ-
ten and the contents of memory pages). Although other in-
formation about the resource usage of other processes may
increase the prevalence of covert channels, this information
was likely to be already available, but at a higher cost. For
example, with a resident page list, a curious process may
infer that another process is accessing a specific file; how-
ever, by timing the open system call for that file, the curious
process can already infer from a fast time that the inode for
the file was in the file cache. An infokernel that wants to
hide more information across process boundaries can do this
by performing more work; with the resident page list exam-
ple, the corresponding file block number can be removed for
those pages that do not belong to the calling process.
This issue also addresses the suitability of competing ap-

plications running on an infokernel. One concern with an
infokernel is that services are encouraged to “game” the
OS to get the control they want, which may harm others.
Although processes should acquire locks before performing
control that potentially competes with other processes, a
greedy process may avoid an advisory lock. Further, with
more information, a greedy process can acquire more than
its fair share of resources; for example, a greedy service that
keeps its pages in memory by touching them before they are
evicted is able to steal frames from other processes. How-
ever, given that an infokernel does not provide new mecha-
nisms, this behavior was possible in the original OS, albeit
more costly to achieve. For example, without infokernel
support, a greedy process can continually touch its pages
blindly, imposing additional overhead on the entire system.
In summary, an infokernel stresses the role of the OS to arbi-
trate resources across competing applications (i.e., to define
limits in its existing policies), but does not impart any new
responsibilities; an infokernel without adequate policy limits
may be best suited for non-competitive server workloads.

2.2.3 Adding mechanisms
A final issue is to determine when a kernel should add

mechanisms for control instead of simply exposing informa-
tion. The question is difficult to answer in general, as it
requires a side-by-side comparison for each desired piece of
functionality, which we leave to future work. However, we
believe that adding a new mechanism is often more complex
than exposing information for two reasons.
First, to be consistent with the existing policy, the new

mechanism may allow changes to the preferences of the pol-
icy, but cannot violate the limits of the policy. Thus, the
new mechanism must explicitly check that the current invo-
cation does not violate any of the policy limits in the system;
a user-level policy implemented on an infokernel performs
this check automatically. A second complexity arises in no-
tifying the user of the reasons for the mechanism failure at
a sufficient level of detail. Presumably, the user will submit
the request again and wants sufficient information so that
the request will succeed in the future. Exposing details of
why a particular mechanism invocation violated the policy
is similar to exposing basic policy information, the task of
an infokernel.

3. RELATED PHILOSOPHIES
An infokernel, like other extensible systems, has the goal

of tailoring an operating system to new workloads and ser-
vices with user-specified policies. The primary difference is
that an infokernel strives to be evolutionary in its design.
We believe that it is not realistic to discard the great body
of code contained in current operating systems; an infokernel
instead transforms an existing operating system into a more
suitable building block.
The infokernel approach has the further difference from

other extensible systems in that application-specific code is
not run in the protected environment of the OS, which has
both disadvantages and advantages. The disadvantages are
that an infokernel will probably not be as flexible in the
range of policies that it can provide, there may be a higher
overhead to indirectly controlling policies, and the new user-
level policies must be used voluntarily by processes. How-
ever, there is an advantage to this approach as well: an
infokernel does not require advanced techniques for dealing
with the safety of downloaded code, such as software-fault
isolation [51], type-safe languages [4], or in-kernel transac-
tions [42]. The open question that we address is whether
the simple control provided by an infokernel is sufficient to
implement a range of useful new policies.
The idea of exposing more information has been explored

for specific components of the OS. For instance, the benefits
of knowing the cost of accessing different pages [48] and the
state of network connections [38] has been demonstrated.
An infokernel further generalizes these concepts.
We now compare the infokernel philosophy to three re-

lated philosophies in more detail: exokernel, Open Imple-
mentation, and gray-box systems. The goal of exposing OS
information has been stated for exokernels [14, 21]. An ex-
okernel takes the strong position that all fixed, high-level ab-
stractions should be avoided and that all information (e.g.,
page numbers, free lists, and cached TLB entries) should be
exposed directly. An exokernel thus sacrifices the portabil-
ity of applications across different exokernels for more infor-
mation; however, standard interfaces can be supplied with

library operating systems. Alternately, an infokernel empha-
sizes the importance of allowing operating systems to evolve
while maintaining application portability, and thus exposes
internal state with abstractions to which many systems can
map their data structures.
The philosophy behind the Open Implementation (OI)

project [22, 23] is also similar to that of an infokernel. The
OI philosophy states, in part, that not all implementation
details can be hidden behind an interface because not all
are mere details; some details bias the performance of the
resulting implementation. The OI authors propose several
ways for changing the interface between clients and mod-
ules, such as allowing clients to specify anticipated usage,
to outline their requirements, or to download code into the
module. Clients may also choose a particular module imple-
mentation (e.g., BTree, LinkedList, or HashTable); this ap-
proach exposes the algorithm employed, as in an infokernel,
but does not address the importance of exposing state.
Finally, there is a relationship between infokernels and

the authors’ own work on gray-box systems [3]. The phi-
losophy of gray-box systems also acknowledges that infor-
mation in the OS is useful to applications and that existing
operating systems should be leveraged; however, the gray-
box approach takes the more extreme position that the OS
cannot be modified and thus applications must either as-
sume or infer all information. There are a number of limita-
tions when implementing user-level services with a gray-box
system that are removed with an infokernel. First, with a
gray-box system, user-level services make key assumptions
about the OS which may be incorrect or ignore important
parameters. Second, the operations performed by the ser-
vice to infer internal state may impose significant overhead
(e.g., a web server may need to simulate the file cache re-
placement algorithm on-line to infer the current contents of
memory [6]). Finally, it may not be possible to make the cor-
rect inference in all circumstances (e.g., a service may not be
able to observe all necessary inputs or outputs). Therefore,
an infokernel still retains most of the advantages of leverag-
ing a commodity operating system, but user-level services
built on an infokernel are more robust to OS changes and
more powerful than those on a gray-box system.

4. IMPLEMENTATION: INFOLINUX
In this section, we describe our experience building a pro-

totype infokernel based on Linux 2.4.18. InfoLinux is a strict
superset of Linux, in which new interfaces have been added
to expose information, but no control mechanisms or policies
have been modified. The point of this exercise is to demon-
strate that a traditional operating system can be easily con-
verted into an infokernel. As a result, our prototype info-
Linux contains sufficient functionality to demonstrate that
higher-level services can extend existing Linux policies, but
does not contain abstractions for every policy in the OS.

4.1 Information Structure
Our initial version of infoLinux contains abstractions of

some of the key policies within Linux. Each abstraction is
composed of both data structures and algorithms; to enable
the portability of user-level services across different info-
kernels, these data structures are standardized.
The associated data structures are exported by infoLinux

through system calls or user-level libraries; the user-level li-
brary accesses kernel memory directly by having key pages

Case Study Abstraction Description
infoReplace pageList Prioritized list of

(§5.2) in-memory pages
victimList List of pending

victim pages
infoPlace fsRegionList Prioritized list of

(§5.3) disk groups for
dir allocation

infoSched diskRequestList Queue of
(§5.4) disk requests

fileBlocks List of blk numbers
of inode/data in file

infoVegas msgList List of message
(§5.5) segments

Table 1: Case studies and infoLinux abstractions.
For each case study in the paper, we present the names of
the abstractions it employs and a short description.

mapped read-only into its address space. Although the
memory-mapped interface allows processes to avoid the over-
head of a system call, it can be used only rarely: most inter-
esting data structures are scattered throughout kernel mem-
ory (e.g., the disk scheduling queue) and significant restruc-
turing of the kernel is necessary to place related information
on the same page.
Through our case studies, we have defined a number of

fundamental infokernel abstractions; these are summarized
in Table 1 and described in detail in Section 5. We have
found that a commonality exists in the abstractions needed
across the disparate policies; in each case, the essential state
information can be expressed in terms of a prioritized list.
In some cases, a version of this list already exists within the
kernel; in other cases, the infokernel must construct this list
from more varied sources of information. For example, the
abstract list for the disk scheduling policy is simply the ex-
isting scheduling queue, separated for each device. However,
the abstract list for the file allocation policy contains all of
the cylinder groups, with the group that will be selected next
for allocation at the head; this list must be constructed by
combining knowledge of how cylinder groups are picked with
the current state of each group.
To represent an algorithm, our infoLinux prototype cur-

rently exports a logical name. For example, the disk schedul-
ing algorithm can be represented with C-LOOK, SSTF, or
SPTF. Although this naming method is primitive, it is suf-
ficient for our initial demonstration that existing policies in
infoLinux can be controlled. We are currently investigating
a more general representation of the key aspects of a policy,
in which the infokernel exports the rules that both deter-
mine how items within the list abstraction are moved up
or down in priority and that allow user processes to predict
where a new item will be inserted into the list.

4.2 Information Primitives
Converting the internal format of data structures within

Linux to the general representation required by the info-
kernel interface requires careful implementation choices. We
have found that a number of information primitives are use-
ful in making the conversion simpler for the developer and
more efficient at run time.

Buffers: An application may periodically poll the state
of the infokernel; however, if this polling is not performed
frequently enough, the application may miss important state
changes. Therefore, infoLinux provides a mechanism for
recording changes to a particular data structure in a circular
buffer. Buffers are also useful in amortizing the overhead of
a system call over many values.
Notifiers: Rather than poll for state changes, a service

may wish to be notified when a key data structure changes.
Therefore, infoLinux provides a mechanism for a process to
block until any value in a specified abstraction has changed.
Timers: The amount of time a particular operation takes

can reveal useful information. Within an infokernel, time is
valuable for inferring the properties of a resource with auton-
omy outside of the OS, such as the network [19] or disk [40].
Thus, infoLinux provides a mechanism to add timers within
the kernel and return the results to user processes.
Procedure counters: For an infokernel to export an

estimate of changes in its state, it is useful for the kernel to
count the number of times a particular procedure is called
or piece of code is executed. Therefore, infoLinux provides a
mechanism to add counters to specific locations in its code.
These primitives can often be implemented with a dy-

namic kernel instrumentation tool [34, 47]. With dynamic
instrumentation, an infokernel developer can easily trace
new variables and incur no overhead until the tracing is ac-
tivated by a user process. Our preliminary experience with
such a tool [34] indicates that the overhead of enabling these
information primitives is low; for example, buffering variable
changes during typical file system operations within the info-
Linux routine ext2 getblk incurs negligible overhead.

5. CASE STUDIES
To demonstrate the power of the infokernel approach, we

have implemented a number of case studies that show how
policies in infoLinux can be converted into more controllable
mechanisms. Our examples focus on some of the major poli-
cies within Linux: file cache management, file placement,
disk scheduling, and networking.
The case studies emphasize different aspects of an info-

kernel, whether the flexibility of control provided, the range
of internal policies that can be mapped to a general abstrac-
tion, or the rate at which state information changes. For ex-
ample, by converting the file cache replacement policy into
a mechanism, we show that a wide range of target policies
(e.g., FIFO, LRU, MRU, and LFU) can be implemented
at user-level. When transforming the file system placement
policy into a mechanism, we show that our infokernel ab-
straction is sufficiently general to capture the important de-
tails of a variety of policies (e.g., directory allocation within
ext2, FFS [30], and with temporal locality [33]). Our manip-
ulations of the disk scheduling and TCP congestion control
algorithms show that user-level policies that need frequent
notification of OS state changes can also be implemented.
For each case study, we present an infokernel abstrac-

tion that suitably represents the underlying OS policy and
describe how we export this abstraction efficiently in info-
Linux. We then present the user-level library code that im-
plements a new policy on top of the infokernel abstraction.
Next, we quantify the accuracy and the overhead of control-
ling policies by comparing the infoLinux result with modeled
expectations or an in-kernel implementation. In most cases,
our approach has perfect accuracy, but may incur additional

overhead. The common theme across all the case studies is
that the overhead of controlling policies at user-level directly
depends upon how well the user’s desired control meshes
with the preferences and biases of the OS policy. Finally,
for each case study, we demonstrate the usefulness of the
user-level policy by showing a performance improvement for
some workload compared to the default Linux policy.

5.1 Experimental Environment
Throughout the experiments in this section, we employ a

number of different machine configurations.
•Machine M1: a 2.4 GHz Pentium 4 processor with 512 MB
of main memory and two 120-GB 7200-RPM Western Digi-
tal WD1200BB ATA/100 IDE hard drives.
• Machine M2: a 550 MHz Pentium 3 processor with 1 GB
of main memory and four 9-GB 10,000-RPM IBM 9LZX
SCSI hard drives.
• Machine M3: an 850 MHz Pentium 3 with 512 MB of
main memory, one 40-GB 7200-RPM IBM 60GXP ATA/100
IDE hard drive, and five Intel EtherExpress Pro 10/100Mb/s
Ethernet ports, from the Netbed emulation environment [52].
On multi-disk machines, only one disk is used unless oth-

erwise noted. To stress different components of the system,
machines are sometimes booted with less memory.
All experiments are run multiple times (at least five and

often more) and averages are reported. Variance was low in
all cases and thus is not shown.

5.2 File Cache Replacement
Different applications benefit from different file cache re-

placement algorithms [7, 32, 44], and modifying the replace-
ment policy of the OS has been used to demonstrate the
flexibility of extensible systems [42]. This functionality can
also be approximated in an infokernel environment. Our
first case study of a user-level library, infoReplace, demon-
strates that a variety of replacement algorithms (e.g., FIFO,
LRU, MRU, and LFU) can be implemented on top of the
unmodified Linux replacement algorithm.
We begin by describing the intuition for how the file cache

replacement policy can be treated as a mechanism, giving re-
placement control to applications. Consider the case where
an application wishes to keep a hot list of pages resident
in memory (i.e., the target policy), but the OS supports
only a simple LRU-replacement policy (i.e., the source pol-
icy). To ensure that this hot list remains resident, the user
process must know when one of these pages is about to be
evicted; then, the user process accesses this page some num-
ber of times, according to the source replacement policy, to
increase the priority of that page. More generally, one re-
placement policy can be converted to another by accessing
pages that are about to be evicted given the source policy,
but should not be evicted according to the target policy.
Infokernel Abstractions: To support the infoReplace

user-level library, infoLinux must export enough information
such that applications can determine the next victim pages
and the operations to move those pages up in priority. The
state within Linux can be converted into this form with low
overhead as follows. Linux 2.4.18 has a unified file and page
cache with a 2Q-like replacement policy [20]: when first ref-
erenced, a page is placed on the active queue, managed with
a two-handed clock; when evicted from there, the page is
placed upon the inactive queue, managed with FIFO.
To provide the general representation of a prioritized list

Kernel Task C Statements
Memory-map counter setup 64
Track page movement 1
Reset counter 14
Export victimList 30
Total for victimList abstraction 109

User-Level Task C Statements
Setup 4
Simulation framework 720
Target policies

FIFO 86
LRU 115
MRU 75
LFU 110

Check victimList and refresh 251
Total for infoReplace library 1361

Table 2: Code size for the file cache replacement case
study. The number of C statements (counted with the num-
ber of semicolons) needed to implement both the victimList

abstraction within infoLinux and the infoReplace library
at user-level is shown.

of all physical pages, pageList, infoLinux exports the con-
catenation of these two queues through a system call. With
this information, infoReplace can examine the end of the
queue for the pages of interest. The drawback of the page-
List abstraction is that its large number of elements imposes
significant overhead when copying the queue to user space;
therefore, the call can be made only infrequently. However,
if the queue is checked only infrequently, then pages can be
evicted before the user-level library notices. Therefore, info-
Linux provides a victimList abstraction, containing only
the last N pages of the full queue, as well as a mechanism
to quickly determine when new pages are added to this list.
InfoLinux exports an estimate of how rapidly the queues

are changing by reporting how many times items are moved
out of the inactive queue; this is done efficiently by count-
ing the number of times key procedures are called.1 This
counter is activated only when a service registers interest
and is fast to access from user-space because it is mapped
into the address space of the user process. Once this counter
is approximately equal to N , the process performs the more
expensive call to get the state of the last N pages on the
inactive queue. As shown in the top half of Table 2, the
victimList abstraction can be implemented in only 109 C
statements; in fact, more than half of the code is needed to
setup the memory-mapped counter.
User-Level Policies: With the victimList abstraction,

the user-level infoReplace library can frequently poll the
OS and when new pages are near eviction, obtain the list
of those pages; if any of these pages should not be evicted
according to the target policy, infoReplace accesses them
to move them to the active list. Thus, one of the roles of
infoReplace is to track the pages that would be resident
given the target policy. For simplicity, the infoReplace

library currently exports a set of wrappers, which applica-
tions call instead of the open(), read(), write(), lseek(),

1In Linux 2.4.18, these procedures are shrink cache and
the macro del page from inactive list.

20%

15%

10%

5%

0%
LFUMRULRUFIFO

P
er

ce
nt

 o
f M

is
si

ng
 P

ag
es

Target Replacement Algorithm

InfoReplace Inaccuracy

101

99

6

4

2

LFUMRULRUFIFO

T
im

e
pe

r
R

ea
d

(u
s)

Target Replacement Algorithm

InfoReplace Overheads

Misc
Sim

Refresh
Check

Figure 1: Accuracy and overhead of infoReplace.
FIFO, LRU, MRU, and LFU have been implemented on top
of the 2Q-based replacement algorithm in Linux 2.4. The
bar graph on the left shows the inaccuracy of infoReplace,
where inaccuracy is the percentage of pages that are not in
memory (but should be) when the workload ends. The bar
graph on the right shows the average overhead incurred on
each read() or write(); this time is divided into the time
to check the victimList abstraction, to refresh the pages
that should not be evicted, to simulate the target replace-
ment algorithm, and to perform miscellaneous setup. These
experiments were run upon machine M1.

and close() system calls. Hence, the library only tracks file
pages accessed with these explicit calls; however, infoLinux
could be expanded to return access information about each
page in the process address space. Thus, on each read and
write, the infoReplace library first performs a simulation
of the target replacement algorithm to determine where the
specified page belongs in the page queue; infoReplace then
uses victimList to see if any of the pages that should have
high priority are near eviction and accesses them accord-
ingly; finally, the library wrapper performs the requested
read or write and returns.
Following these basic steps, we have implemented FIFO,

LRU, MRU, and LFU on top of the Linux 2Q-based re-
placement algorithm. The bottom half of Table 2 shows
the amount of C code needed to implement infoReplace.
Although more than one thousand statements are required,
most of the code is straightforward, with the bulk for simu-
lation of different replacement policies.
Overhead and Accuracy: To evaluate the overhead

and accuracy of the infokernel approach, we run a synthetic
workload that has been specifically crafted to stress the dif-
ferent choices made across replacement algorithms [6]. This
workload accesses a large file (1.5 times the size of memory),
touching blocks such that the initial access order, recency,
and frequency attributes of each block differ; thus, which
blocks are evicted depends upon which attributes the re-
placement policy considers. We measure the accuracy of
the target policy at the end of the run, by comparing the
actual contents of memory with the expected contents.
Figure 1 shows both the accuracy and overhead of imple-

menting these algorithms on infoLinux. The graph on the

 0

 500

 1000

 1500

 2000

 2500

 3000

D7:F7 D7:F8 D8:F7

R
un

 T
im

e
(s

)

Workload

Overall Run Time

2Q
PinRange

22%

10%

14%

0%

20%

40%

60%

80%

100%

L1-L5 L6 L7

H
it

R
at

e

Level of Index

Hit Rate vs. Level of Index

PinRange
2Q

Figure 2: Workload benefits of infoReplace. The
graph on the left depicts the run-time of three synthetic
database index lookup workloads on two systems. The bars
labeled 2Q show run time for 100,000 index lookups on the
stock Linux 2.4 kernel, whereas the bars labeled PinRange
show run time for the specialized PinRange policy on info-
Linux. The x-axis varies the workload, specifically the depth
and fan-out of the index (e.g., Dx:Fy implies an index of
depth x and fan-out of y). The graph on the right shows de-
tails of why PinRange speeds up performance for the D7:F7
workload, by showing the hit rate for different levels of the
7-level index. These experiments were run on machine M1.

left shows the inaccuracy of infoReplace, defined as the
percentage of pages that are not resident in memory but
should be, given a particular target replacement algorithm.
By this metric, if four pages A, B, C, and D should be in
memory for a given target policy, but instead pages A, B,
C, and X are resident, inaccuracy is 25%. In general, the
inaccuracy of infoReplace is low. The inaccuracy of MRU
is the highest, at roughly 12% of resident pages, because the
preferences of MRU highly conflict with those of 2Q; there-
fore, when emulating MRU, infoReplace must constantly
probe pages to keep them in memory.
The graph on the right of Figure 1 shows the overhead of

implementing each policy, in terms of the increase in time
per read() or write() operation; this time is broken down
into the time to check the victimList abstraction, to probe
the pages that should not be evicted, to simulate the target
replacement algorithm, and to perform miscellaneous setup.
The overhead of infoReplace is generally low, usually be-
low 4 µs per read or write call. The exception is pure LFU,
which incurs a high simulation overhead (roughly 100 µs per
call) due to the logarithmic number of operations required
per read or write to order pages by frequency. However,
assuming that the cost of missing in the file cache is about
10 ms, even the relatively high overhead of emulating LFU
pays off if the miss rate is reduced by just 1%.
Workload Benefits: Database researchers have often

observed that the policies provided by general-purpose op-
erating systems deliver suboptimal performance to database
management systems [46]. To demonstrate the utility of
infoReplace, we provide a file cache replacement policy
inspired by Chou and DeWitt’s DBMIN policy [10] that is

better suited for database index lookups.
Given that indices in DBMS systems are typically orga-

nized as trees, the replacement policy should keep nodes that
are near the root of the tree in memory since these pages
have a higher probability of being accessed. For simplicity,
our policy, PinRange, assumes that the index is allocated
with the root at the head of a file and the leaves near the
end; therefore, PinRange gives pages preference based on
their file offset. Pages in the first N bytes of the file are
placed in one large LRU queue, while the remaining pages
are placed in another much smaller queue. PinRange is also
simple to implement, requiring roughly 120 C statements in
the infoReplace library.
To demonstrate the benefits of infoReplace for repeated

index lookups, we compare workload run-time using Pin-
Range versus the default Linux 2Q replacement policy. We
note that 2Q is already a fairly sophisticated policy, in-
troduced by the database community specifically to handle
these types of access patterns [20]; as a result, 2Q gives some
preference to pages at the top of the tree.
For our experiments, we run synthetic workloads emulat-

ing 100,000 lookups in index trees with seven or eight levels
and a fan-out of seven or eight. On a machine with 128 MB
of memory, PinRange is configured to prefer the first 90 MB
of the file, since 90 MB fits well within main memory. The
graph on the left of Figure 2 shows that PinRange improves
run-time between 10% and 22% for three different trees.
To illustrate why PinRange improves performance over

2Q, the graph on the right of Figure 2 plots hit rate as a
function of the index level, for a tree with seven levels and a
fan-out of seven. The graph shows that PinRange noticeably
improves the hit rate for the sixth level of the tree while only
slightly reducing the hit rate in the lowest (seventh) level of
the tree. This improvement in total hit rate results in a
22% decrease in run-time, which includes approximately 3
seconds of overhead from the infoReplace library.
Summary: This case study shows that new replacement

policies can be implemented when information is exposed
from the OS: the victimList abstraction is sufficiently flex-
ible to build a variety of classic replacement algorithms. We
believe this compares favorably to direct in-kernel imple-
mentations; for example, in Cao et al.’s work [7], applica-
tions can easily invoke policies that are some combination
of LRU and MRU strategies; however, their system has dif-
ficulty emulating the behavior of a wider range of policies
(e.g., LFU). This case study also illustrates that care must
be taken to efficiently perform the conversion from internal
state to the general victimList abstraction. Furthermore,
infoReplace demonstrates that target replacement algo-
rithms that are most similar to the source algorithm can be
implemented with the most accuracy and least overhead.

5.3 File and Directory Placement
I/O-intensive applications, such as database systems and

web servers, benefit from controlling the layout of their data
on disk [46]. However, because many file systems do not pro-
vide this type of control to applications, the placement of
files has been used to demonstrate the power of extensible
systems [21] and gray-box systems [31]; further, the abil-
ity to group related objects will become available in next-
generation storage systems [15].
We now describe the infoPlace file placement service.

Through this case study, we demonstrate two points. First,

Kernel Task C Statements
Collect region stats 343
Convert stats to fsRegionList

Ext2 488
Temporal 184
Data 53
FFS 488

Export fsRegionList 22
Total for fsRegionList abstraction 418 - 853

User-Level Task C Statements
Framework 654
Setup 178
Directory allocation 28
File allocation 16
Fill regions 57
Cache directories 95
Total for infoPlace library 1028

Table 3: Code size for the file placement case study.
The number of C statements (counted with the number of
semicolons) needed to implement the fsRegionList abstrac-
tion within infoLinux is shown, for each of the four kernel
layout policies (i.e., Ext2, Temporal, Data block, and FFS)
as well as for the infoPlace library.

file placement functionality can be implemented with lower
overhead with an infokernel than via gray-box techniques.
Second, different kernel policies can be mapped to a common
infokernel representation, enabling OS innovation.
Infokernel Abstractions: To describe the file place-

ment policy, a useful abstraction is a prioritized list of “re-
gions” on the disk, fsRegionList; the list is ordered begin-
ning with the region that will be used for the next allocation
and also contains data about the operations that must be
performed to reduce the priority of a region. Other info-
kernels have the freedom to define disk regions differently.
To demonstrate the generality of this abstraction, we ex-

plore how different kernel placement policies map to this
representation. We begin by considering the default place-
ment policy of ext2 in Linux 2.4. As in all FFS-based file
systems [30], to maintain locality on the disk, allocation is
done within a particular cylinder group or block group; thus,
the natural mapping of a “region” is to a cylinder group
(abbreviated with simply “group” hereafter). The place-
ment policy in ext2 is such that files are placed in the same
group as their parent directory and a new directory is placed
in the group that has the most free data blocks of those with
an above average number of free inodes.
For simplicity, we focus on abstracting only the directory

placement policy and not file placement. Exporting the di-
rectory fsRegionList is not as straightforward as in the
previous case study. In this case, the priority of each group
must be derived from the directory placement algorithm and
the current state of each group, specifically its free inodes
and its free data block count. To map these parameters to
a precise ordering, infoLinux first places the cylinder groups
into two categories, those with an above average number of
free inodes and those below average; infoLinux then sorts
each category by the number of free data blocks and con-
catenates the two into a final ordered list.

The next step is for infoLinux to describe how different file
system operations decrease the priority of each group within
fsRegionList by altering their free inode and data block
counts. Given the ext2 placement algorithm, to decrease
the priority of a group for future allocations, infoLinux con-
siders only two cases. First, for those groups with an above
average number of free inodes, infoLinux reports that N cre-
ations of zero-length files should be performed, where N is
the number of free inodes above average. Second, for those
below average, infoLinux reports that one creation of a D
block file should be created, where D − 1 is the number of
additional free data blocks in this group compared to the
next in the list.
To understand the challenges of controlling directory place-

ment on top of different placement policies, we have imple-
mented a variety of such policies within the Linux kernel.
First, we consider the original FFS algorithm [30], in which
the group with the fewest directories of those with an above
average number of free inodes is chosen. In this case, the
mapping to the prioritized list is identical to that of ext2, ex-
cept the number of directories is used instead of data blocks.
Second, we consider a very simple placement algorithm that
selects the group with the most free data blocks; in this case,
the prioritized list simply orders the groups by the number
of free data blocks. Finally, we consider temporal allocation
in which a new cylinder group is chosen only after the pre-
vious group is full [33]. With this algorithm, the prioritized
list is simply the distance of each group away from the “hot”
group. With temporal allocation, the operation that lowers
a group’s priority is to create either N empty files or one D
block file, where N is the number of free inodes and D is the
number of free data blocks in that group; the choice made
by infoLinux is min(N, D).
The amount of code required to implement the fsRegion-

List abstraction is shown in the top half of Table 3. Ex-
porting this file system abstraction involves a non-trivial
amount of code since this list does not explicitly exist in
Linux. As expected, creating fsRegionList for the more
complex directory placement policies (i.e., Ext2 and FFS)
requires more code than for the more straightforward poli-
cies (i.e., Temporal and Data).
User-Level Policies: The steps performed by infoPlace

are similar to those of the gray-box version, place [31];
therefore, we briefly describe place. place assumes that
it is running on the ext2 file system, in which a file is placed
in the same group as its parent directory. Therefore, it is
able to use a simple trick to allocate a file named /a/b/c in
group i. place creates the file with the name /Di/c, where
directory Di was previously allocated in group i; place then
renames the file to that specified by the user. InfoPlace

uses these same steps for files.
Controlling the placement of directories is more compli-

cated, and here place and infoPlace differ in their opera-
tion. Place repeatedly creates a directory and checks (via
the inode number) where this directory was allocated; if the
directory was not placed in the correct group, these steps
move the groups closer to the state where the target group
will be chosen. Thus, eventually, place succeeds. In com-
parison, infoPlace begins by obtaining the fsRegionList
priority list. If the target group is first, infoPlace allocates
the directory and verifies with infoLinux that the directory
was created in the desired group (i.e., a race did not occur
with other activity in the system). If the target is further

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

3002001000

T
im

e
(s

)

Imbalance (Thousands of Inodes)

Controlling ext2

PLACE
InfoPLACE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

100%75%50%20%0%

T
im

e
(s

)

Percentage Imbalance

Comparing Allocation Algorithms

Data
Ext2
FFS

Temporal

Figure 3: Overhead of file placement with infoPlace.
The graph on the left compares the overhead of controlling
allocation with infoPlace versus place, which has no in-
formation about the current state of the file system. The
time to perform the allocation in a target group is shown
on the y-axis, where the target group has the fewest free in-
odes. The inode imbalance is defined as the number of in-
odes that must be allocated for all groups to have an identical
number of inodes. The graph on the right compares the over-
head with different directory allocation policies within Linux.
Data chooses the group with the most free data blocks, ext2
is the default ext2 policy, FFS is the original FFS policy,
and Temporal allocates directories in a hot group until that
group is completely filled. The definition of imbalance varies
across allocation policies; therefore, along the x-axis, we con-
sider scenarios that are some percentage of the maximum
imbalance across cylinder groups for each algorithm. These
experiments were run upon machine M2.

down in the list, then infoPlace performs the designated
number and type of operations (e.g., creating zero-length
dummy files) for each of the groups preceding it; it then
re-obtains the list of groups, repeating the process until the
target is at the head. When successfully complete, info-

Place cleans up by removing the zero-length dummy files.
Neither place nor infoPlace need to use this expensive

directory allocation algorithm every time a user specifies the
location of a new directory. For common operation, both
retain a cache of directories across different groups; when the
user specifies a particular target group, the libraries simply
rename one of the existing directories in that group. Thus,
only when the target group cache is empty is explicit control
needed. Analysis of server traces from HP [37] indicates that
in a typical day, less than 10,000 directories are created.
This gives us an upper bound on how many entries need
to be added to a directory cache via a nighttime cron job.
The amount of code required to implement the infoPlace

library is shown in the bottom half of Table 3.
Overhead and Accuracy: Our first experiment shows

that information about the state of the file system helps
infoPlace perform controlled placement more efficiently
than the gray-box version, place. In the first graph of Fig-
ure 3, we show the time overhead to place a directory in the
target group as a function of the imbalance; imbalance is

defined as the number of items (i.e., inodes or data blocks)
that must be filled in the non-target groups so the target
group will move to the front of the list. We do not show ac-
curacy, since both versions provide complete accuracy. As
expected, for both versions, the overhead of control increases
as the inode imbalance increases, representing the amount
that each must fight the placement preferences of the ext2
policy. This graph also dramatically shows the benefit of us-
ing information: the overhead of place is up to eight times
higher than infoPlace.
The experiments shown in the second graph of Figure 3

illustrate how the cost of infoPlace also depends upon the
OS directory placement algorithm. The key to predicting
cost is to correctly define the imbalance in terms of inodes
or data blocks, since the overhead is a function of the imbal-
ance and the cost of creating the needed items. Thus, those
placement policies that fill non-target groups with primar-
ily inodes (i.e., ext2, FFS, and temporal) have one cost,
and policies that fill with data blocks (i.e., the data block
algorithm) have another cost.
This graph does not show the imbalance that is expected

to occur for a given workload running on each placement pol-
icy. One can expect that the imbalance with the ext2, FFS,
and data block policies will tend to be low, since these al-
gorithms try to balance usage throughout the disk, whereas
the imbalance with temporal allocation will tend to be high,
since it tries to keep allocations in the same group. There-
fore, although the overhead for controlling layout is rela-
tively constant for a given imbalance across policies, the
typical imbalance will vary across polices.
Workload Benefits: To demonstrate the utility of the

infoPlace library, we show the benefit that results when
files that are accessed near one another in time are reorga-
nized to be placed near one another on disk. Others have
shown the benefits of more general block-level or file-level
reorganization [1, 29, 39, 45]; here we show how simply a
standard tool can be modified to take advantage of the file
placement control provided by infoPlace.
Specifically, we modify the tar program to place all files

and directories that are unpacked into a single localized por-
tion of the disk. To demonstrate the benefits of this opti-
mization, we unpack a large archive, in this case the entire
tree of the Linux Documentation Project; the size of the un-
packed directory tree is roughly 646 MB (33,029 files across
2507 directories). We run the experiment on machine M1

with 128 MB of memory, and infoPlace has been initial-
ized with a pre-built cache of directories. The unmodified
tar utility running on Linux 2.4 takes 51.4 seconds to com-
plete on average. Our enhanced tar completes the unpack-
ing roughly 39% faster, in 31.4 seconds. These benefits are
achieved with the slightest of modifications to tar; only five
statements were added to call into the infoPlace library.
Summary: This case study demonstrates how different

directory placement policies implemented in an OS can be
mapped to the same infokernel abstraction. infoPlace

takes the initial steps for showing how to abstract an al-
gorithm as well, by expressing the operations that lower the
priority of a group within the prioritized list. This case
study also shows that the overhead of control is a strict
function of how much the target end state differs from that
desired by the native file system placement policy. Finally,
the study demonstrates how standard utilities can benefit
from the control provided by the infoPlace library.

Kernel Task C Statements
Setup 10
Export diskRequestList 30
Wait for diskRequestList change 55
Total for diskRequestList 95

User-Level Task C Statements
Setup + misc 110
Get diskRequestList + issue request 20
Total for infoIdleSched library 130

Setup + misc 160
Disk Model 250
Pick best background request 100
Total for infoFreeSched library 530

Table 4: Code size for the disk scheduling case study.
The number of C statements (counted with the number of
semicolons) needed to implement the diskRequestList ab-
straction with infoLinux is shown, as well counts for the two
user-level libraries, infoIdleSched and infoFreeSched.

5.4 Disk Scheduling
OS researchers have demonstrated that applications can

benefit from advanced disk scheduling algorithms (e.g., [17,
18, 41, 43]) beyond the traditional SSTF and C-LOOK algo-
rithms. In this case study, we demonstrate that by exposing
information about the disk scheduler, one can implement
new scheduling policies on top of infoLinux. Specifically, we
show that an idle disk scheduler, infoIdleSched, and a lim-
ited freeblock disk scheduler [27, 28], infoFreeSched, can
be implemented as user-level libraries on top of infoLinux.
Infokernel Abstractions: To describe the disk schedul-

ing policy, our infokernel exports the requests currently in
the disk scheduling queue and sufficient detail about the
disk scheduling algorithm to predict where in this queue a
new request will be placed. InfoLinux provides system calls
to obtain diskRequestList, allows processes to block un-
til diskRequestList changes, and exports the name of the
scheduling algorithm (i.e., C-LOOK). The amount of code
needed to export diskRequestList is reported in Table 4.
In addition, infoFreeSched needs detailed information

about the overheads of different disk operations. infoFree-

Sched uses the timing primitives in infoLinux to obtain a
relatively coarse disk model: the times for successive re-
quests to the disk are observed and recorded, using the linear
block distance between the two requests as the key index.
This model has been shown to capture not only seek and
head switch costs, but probabilistically capture rotational
latency [35]; small enhancements would be needed to cap-
ture more aspects of modern disks, such as zoning.
User-level Policies: The amount of code for our two

scheduling policies is shown in Table 4. infoIdleSched is
a simple disk scheduling algorithm that allows a process to
schedule requests only when a disk is idle. Therefore, info-

IdleSched simply checks diskRequestList; if the schedul-
ing queue remains empty for a threshold amount of time
(currently 100 ms), infoIdleSched issues a single request.
If the queue is not empty, infoIdleSched waits for the state
of the queue to change, waking up when any items have been
removed to recheck the queue.

infoFreeSched is a more complex freeblock scheduler.

With freeblock scheduling, periods of rotational latency on
the disk are filled with useful data transfers; in other words,
background traffic is serviced when the disk head is moving
between requests, without impacting the foreground traffic.
In [27], Lumb et al. implement freeblock scheduling within
disk firmware, which simplifies service time prediction; in
subsequent work [28], freeblock scheduling is implemented
in the FreeBSD kernel and a user-level scheduling testbed.
Implementing freeblock scheduling on top of infoLinux

presents two new challenges. First, if the user specifies a
file name and offset, infoFreeSched must convert these
into disk addresses. This conversion is performed with the
fileBlocks infokernel interface; however, since predicting
where newly written blocks will be allocated on disk is quite
complex, infoFreeSched currently schedules only read traf-
fic. This limited setup can still be used for tasks such as
RAID scrubbing, virus detection, and backup [27]. Second,
infoFreeSched does not have complete control over all
of the requests in the disk scheduling queue or how those
requests are ordered; therefore, infoFreeSched can only
choose whether a particular background request should be
inserted into the OS. We describe this step in more detail.
Given a list of background requests, infoFreeSched uses

its knowledge of the scheduling algorithm (i.e., C-LOOK)
to predict where a background request, b, will be inserted
into the scheduling queue. After infoFreeSched has de-
termined that the request will be inserted between two re-
quests, fi and fj , infoFreeSched calculates if the back-
ground request will harm fj . This harm is determined by
indexing into the disk timing table D with the linear block
distance between the requests; if D(fi − fj) ≥ D(fi − b) +
D(b − fj), then the background request does not impact
the time for the second foreground request and b is allowed
to proceed. As an optimization, infoFreeSched schedules
the one background request that has the least impact on the
foreground traffic (if any). Then, infoFreeSched blocks,
waiting to be notified by infoLinux that the state of the
disk queue has changed. When infoFreeSched wakes, it
rechecks whether any background requests can be serviced.
Overhead and Accuracy: We evaluate the overhead

of placing the disk scheduling policy at user-level with the
more complicated infoFreeSched policy. We stress info-

FreeSched with a random-I/O workload in which the disk
is never idle: the foreground traffic consists of 10 processes
continuously reading small (4 KB) files chosen uniformly at
random. The single background process reads from random
blocks on disk, keeping 1000 requests outstanding. Each
read() performed by infoFreeSched incurs the following
two overheads: roughly 5.1 µs to obtain diskRequestList

from infoLinux, and approximately 5.0 µs per background
request examined to determine whether it should be issued
to disk. If infoFreeSched examines 100 requests from the
background queue, the overhead induced is 205 µs, a negli-
gible sum compared to multi-millisecond disk latencies.
Workload Benefits: To demonstrate the utility of info-

IdleSched, we show its ability to expose an idle queue given
file system activity in traces from HP Labs [37]. For the fore-
ground traffic, we run 5 minutes from the trace (starting
at 10am on December 7th), having first created the neces-
sary directory structure and files so that the trace can run
without issue; for the background traffic, we stream through
the blocks of the disk sequentially. As shown in Figure 4,
without infoIdleSched support, the background requests

 0

 5

 10

 15

 20

FG
only

+BG +BG
+IdleSched

B
an

dw
id

th
 (

M
B

/s
)

InfoIdleSched

Background
Foreground

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

FG
only

+BG +BG
+FreeSched

B
an

dw
id

th
 (

M
B

/s
)

InfoFreeSched

Background
Foreground

Figure 4: Workload benefits with infoIdleSched and
infoFreeSched. The graph on the left shows the perfor-
mance of foreground and background traffic with and with-
out infoIdleSched. The leftmost bar shows the foreground
traffic with no competing background traffic, the middle bar
with competing traffic on standard Linux 2.4, and the right-
most bar with the infoIdleSched. The graph on the right
shows a similar graph for infoFreeSched. The workloads
are different across the two graphs, as described in the text.
These experiments were run on machine M2.

significantly degrade foreground performance; the read re-
quests in the trace achieve only 4.6 MB/s, while the back-
ground traffic grabs over 6 MB/s. With infoIdleSched

support, the background traffic is limited, as desired; the
foreground read requests achieve a bandwidth of 13.9 MB/s,
while background traffic obtains over 6.5 MB/s. However,
the background request stream does induce a small (7%) de-
crease in foreground performance, even when using the info-

IdleSched library; a less aggressive idle scheduler could
reduce this overhead but would likely also reduce the back-
ground bandwidth that is achieved.
To demonstrate the ability of infoFreeSched to find

free bandwidth, we consider the random-I/O workload used
above in the overhead experiment. As seen in Figure 4, the
random foreground traffic in isolation achieves 0.67 MB/s. If
background requests are added without support from info-

FreeSched, foreground traffic is harmed proportionately,
achieving only 0.61 MB/s, and background traffic achieves
0.06 MB/s. However, if background requests use infoFree-

Sched, the foreground traffic still receives 0.66 MB/s, while
background traffic obtains 0.1 MB/s of free bandwidth.
Summary: These two case studies stress the infokernel

approach. In infoLinux, user-level processes are not able to
influence the decisions of the disk scheduler or the ordering
of requests in the disk queue; as a result, user-level policies
can only decide whether or not to perform a disk request at
a given time. We find it is difficult to implement a freeblock
scheduler on top of the file system, due to the difficulty of
predicting the write traffic through the file system; we would
like to investigate this in future work. This case study also
shows the importance of two infoLinux primitives: blocking
until the state of an abstraction changes and timing the
duration of operations in the OS.

Kernel Task C Statements
RTT ms timers 12
Wait and wake 10
Export msgList 6
Total for msgList abstraction 28

User-Level Task C Statements
Setup 40
Main algorithm 130
Error handling 34
Total for infoVegas library 204

Table 5: Code size for the networking case study.
The number of C statements (counted with the number of
semicolons) that are needed to implement the TCP msgList

abstraction within infoLinux is shown in the upper table.
The lower table presents the code size for implementing the
congestion-control policy, infoVegas, at user-level.

5.5 Networking
Networking research has shown that variations of the TCP

algorithm are superior under different circumstances and for
different workloads, and that these changes can be imple-
mented with small variations of the sending algorithm [2, 5,
16, 50]. In this case study, we show that the TCP conges-
tion control algorithm can be exported such that user-level
processes can manipulate its behavior. Specifically, through
infoVegas, we show that TCP Vegas [5] can be imple-
mented on top of the TCP Reno algorithm in Linux 2.4.
Similar to other research on network protocols at the user-
level [13], the infokernel infrastructure enables benefits of
a shortened development cycle, easier debugging, and im-
proved stability.
Infokernel Abstractions: To manipulate the conges-

tion control algorithm, the main abstraction that an info-
kernel provides is msgList, a list containing each packet; for
each packet, infoLinux exports its state (i.e., waiting, sent,
acknowledged, or dropped) along with its round-trip time,
once acknowledged. The variables snd.una and snd.nxt,
specified in the TCP RFC [36], are also exported, although
these could be derived from the message list. Given that
TCP Reno does not record the sent and round-trip time of
each message with a high resolution timer, those times are
gathered using infoLinux timing primitives.
User-Level Policies: The basic intuition is that info-

Vegas calculates its own target congestion window, vcwnd,
given msgList; all of the important parameters for TCP Ve-
gas, such as minRTT, baseRTT, and diff, can be derived
from this information. InfoVegas then ensures that it
forwards no more than target vcwnd message segments at
a time to the underlying infokernel. Finally, infoVegas

blocks until the state of the message queue changes (i.e.,
until a message is acknowledged). At this point, infoVegas

may send another segment or adjust its calculation of the
target vcwnd. The amount of code to implement this func-
tionality is shown in Table 5.
Overhead and Accuracy: Our experiments verify that

infoVegas behaves similarly to an in-kernel implementa-

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18

B
an

dw
id

th
 (

K
B

/s
)

Available Queue Size (Packets)

Macroscopic Behavior (2000 KB/s, 10 ms)

Vegas
InfoVegas

Reno

Figure 5: Accuracy of infoVegas: Macroscopic be-
havior. We use the same emulation environment as Fig-
ure 6. In these experiments, we emulate a network band-
width of 2000 KB/s with 10 ms of delay and vary the router
queue size along the x-axis. The y-axis reports the bandwidth
achieved with Linux 2.2 Vegas, infoVegas, and Reno.

tion of Vegas in Linux 2.2 [8] at both the macroscopic and
microscopic levels. Figure 5 shows that infoVegas achieves
bandwidth similar to Vegas for a variety of network configu-
rations as the router queue size is changed. These numbers
illustrate that as the available space in the queue decreases,
Reno is unable to obtain the full bandwidth due to packet
loss; however, both infoVegas and Vegas achieve the full
bandwidth when less queue space is available, as desired.
Figure 6 illustrates the behavior of infoVegas over time,
compared to that of Reno and in-kernel Vegas. As desired,
the cwnd derived by infoVegas over time closely matches
that of Vegas, while differing significantly from that of Reno.
Finally, InfoVegas not only accurately implements Vegas,
it provides this functionality at user-level with low overhead.
Our measurements show that CPU utilization increases to
only about 2.5% with infoVegas, compared to approxi-
mately 1% with in-kernel Vegas.
Workload Benefits: To illustrate the benefit of info-

Vegas, we consider a prototype clustered file server. Specif-
ically, we consider an NFS storage server configured with a
front-end node that handles client requests and three back-
end storage units. The machines are all connected with a
100 Mb/s switch and each runs infoLinux. The back-end
storage units continuously perform useful work in the back-
ground, such as replicating important files across disks, per-
forming checksums over their data, and reorganizing files
within each disk; ideally, these background tasks should not
interfere with the foreground requests from the front-end.
We consider a workload that stresses the network: the

front-end handles NFS requests for 200 MB files that are
cached in the memory of back-end node B1 while a back-
ground replicator process replicates files from back-end node
B2 to back-end node B3. The results in Figure 7 show that
contention for the network can be controlled with info-

Vegas. When the two streams contend for the network
link, the bandwidth is shared approximately equally be-
tween the two, and the foreground traffic achieves less than
6 MB/s. When the replication process uses infoVegas, the
background traffic interferes minimally with the foreground
traffic; although the background traffic now only obtains

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

P
ac

ke
ts

Time (s)

Reno

cwnd

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

Time (s)

InfoVegas

vcwnd
cwnd

diff

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6
Time (s)

Vegas

cwnd
diff

Figure 6: Accuracy of infoVegas: Microscopic behavior. The behavior of Reno, infoVegas, and in-kernel Vegas is
compared over time for the same network configuration. The sender is running infoLinux, whereas the receiver is running
stock Linux 2.4.18, with two machines acting as routers between them. A single network flow exists from the source to the
destination machine, which passes through a emulated bottleneck of 2000 KB/s, a delay of 10 ms, and a maximum queue size
of 10 packets. The first graph shows the cwnd calculated by Reno. The second graph shows for infoVegas, the cwnd exported
by Reno, the derived target value of vcwnd, and the derived parameter diff. The third graph shows cwnd and diff as calculated
in the Linux 2.2 native Vegas implementation. All experiments were run on four M3 machines in the Netbed testbed.

1 MB/s, the foreground traffic achieves nearly the full line
rate. The figure also shows the CPU utilization of the ma-
chines for each of the experiments, revealing the small ad-
ditional cost of using the infoVegas service.
Summary: infoVegas further stresses the limits of info-

kernel control; in particular, this service must react quickly
to frequent events that occur inside the kernel (i.e., receiv-
ing an acknowledgment). Given the overhead of handling
this event, in some circumstances, infoVegas pays over-
head that reduces its available bandwidth. More generally,
the congestion control algorithm implemented by an info-
kernel can be viewed as the base sending mechanism and is
the most aggressive policy allowed; that is, this algorithm
specifies a limit, not a preference for how the network re-
source is used. Therefore, all congestion control policies that
are built on top of infoLinux must send at a lower rate than
this exposed primitive and are thus TCP friendly.

5.6 Discussion
We now briefly compare the user-level policies explored

in the case studies. Our discussion centers around the fact
that each case study can be placed into one of two categories,
depending upon whether a user-level process can reorder the
relevant items in the infokernel prioritized list.
The first category contains those libraries that control the

OS policy by changing the order of items in the related info-
kernel list. For example, infoReplace touches a page to
increase its priority and infoPlace allocates inodes or data
blocks in a group to decrease its priority. These libraries
can then influence how their current or future requests are
handled relative to the existing items in the list. In this cate-
gory, the overhead of implementing a new policy at user-level
is a direct function of the overhead of reorganizing the list.
Our case studies have shown that, although infoPlace and
infoReplace can provide performance benefits to applica-
tions, under extreme circumstances, the overhead of per-
forming probes can be high in infoReplace.
The second category contains those libraries that can-

not reorder items in the related OS lists; therefore, these
libraries exert their preferences by limiting when their re-

quests are inserted into the related OS lists. For example,
the infoIdleSched, infoFreeSched, and infoVegas li-
braries all maintain and order a queue of their own requests
and issue requests only at well-controlled times. Since a pro-
cess cannot retract its decision to insert an item, these poli-
cies must be more conservative when initiating requests and
cannot adapt as quickly to changing conditions. For exam-
ple, infoIdleSched cannot send many background requests
to the disk queue without increasing the chances that a back-
ground request will interfere with a foreground request that
arrives later; likewise, infoVegas cannot react immediately
to network conditions that change after a group of messages
have been issued.

6. EXPERIENCE WITH INFOBSD
In this section, we describe our initial experience building

a prototype of infoBSD on NetBSD 1.5. In our discussion,
we focus on the main differences between the infoBSD and
infoLinux implementations. To date, we have implemented
the memory management, disk scheduling, and networking
abstractions; we leave file placement for future work.
The pageList abstraction in infoBSD is quite similar to

that in infoLinux. Since NetBSD has a fixed-sized file cache,
the primary difference between the two infokernels is that
for infoLinux, pageList contains every page of memory,
whereas for infoBSD, it contains only those pages in the
file cache. Given that the NetBSD file cache is managed
with pure LRU replacement, infoBSD simply exports this
LRU list for pageList and the last N elements for victim-
List. To enable processes to quickly determine how the
elements are moving in the lists, infoBSD tracks the num-
ber of evictions that have occurred from the LRU list. Only
40 C statements are needed to export these abstractions in
infoBSD; the primary savings compared to infoLinux, which
requires 109 statements, is that infoBSD does not yet pro-
vide a memory-mapped interface to the eviction count.
The diskRequestList abstraction is also straightforward

to export from infoBSD. The chief difference between info-
Linux and infoBSD relates to which layer of the I/O sys-
tem is responsible for maintaining the device scheduling

14

12

10

8

6

4

2

0
FG

+BG
+IV

FG
+BG

BG
+IV

BGFG

T
hr

ou
gh

pu
t (

M
B

/s
)

Cluster Throughput

Background
Foreground

3

2

1

0
FG

+BG
+IV

FG
+BG

BG
+IV

BGFG

C
P

U
 U

til
iz

at
io

n
pe

r
M

B
/s

 o
f B

an
dw

id
th

Normalized CPU Utilization

Figure 7: Workload benefits with infoVegas. The
graph on the left shows the impact of contention for the
100 Mb/s network, with and without infoVegas for the
background replication stream. The y-axis plots bandwidth
delivered, and each bar represents an experiment with a dif-
ferent combination of foreground (FG) and background (BG)
traffic, both with and without infoVegas (IV). The graph
on the right depicts the normalized CPU utilizations for the
experiments on the right, in CPU utilization per MB/s of
bandwidth. From this, one can observe the additional CPU
overhead of running on infoVegas. All of these experi-
ments were run upon four machines of type M3.

queues. In Linux 2.4.18, a generic level maintains the queues
for all block devices; therefore, in infoLinux, this generic
level exports the diskRequestList abstraction. However,
in NetBSD 1.5, no such generic level exists; therefore, each
device type (e.g., SCSI and IDE) must export the disk-

RequestList abstraction independently. Nevertheless, few
lines of code are still needed to provide this information
in infoBSD: infoBSD requires 53 statements, whereas info-
Linux needs 95, because more Linux code is required to ac-
cess the queue and check for changes.
Finally, the infoBSD implementation of msgList requires

the most changes relative to the infoLinux version. The pri-
mary difference is that TCP in Linux 2.4.18 uses skb buffers
that each contain one network packet; TCP in NetBSD 1.5
instead uses mbuf buffers that may contain multiple pack-
ets. With this data structure in NetBSD, it is difficult to
add the time-stamp for each packet as needed for msgList.
Thus, infoBSD creates and maintains a new queue of packets
containing the time each unacknowledged packet was sent.
As a result, while infoLinux needs only 28 C statements for
msgList, infoBSD requires 118 statements. Although a sig-
nificant increase, the final amount of code is still quite small.
Through this exercise, we have shown that the abstrac-

tions exported by infoLinux are straight-forward to imple-
ment in infoBSD as well. Thus, we are hopeful that these
list-based abstractions are sufficiently general to capture the
behavior of other UNIX-based operating systems and that
creating other infokernels will not be difficult. We note that
infokernels that export these same interfaces will be able
to directly leverage the user-level libraries created for these
case studies, which is where the majority of code resides.

7. CONCLUSIONS
Layering is a technique that has long been used in build-

ing computer systems [11]. By breaking a larger system
into its constituent components, layering makes the process
of building a system more manageable, and the resultant
separation between modules increases maintainability while
facilitating testing and debugging.
However, layering also has negative side-effects. Tradi-

tional arguments against layering have been implementation-
oriented, e.g., the observation that layers in network proto-
col stacks induce extra data copies [49]. More insidious is
the impact on design: architects of one layer are encouraged
to hide its details [24]; useful information in one layer of the
system is hence concealed from the other layers.
In this paper, we have argued that operating systems

should avoid this pitfall of design and export general ab-
stractions that describe their internal state. These abstrac-
tions (e.g., the list of memory pages for eviction or the disk
requests to be scheduled) allow user-level services to control
the policies implemented by the OS in surprising ways; with
information, the policies implemented by the OS are trans-
formed into mechanisms that are usable by other services.
Through four case studies stressing different components

of the OS (i.e., file cache management, file placement, disk
scheduling, and networking), we have explored some of the
issues in infokernel design. We have defined some of the use-
ful abstractions for an infokernel to export; our experience
has shown that many of these abstractions can be repre-
sented as prioritized lists. Further, we have found that a
number of information primitives are useful in implement-
ing these abstractions: procedure counters, timers, and the
ability to block until infokernel state changes.
In general, we have found that the power of the info-

kernel approach depends upon how closely the desired con-
trol matches the policy in the kernel. With an infokernel, all
user-level policies must operate within the limits of the un-
derlying kernel policy; however, user-level policies can bias
the preferences of that policy. As a result, target policies
that mesh well with the inherent preferences of the OS policy
can be implemented with high accuracy and low overhead.
We have also found that the ability of user-level processes

to efficiently manipulate internal lists (e.g., by touching a
page to increase its priority) enables more powerful services
to be built on top of an infokernel. This knowledge can serve
as a guide for developing future infokernels; infokernels that
export operations to efficiently reorder and retract items
from in-kernel prioritized lists will likely be more flexible
building blocks for implementing user-level policies.

8. ACKNOWLEDGMENTS
We would like to thank John Bent, Brian Forney, Muthian

Sivathanu, Vijayan Prabhakaran, and Doug Thain for their
helpful discussions and comments on this paper. Thanks
to John Bent for his help with the storage server imple-
mentation, to Brian Forney for his help with some trace
analysis, to Michael Marty and Jacob Kretz for their initial
gray-box implementation of infoReplace, to Kirk Webb
and the Netbed team for their help configuring Linux 2.2
for Netbed, and to the UW Computer Systems Lab for pro-
viding a superb CS research environment.
We would like to thank John Wilkes for his excellent (and

demanding) shepherding, which has substantially improved

the content and presentation of numerous aspects of this
paper. We also thank the anonymous reviewers for their
many helpful suggestions.
Finally, we would like to give special thanks to the grand-

parents Arpaci (Niara and Vedat) and the grandparents
Dusseau (Anita and Richard) for traveling to Madison and
taking care of Anna in the weeks before the submission was
due; without their help, two of the authors could not have
worked the requisite long nights during those final weeks.
This work is sponsored in part by NSF CCR-0092840,

NGS-0103670, CCR-0133456, CCR-0098274, ITR-0086044,
the Wisconsin Alumni Research Foundation, an IBM Fac-
ulty Award, and an NDSEG Fellowship from the Depart-
ment of Defense.

9. REFERENCES
[1] S. Akyurek and K. Salem. Adaptive Block Rearrangement.

ACM Transactions on Computer Systems, 13(2):89–121,
May 1995.

[2] M. Allman, H. Balakrishnan, and S. Floyd. RFC
3042: Enhancing TCP’s Loss Recovery Using
Limited Transmit, August 2000. Available from
ftp://ftp.rfc-editor.org/in-notes/rfc3042.txt as
of August, 2003.

[3] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Informa-
tion and Control in Gray-Box Systems. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 43–56, Banff, Canada, October 2001.

[4] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Exten-
sibility, Safety and Performance in the SPIN Operating Sys-
tem. In Proceedings of the 15th ACM Symposium on Operat-
ing Systems Principles (SOSP ’95), pages 267–284, Copper
Mountain Resort, Colorado, December 1995.

[5] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Ve-
gas: New Techniques for Congestion Detection and Avoid-
ance. In Proceedings of SIGCOMM ’94, pages 24–35, Lon-
don, United Kingdom, August 1994.

[6] N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Exploiting Gray-Box Knowledge of Buffer-
Cache Contents. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’02), pages 29–44, Mon-
terey, California, June 2002.

[7] P. Cao, E. W. Felten, and K. Li. Implementation and Per-
formance of Application-Controlled File Caching. In Proceed-
ings of the 1st Symposium on Operating Systems Design and
Implementation (OSDI ’94), pages 165–177, Monterey, Cal-
ifornia, November 1994.

[8] N. Cardwell and B. Bak. A TCP Vegas
Implementation for Linux. Available from
http://flophouse.com/∼neal/uw/linux-vegas/ as of
August, 2003.

[9] D. R. Cheriton and W. Zwaenepoel. The distributed V ker-
nel and its performance for diskless workstations. In Pro-
ceedings of the 9th ACM Symposium on Operating System
Principles (SOSP ’83), pages 129–140, Bretton Woods, New
Hampshire, October 1983.

[10] H.-T. Chou and D. J. DeWitt. An Evaluation of Buffer Man-
agement Strategies for Relational Database Systems. In Pro-
ceedings of the 11th International Conference on Very Large
Data Bases (VLDB 11), pages 127–41, Stockholm, Sweden,
August 1985.

[11] E. W. Dijkstra. The Structure of the THE Multiprogram-
ming System. Communications of the ACM, 11(5):341–346,
May 1968.

[12] P. Druschel, V. Pai, and W. Zwaenepoel. Extensible Kernels
are Leading OS Research Astray. In Proceedings of the 6th
Workshop on Workstation Operating Systems (WWOS-VI),
pages 38–42, Cape Codd, Massachusetts, May 1997.

[13] D. Ely, S. Savage, and D. Wetherall. Alpine: A User-Level
Infrastructure for Network Protocol Development. In Pro-
ceedings of the 3rd USENIX Symposium on Internet Tech-
nologies and Systems (USITS ’01), pages 171–184, San Fran-
cisco, California, March 2001.

[14] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exok-
ernel: An Operating System Architecture for Application-
Level Resource Management. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP
’95), pages 251–266, Copper Mountain Resort, Colorado,
December 1995.

[15] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, H. Gob-
ioff, E. Riedel, D. Rochberg, and J. Zelenka. Filesystems for
Network-Attached Secure Disks. Technical Report CMU-CS-
97-118, Carnegie Mellon University, 1997.

[16] J. C. Hoe. Improving the Start-up Behavior of a Congestion
Control Sheme for TCP. In Proceedings of SIGCOMM ’96,
pages 270–280, Stanford, California, August 1996.

[17] S. Iyer and P. Druschel. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in syn-
chronous I/O. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), pages 117–
130, Banff, Canada, October 2001.

[18] D. M. Jacobson and J. Wilkes. Disk Scheduling Algorithms
Based on Rotational Position. Technical Report HPL-CSP-
91-7, Hewlett Packard Laboratories, 1991.

[19] V. Jacobson. Congestion avoidance and control. In Proceed-
ings of SIGCOMM ’88, pages 314–329, Stanford, California,
August 1988.

[20] T. Johnson and D. Shasha. 2Q: A Low-Overhead High
Performance Buffer Management Replacement Algorithm.
In Proceedings of the 20th International Conference on
Very Large Databases (VLDB 20), pages 439–450, Santiago,
Chile, September 1994.

[21] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. Briceño,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application Performance and Flexibility
on Exokernel Systems. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP ’97), pages
52–65, Saint-Malo, France, October 1997.

[22] G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda, A. Mend-
hekar, and G. C. Murphy. Open Implementation Design
Guidelines. In International Conference on Software Engi-
neering (ICSE ’97), pages 481–490, Boston, Massachusetts,
May 1997.

[23] G. Kiczales, J. Lamping, C. Maeda, D. Keppel, and D. Mc-
Namee. The Need for Customizable Operating Systems. In
Proceedings of the 4th Workshop on Workstation Operat-
ing Systems (WWOS-IV), pages 165–169, Napa, California,
October 1993.

[24] B. W. Lampson. Hints for Computer System Design. In Pro-
ceedings of the 9th ACM Symposium on Operating System
Principles (SOSP ’83), pages 33–48, Bretton Woods, New
Hampshire, October 1983.

[25] R. Levin, E. Cohen, W. Corwin, P. F., and W. Wulf.
Policy/mechanism separation in Hydra. In Proceedings of
the 5th ACM Symposium on Operating Systems Principles
(SOSP ’75), pages 132–140, University of Texas at Austin,
November 1975.

[26] J. Liedtke. On micro-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles
(SOSP ’95), pages 237–250, Copper Mountain Resort, Col-
orado, December 1995.

[27] C. Lumb, J. Schindler, G. Ganger, D. Nagle, and E. Riedel.
Towards Higher Disk Head Utilization: Extracting “Free”
Bandwidth From Busy Disk Drives. In Proceedings of the
4th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’00), pages 87–102, San Diego, California,
October 2000.

[28] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock
Scheduling Outside of Disk Firmware. In Proceedings of the
1st USENIX Symposium on File and Storage Technologies

(FAST ’02), pages 10–22, Monterey, California, January
2002.

[29] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang,
and T. E. Anderson. Improving the Performance of Log-
Structured File Systems with Adaptive Methods. In Pro-
ceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP ’97), pages 238–251, Saint-Malo, France,
October 1997.

[30] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
Fast File System for UNIX. ACM Transactions on Computer
Systems, 2(3):181–197, August 1984.

[31] J. Nugent, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Controlling your PLACE in the File System with Gray-box
Techniques. In Proceedings of the USENIX Annual Techni-
cal Conference (USENIX ’03), pages 311–324, San Antonio,
Texas, June 2003.

[32] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
Page Replacement Algorithm For Database Disk Buffering.
In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’93), pages
297–306, Washington, DC, May 1993.

[33] J. K. Peacock, A. Kamaraju, and S. Agrawal. Fast Consis-
tency Checking for the Solaris File System. In Proceedings of
the USENIX Annual Technical Conference (USENIX ’98),
pages 77–89, New Orleans, Louisiana, June 1998.

[34] D. Pearce, P. Kelly, U. Harder, and T. Field. GILK: A dy-
namic instrumentation tool for the Linux Kernel. In Proceed-
ings of the 12th International Conference on Modeling Tools
and Techniques for Computer and Communication System
Performance Evaluation (TOOLS ’02), pages 220–226, Lon-
don, United Kingdom, April 2002.

[35] F. I. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Robust, Portable I/O Scheduling with the Disk
Mimic. In Proceedings of the USENIX Annual Technical
Conference (USENIX ’03), pages 297–310, San Antonio,
Texas, June 2003.

[36] J. Postel. RFC 793: Transmission Con-
trol Protocol, September 1981. Available from
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt as of
August, 2003.

[37] E. Riedel, M. Kallahalla, and R. Swaminathan. A Framework
for Evaluating Storage System Security. In Proceedings of
the 1st USENIX Symposium on File and Storage Technolo-
gies (FAST ’02), pages 14–29, Monterey, California, January
2002.

[38] M.-C. Rosu and D. Rosu. Kernel Support for Faster Web
Proxies. In Proceedings of the USENIX Annual Technical
Conference (USENIX ’03), pages 225–238, San Antonio,
Texas, June 2003.

[39] C. Ruemmler and J. Wilkes. Disk Shuffling. Technical Report
HPL-91-156, Hewlett Packard Laboratories, 1991.

[40] J. Schindler and G. Ganger. Automated Disk Drive Charac-
terization. Technical Report CMU-CS-99-176, Carnegie Mel-
lon University, November 1999.

[41] M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling
Revisited. In Proceedings of the USENIX Winter Technical
Conference (USENIX Winter ’90), pages 313–324, Washing-
ton, D.C, January 1990.

[42] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
With Disaster: Surviving Misbehaved Kernel Extensions.
In Proceedings of the 2nd Symposium on Operating Sys-
tems Design and Implementation (OSDI ’96), pages 213–
228, Seattle, Washington, October 1996.

[43] P. Shenoy and H. Vin. Cello: A Disk Scheduling Frame-
work for Next-generation Operating Systems. In Proceed-
ings of the 1998 Joint International Conference on Mea-
surement and Modeling of Computer Systems (SIGMET-
RICS/PERFORMANCE ’98), pages 44–55, Madison, Wis-
consin, June 1998.

[44] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson. EELRU:
Simple and Effective Adaptive Page Replacement. In Pro-
ceedings of the 1999 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems (SIG-
METRICS ’99), pages 122–133, Atlanta, Georgia, May 1999.

[45] C. Staelin and H. Garcia-Mollina. Smart Filesystems. In
Proceedings of the USENIX Winter Technical Conference
(USENIX Winter ’91), pages 45–51, Dallas, Texas, January
1991.

[46] M. Stonebraker. Operating System Support for Database
Management. Communications of the ACM, 24(7):412–418,
July 1981.

[47] A. Tamches and B. P. Miller. Fine-Grained Dynamic Instru-
mentation of Commodity Operating System Kernels. In Pro-
ceedings of the 3rd Symposium on Operating Systems Design
and Implementation (OSDI ’99), pages 117–130, New Or-
leans, Louisiana, February 1999.

[48] R. Van Meter and M. Gao. Latency Management in Storage
Systems. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation (OSDI ’00), pages 103–
117, San Diego, California, October 2000.

[49] R. van Renesse. Masking the Overhead of Protocol Layering.
In Proceedings of SIGCOMM ’96, pages 96–104, Stanford,
California, August 1996.

[50] A. Venkataramani, R. Kokku, and M. Dahlin. Tcp-nice:
A mechanism for background transfers. In Proceedings of
the 5th Symposium on Operating Systems Design and Im-
plementation (OSDI ’02), pages 329–344, Boston, Mas-
sachusetts, December 2002.

[51] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient
Software-Based Fault Isolation. In Proceedings of the 14th
ACM Symposium on Operating Systems Principles (SOSP
’93), pages 203–216, Asheville, North Carolina, December
1993.

[52] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems
and Networks. In Proceedings of the 5th Symposium on Op-
erating Systems Design and Implementation (OSDI ’02),
pages 255–270, Boston, Massachusetts, December 2002.

[53] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger,
J. Chew, W. Bolosky, D. Black, and R. Baron. The Duality
of Memory and Communication in the Implementation of a
Multiprocessor Operating System. In Proceedings of the 11th
ACM Symposium on Operating Systems Principles (SOSP
’87), pages 63–76, Austin, Texas, November 1987.

