
EPILOG: The Computational System for Episodic Logic

USER’S GUIDE

Stephanie Schaeffer

Chung Hee Hwang

John de Haan

Lenhart K. Schubert

August 1993

Revised September 2000

Prepared for Boeing Computer Services, Seattle, Washington

Under Purchase Contract W-278258

Contents

1 Use of EPILOG 7

1.1 Introduction . 7

1.2 Getting Started . 8

1.3 Help . 8

1.4 The EpiShell . 9

1.4.1 Starting up an EpiShell . 10

1.4.2 The EpiShell environment . 10

1.4.3 EpiShell built-in commands . 11

1.5 Display . 14

1.6 Tracing and System Actions . 15

1.7 Tweaking System Parameters . 17

1.8 Checkpointing and Retraction . 17

1.9 Permanent Memory . 18

2 EPILOG Representation 20

2.1 Logical Syntax Summary . 20

2.2 Logical Syntax Details . 23

2.2.1 Formulas . 23

2.2.2 Predicates . 26

2.2.3 Terms . 27

2.2.4 Operators . 29

2.2.5 Meaning Postulate and Simplification Schema Syntax 30

2.3 Adding New Syntactic Entities . 31

2.3.1 Adding New Predicates . 31

2.3.2 Adding New Functions . 31

2.3.3 Adding New Operators . 32

2.3.4 Adding New Sorts . 33

2

CONTENTS 3

2.3.5 Adding New Quantifiers . 33

2.4 Probabilities . 33

3 Assertions and Other Input 35

3.1 Types, Parts and Topics . 35

3.1.1 Hierarchies . 35

3.1.2 Topic Indicators . 38

3.2 The Assertion Process . 39

3.2.1 Asserting Formulas . 39

3.2.2 Re-asserting Formulas . 41

3.3 Normalization . 42

3.3.1 Controlling Normalization . 43

3.3.2 Controlling Simplification Schema Application . 44

3.4 Classification . 44

3.4.1 Key Selection . 46

3.4.2 Main Classification . 47

3.4.3 Topical Classification . 48

3.4.4 Modal Classification . 49

3.4.5 Part/Role Classification . 50

3.4.6 Meaning Postulate and Simplification Schema Classification 50

3.4.7 Controlling Classification and Storage . 51

3.5 Consistency Testing and Simplification . 52

3.5.1 Combining Supporting or Contradictory Evidence 53

3.5.2 Controlling Consistency Testing . 53

3.5.3 Meaning Postulate Inference . 54

3.5.4 Controlling Meaning Postulate Inference . 55

3.5.5 Input Driven Inference Machinery . 55

3.5.6 Inference Termination Criteria . 58

3.5.7 Controlling Input Driven Inference . 60

3.6 Input-driven Inference vs Goal-driven Inference . 62

3.7 Problems . 63

3.8 TroubleShooting . 63

3.8.1 What to do if a Desirable Inference is NOT made 64

3.8.2 What to do if an Undesirable Inference IS made 65

4 Questions and Queries 67

CONTENTS 4

4.1 Using Equality Information . 67

4.2 Queries . 67

4.2.1 Display . 67

4.2.2 Retrieval . 69

4.3 Asking Questions . 69

4.3.1 Subgoal Splitting . 75

4.3.2 Access Actions . 76

4.3.3 Subgoal Actions . 77

4.3.4 Answer Combinations . 78

4.3.5 Comments on Question Answering . 78

4.4 WH Questions . 78

4.5 Saving Question Results . 79

4.6 Controlling the Question Answerer . 79

4.7 TroubleShooting . 83

4.7.1 What to do if an Answerable Question is NOT Answered 83

4.7.2 What to do if a Question is Answered Wrong . 85

5 Specialists 86

5.1 Using Specialists . 87

5.1.1 Controlling the Specialist Interface . 88

5.2 Details of the Specialist Interface . 89

5.2.1 Specialist Entry and Evaluation . 90

5.2.2 Specialist Communication . 91

5.2.3 Specialist Subnets . 91

5.3 Type Specialist . 92

5.3.1 Using the Type Specialist . 92

5.3.2 Details of the Type Specialist . 93

5.4 Predicate Hierarchy Specialist . 95

5.4.1 Using the Predicate Hierarchy Specialist . 95

5.4.2 Details of the Predicate Hierarchy Specialist . 96

5.5 Part Specialist . 96

5.5.1 Using the Part Specialist . 96

5.5.2 Details of the Part Specialist . 97

5.6 Episode Specialist . 100

5.6.1 Using the Episode Specialist . 100

CONTENTS 5

5.7 Time Specialist . 100

5.7.1 Using the Time Specialist . 101

5.7.2 Details of the Time Specialist . 107

5.8 Number Specialist . 110

5.8.1 Using the Number Specialist . 110

5.8.2 Details of the Number Specialist . 112

5.9 Color Specialist . 113

5.9.1 Using the Color Specialist . 113

5.9.2 Details of the Color Specialist . 115

5.10 Equality Specialist . 116

5.10.1 Equality Specialist Functions . 116

5.10.2 Equality Specialist Display and Controls . 117

5.10.3 Details of the Equality Specialist . 117

5.11 Set Specialist . 118

5.11.1 Using the Set Specialist . 118

5.11.2 Details of the Set Specialist . 122

5.12 String Specialist . 123

5.12.1 Using the String Specialist . 123

5.13 3 ”String Specialist Predicates” . 124

5.13.1 Details of the String Specialist . 125

5.14 Belief Specialist . 125

5.14.1 Using the Belief Specialist . 126

5.14.2 Details of the Belief Specialist . 127

5.15 Meta Specialist . 127

5.15.1 Using the Meta Specialist . 127

5.15.2 Meta Specialist Display and Control . 128

5.16 Other Specialist (Adding External Routines) . 129

5.17 Adding New Specialists . 131

5.17.1 Requirements for the New Specialists . 131

5.17.2 Steps to Adding a Specialist . 131

5.17.3 Details . 132

5.17.4 Example Specialist . 138

6 Response Generation 140

6.1 Using the Response Generator . 140

CONTENTS 6

6.1.1 Response Generator Commands . 140

6.1.2 Response Generator Display and Controls . 142

6.1.3 Translation Information . 144

6.1.4 Lexical Information . 147

6.2 Details of English Response Generation . 149

6.2.1 The Grammar . 149

6.2.2 Stages Involved in Response Generation . 150

6.2.3 Problems . 160

Chapter 1

Use of EPILOG

1.1 Introduction

EPILOG is an inference engine designed to handle the representation and low level reasoning necessary
for natural language understanding. Although it was designed with this purpose in mind, the representa-
tion and inference it does can be used for other domains with similar requirements. It uses an extended
first order logic called episodic logic (EL) (Hwang and Schubert) which allows propositional attitudes,
unreliable generalizations, and other non-standard constructs, including ones involving events, actions,
facts, kinds and donkey sentences. Episodic sentences are represented using episodic variables, which can
be used to capture temporal and causal relationships. Axiom schemas help to control the number of rules
required, as well as represent narrative and meaning postulate information. The rules of inference include
probabilistic versions of deduction rules resembling the forward and backward chaining rules in expert
systems. Special inference methods (specialists) for certain specific domains assist the general inference
mechanism to increase overall efficiency. 1

EPILOG maintains and answers questions about story knowledge given to it in episodic logic. Input-
driven inference is done on input of story information (i.e. it figures out the ”consequences” of the input
story facts), and yes/no questions and some wh-questions can be answered. The system can also generate
English responses to questions, and repeats input facts and rules and inferences in English as well. Note
that, however, the current version of EPILOG has limited inferencing capability – it does not perform
some narrative or simulative inferences yet, and some other processes are not yet fully handled.

The system is currently running in Allegro Common Lisp (version 5.0). Some knowledge of Lisp will
be helpful in using the system, but is not essential.

If you are a new user, read the ”New User’s Tutorial” first for a painless introduction to the system.
In this manual (the User’s Guide), Chapter 1 contains instructions on starting the system up, and general
instructions such as how to trace actions, get help, or tweak parameters. Chapter 2 contains details on
the logical syntax accepted by the system. The rest of the chapters deal separatly with the main system
operations. Chapter 3 shows how to get input (hierarchy and formulas) into the system, and describes the
assertion process. Chapter 4 shows how to query the system for information, and how to ask questions,
and the question answering process. Chapter 5 describes the specialists which assist the system, how to
invoke them, when and where they apply, and how to control them. Chapter 6 describes the response

1 For a typical user, this manual contains enough information to use the system. The References section at the end of
this manual contains a list of reports which describe episodic logic in detail, including the theoretical underpinnings.

7

CHAPTER 1. USE OF EPILOG 8

generator, including how to put translation and lexical information into the system, and how the response
generator works. Chapter 7 contains topics for use by experienced users. Appendix 1 contains a small
glossary of some of the terms used in the manual;

EPILOG users may have varying backgrounds and may not necessarily be familiar with all of the
terms used. Appendix 2 contains a small reference list of papers which may be helpful in understanding
EPILOG.

There are several places in the manual where EPILOG is compared to a system called ECoNet
. ECoNet (Miller & de Haan, 1987 & 1988) was the predecessor of EPILOG , and many of the
techniques used there have been incorporated into EPILOG . EPILOG is different from ECoNet in
that it supports an extension of predicate logic and input driven inferences and that it is natural deduction
based rather than resolution based.

1.2 Getting Started

The root directory of the EPILOG distribution is called EPILOG. To use the system, start lisp, and then
load the file EPILOG/epi/epi. (Before using it for the first time, compile the system by running lisp and
loading EPILOG/epi/compile-all.lisp.)

If the directory where lisp was started contains a file called epi-init.lisp , that file is automatically
loaded whenever EPILOG is started up (this can be avoided by setting the variable *load-user-epi-init*
to nil). This file should contain loads of hierarchies you commonly use, tweak parameters to the values
you like to use, and set up tracing for the items you usually use. For example, the contents could be:

(load "eg.hier")
(load "eg.indicate")
(load "eg.parts")
(load "eg.lex")
(load "eg.trans")
(tweak ’*qa-iterations* 20)
(trace-item ’qa ’entry)

EPILOG may be used directly from the epilog package: evaluate (in-package epilog) after
loading the system. A more powerful interface which also allows escapes to the unix shell is
available as well - this is the epishell . If you are using EPILOG from another system which might
have name conflicts with it, you can use the user interface epiuser instead. A (use-package ’epiuser)
will import only the main EPILOG routines described in this manual. When using epiuser commands,
all input will be interned into the epilog package automatically.

Once you have EPILOG started up, you will want to assert information (with the add -hier , story
and kn functions), and ask questions (with the q function). These operations are discussed in detail
in Chapters 3 and 4. The syntax for the formulas involved in described in Chapter 2. The rest of this
chapter describes some of the general EPILOG commands needed to get help, print information, trace
system actions, etc.

1.3 Help

The help facility enables you to get on-line help for specific commands and some topics. This help
generally contains exactly what is in the user manual - the purpose of the command, its arguments and

CHAPTER 1. USE OF EPILOG 9

what they mean, and any specific comments about it.

(help &optional topic) [function]

Purpose: Provides help about the usage of the system.

Syntax: topic may be either a command name, or another topic for which help exists. To find out these
topics, do (help ’topics) , or just (help) . If no topic is specified, a summary of the available
commands is printed.

Examples:

(help)

(help ’knowledge)

1.4 The EpiShell

The EpiShell is an optional command line interpreter that can be used within the EPILOG environment,
as an alternative to the usual Lisp top-level read-eval loop. The main purpose of the shell is to make it
simple to use EPILOG as an experimental tool, by creating an interactive environment in which Lisp,
EPILOG the file system, and operating system tools are all readily available. Figure 1.1 describes the
shell’s top-level read-eval loop.

loop
read the next command

perform standard input/output file redirection as indicated.

if the command is a list, then
evaluate as a Lisp form

else if the first symbol on the line matches a command or
synonym known to the shell, or is an abbrevation
of any command or synonym, then

evaluate the Lisp function associated with the command
passing it the rest of the command line as implicitly
quoted arguments

else if there is only one symbol on the line then
attempt to display its value

else
assume the first symbol exactly matches the name of a
Lisp function, and evaluate that function, implicitly
quoting the arguments on the rest of the line

endif

until end of file

Figure 1.1. Top level read-eval loop of the EpiShell

CHAPTER 1. USE OF EPILOG 10

1.4.1 Starting up an EpiShell

From Lisp, the way to start up a shell is to invoke the function esh .

(esh &optional input-spec profile-filename) [function]

Purpose: Starts a new Ep.SHell.

Syntax: If input-spec is a stream, the shell will use the stream as its standard input, exiting upon end-
of-file on the stream. Otherwise, if input-spec is a symbol, it’s assumed to be the name of a file
containing shell commands, or, if input-spec is a string, the shell will execute the single command
specified by the string.

The profile file is a handy way to make the shell look the way you want it to. It’s simply a file of shell
commands that gets executed before control is passed to the terminal. For example, a profile file might
consist of a single line that sets the prompt to your favorite string:

set prompt “==> ”
By default, esh assumes profile-filename is epishell.pro . If the file does not exist, the option is ignored.

Examples:

(esh)

(esh “! ls”)

(esh ’in-file)

1.4.2 The EpiShell environment

While you are in the shell, the top-level read-eval loop will continually prompt you to enter either a
command or a Lisp expression. Commands are entered one to a line: the shell uses the newline character
(i.e., the Return key) to detect the end of a command. However, it ignores newlines embedded inside
lists, and thus, although commands in themselves cannot span multiple lines, command arguments that
are lists can, as can stand-alone lists which are to be evaluated as Lisp expressions. The shell exits when
it detects an end of file on its standard input. In the Sun implementation, end of file is signaled by typing
Control-D (i.e., pressing the Control and the D keys at the same time).

1.4.2.1 File redirection

EpiShell commands can obtain additional input from the standard input and direct output to the
standard output . By default, the standard input and output are the same as for the shell (which is
usually the terminal), but they can be re-directed to named files by using the special symbols < , > ,
and >> . For example,

display >time.save time-info -full t1
puts the output from the display command in the file time.save . Similarly, < filename takes input
from a file, and >> filename appends to an existing file (which it creates if it does not in fact exist). The
shell displays symbol values and function results onto the standard output, so these too can be redirected
to a file. In the following, the value of the symbol a is redirected into a file:

CHAPTER 1. USE OF EPILOG 11

a >a.val
It is also possible to redirect the standard ouput into a pipe, as follows:

display hier | more
The implementation of pipe in the Ep.SHell is done using a temporary file. Specifically, given a command
of the form cmd [args] | os-cmd , the shell collects all output from cmd into a temporary file, and then
executes the operating system command cat tmp-file | os-cmd in an operating system shell (/bin/csh
).

If < filename appears on a line by itself, then the shell temporarily redirects its own input to that file,
using the contents of that file as a shell script .

Sometimes you might want to include the contents of a file somewhere in the middle of a list or command.
The < mechanism cannot be used to this, but it can be done by using the syntax @ filename , which
includes the contents of that file exactly as if you had typed them in at that point. This mechanism can
be embedded, so files which are included can themselves include other files. Line breaks in files included
using @ are interpreted as ordinary white-space, so this facility can also be used to include a command
which spans more than one line. For example,

@long-cmd
would interpret all of the contents of the file long-cmd as a single command, even if the command spanned
several lines in the file.

The last of the special characters that the shell recognizes is the ; character, indicating the start of a
comment that is assumed to consume the rest of the line. Comments can appear anywhere, including
files which are read using the < or @ mechanisms.

1.4.2.2 Using a default function

The shell’s normal reaction to a list standing on its own is to evaluate it as a Lisp form. This behavior
can be altered by using the command set default-function function-name , which causes the shell to
evaluate (function-name list) whenever it encounters a stand-alone list. For example,

E> set default-function story

D> (LRRH girl)

; equivalent to (story ’(LRRH girl))

; or story (LRRH girl)

D> (W wolf)

; equivalent to story (W wolf)

D> set default-function

E>

As the example shows, the shell uses a different prompt when in this mode. This facility can be turned
off by invoking the set default-function command with no arguments.

1.4.3 EpiShell built-in commands

A shell command is invoked by simply typing its name in response to the shell prompt, followed by its
arguments, and terminated by a newline. Abbreviations (of at least two characters) are recognized, so

CHAPTER 1. USE OF EPILOG 12

if you’re a slow typist you don’t have to type the full name of a command. However, you should be
aware that non-unique abbreviations are assigned on a first-come first-served basis. The command show
command abbrev will tell you which command the abbreviation abbrev will invoke.

help cmd-name
This command gives on-line help for the command cmd-name , which can be any command, com-
mand synonym, or abbreviation recognized by the shell.

set option
Where option is one of:

command cmd-name {synonym}*
Adds a new command to the current shell. After setting a new command, typing cmd-name or
any of the synonyms will invoke the Lisp function cmd-name . Any abbreviation of cmd-name
or its synonyms that is not already an abbreviation of an existing command will also invoke the
same function. (You can override an existing abbreviation by explicitly making it a synonym
of the new command.)
If you’re not sure what function a command or abbreviation is bound to, you can display
the Lisp function that will be invoked by the command cmd-str by typing show command
cmd-str . A complete list of all commands and their synonyms can be displayed by typing
show commands . The apropos command can also be used to do a quick lookup of selected
commands.

comment-char character
Changes the shell comment character to character . If no character is specified, the comment
feature will be disabled.

default-function function-name
Defines the name of the function to invoke when the shell is given a list standing on its own.
The list will be passed as the single argument to the function function-name . If no function-
name is specified, this feature is disabled.

default-prompt prompt-string
Sets the prompt to use when a default-function (see above) has been set.

default-syntax character
Sets the syntax of a character back to the Lisp default. (see set symbol-syntax).

[no]echo
Instructs the shell to echo (or not) command files included using the < filename facility.

include-char { character}
Changes the shell include (read from a file) special character. If no character is specified, the
include feature will be disabled.

prompt prompt-string
Changes the shell prompt to prompt-string .

pipe-char character
Changes the shell pipe (to an operating system command) special character. If no character
is specified, the pipe feature will be disabled.

put-char { character}
Changes the shell put (to a file) special character. If no character is specified, the put feature
will be disabled.

CHAPTER 1. USE OF EPILOG 13

symbol-syntax character
Sets the syntax of character so that it will always be read as a single, stand-alone symbol. For
example, by default the shell sets this syntax for the character ! . The symbol ! is also a
synonym for the command os-shell , so it possible to type:

!ls *.lisp
and have the shell parse ! as a command to invoke the operating system shell with the os
command ls . Note that no space is needed after the ! . To revert to the usual Lisp syntax for
these this character (or any others that have been set using this command), use the command
set default-syntax .

take-char { character}
Changes the shell take (from a file) special character. If no character is specified, the take
feature will be disabled.

trace-output { filename}
Opens the file filename and sets the value of the global variable *esh-trace-output* to the
corresponding file stream. If no filename is specified, trace output reverts to the standard
output.

show option
Where option is version or anything that can be set .

apropos search-string
Gives a one-line description of all shell commands, synonyms, and document strings that contain
search-string as a substring.

cat { filename}
Concatenates all the named files together by printing them in order onto the standard output. If no
filename is specified, input is taken from the standard input instead. This rather innocuous-looking
command can be used for several useful file operations. For example,

cat >newfile
creates the file newfile with the initial contents taken from the terminal (use Control-D to signal
end of file). The command

cat newfile
can then be used to display the contents of the file, and the command

cat newfile >another-file
to copy the them to another file.

cd { directory } Changes the current file directory to directory . If directory contains the string “..”,
all of directory should be enclosed in double quotes, to avoid confusing the Lisp parser.

drib { filename}
If the filename argument is present, everything that appears on the terminal will also be dribbled
to the file filename . drib with no arguments turns off this feature.

echo { argument } *
Echos argument(s) onto the standard output. Arguments are converted to lowercase, unless enclosed
in double quotes. One possible use of this command (or its synonym, %) is to add comments to
a file of EpiShell commands; these comments will then be displayed when the file is presented as
input to the shell. For example, if the file test.data contains

CHAPTER 1. USE OF EPILOG 14

% Setting up test checkpoint
checkpoint test

.

.

.

then “Setting up test checkpoint” will appear when the shell is invoked (recusively) by giving the
command esh test.data to the current shell.

esh { filename | command }
Starts up a sub-shell. In a sub-shell, the shell environment reverts back to the default—all of the
set options (with the exception of set command) assume their usual start-up values. A profile
file is not executed. By default, the sub-shell reads commands from the current standard input,
but it can also get them from the file filename or from the single command argument (which must
be enclosed in quotes, to distinguish it from a file name).

os-shell { command } { command-args } *
Start up an operating system shell. In the Sun implementation, this starts up /bin/sh , with
standard input, output, and error output bound to the corresponding streams in the current shell.
If command and command-args are present, they are converted to lowercase (unless they are enclosed
double quotes), and then passed to /bin/sh using the -c option of that shell.

The synonym ‘ ! ’ can be also be used to invoke this command.

os-csh { command } { command-args } *
Start up the operating system /bin/csh shell.

shell commands
The following commands have also been set up as ‘aliases’:

Alias Interpretation
emacs args os-csh xemacs args
less args os-shell less -dm args
lpq args os-shell lpq args
ls args os-shell ls args
paf args os-shell paf -format P args
pwd args os-shell pwd args
vi args os-shell vi args

1.5 Display

In a large system with a number of parts, it is difficult for the user to keep track of all the routines he
needs to use to print out various bits of information. To help in this, and to provide a uniform interface,
the display command was set up. This command allows you to ask for specific information to be printed
without being overly concerned with the parameter specification.

(display &optional args) [function]

Purpose: Prints information about a specific concept/topic from the topical
classification table.

CHAPTER 1. USE OF EPILOG 15

Syntax: Among the arguments may be a -brief (-b) or -full (-f) flag - this will be stripped off
immediately. Of the remaining arguments, the first one should be an indicator of what is to be
displayed (a topic), and the rest are arguments to that display function. These display functions are
described throughout the manual, and include functions to print out knowledge about a particular
individual or predicate, the current state of the question answering mechanism, the inference path
used to answer a question or generate an input-driven inference, and specialist domain information.
Calling display with no arguments will print the allowed ”topics”. If no topic is given, and the
arguments are all tweakable parameters or trace values, their descriptions and values will be printed.
Otherwise the first argument is considered to be a concept, and information about that concept is
retrieved and displayed. You can also get the display command to look for desired options for you. If
a -key (-k) flag is among the arguments, then the lisp function apropos is used on each argument,
and the valid options which contain those arguments are displayed. If tweak is specified as well, the
tweakable parameters which match the given arguments will be displayed. If trace is specified, the
traceable values that match are displayed. If display is specified, the display options that match
are displayed (the default). These may be used in any combination.

Examples:

(display ’lrrh ’-full)

displays all information entered about lrrh , including belief subnets.

(display ’event-info ’-b)

displays brief information on events in the time specialist.

(display ’time-info ’-full ’t1)

displays all information on the time point t1 in the time specialist.

(display ’-k ’time)

displays the valid display options that have time in their names.

(display ’-k ’tweak ’trace ’qa ’-f)

displays the valid tweakable parameters and trace values that have qa in their name. The -f flag
also causes the current and default values of
the tweakable parameters to be printed.

Remarks: Note that the examples using time-info and event-info will only display something if the
time specialist is active, and if some information has been passed to it.

1.6 Tracing and System Actions

These routines make it simpler to watch the system operate and to debug. Each operation of the system
has a set of trace values associated with it (which are described in the section for the operation, as well
as in the Quick Reference Guide). When tracing is turned on for a trace value, additional information
is printed out during the operation it belongs to. Trace values are also associated with the specialists
so that you can watch them as well. Tracing may be turned off or on for individual trace items or for
all. Note that the Lisp functions trace and untrace have been advised so that when called with quoted
values, they call trace-item or untrace-item respectively for the quoted values (unquoted items are

CHAPTER 1. USE OF EPILOG 16

handled by Lisp).

The system starts out automatically tracing input driven inferences made (forward), and question
answers (qa). These can be turned off, but it may be difficult to see what is happening then. If you
want all printing to stop temporarily, you can tweak the *print* flag to nil, and then back to t when
you want to start printing again. This will stop all EPILOG output.

(trace-item items) [function]

Purpose: To turn on tracing for selected items or for all.

Examples:

(trace-item ’forward ’rules)

Remarks: If no items are given, all traceable items will be traced.

(traceable item description trace-values) [function]

Purpose: To indicate that a given name is something which may be traced. This item may be a compound
item of several other traceable items.

Syntax: item becomes a traceable value. description should be a string indicating what this trace value
does. trace-values is a list of the traceable items that should have tracing turned on whenever this
item is traced.

Examples:

(traceable ’qa ”interesting stuff about question-answering” ’(qa-time qa-test qa-eval qa-access qa-
success unify))

Remarks: This can be useful if you have a set of trace items that you would like to be able to turn off
and on easily. For example:

(traceable ’my-traces ”stuff I’m interested in” ’(forward-details entry-class))

(trace-all) [function]

Purpose: To turn on tracing for all traceable items.

Examples:

(trace-all)

(untrace-item items) [function]

Purpose: To turn off tracing for selected items or for all.

Examples:

(untrace-item ’rules ’classification)

Remarks: If no items are given, tracing will be stopped for all currently traced items.

CHAPTER 1. USE OF EPILOG 17

(untrace-all) [function]

Purpose: To turn off tracing for all traced items.

Examples:

(untrace-all)

There is a display option trace which can be used to print out trace values and their descriptions:

(display ’trace items)
If no items are specified, all trace items will be displayed. Otherwise only the valid trace values in items
will be printed. If the -key or -k flag is used, all valid trace values whose names contain one of items
will be printed. The -full and -brief flags have no effect here.

1.7 Tweaking System Parameters

These routines make it easier to find and change system parameters. The parameters which may be
changed are described in the sections about the operations they affect, and are summarized in the Quick
Reference Guide. Parameters may be changed back to a preset default as well.

(tweak item &optional newvalue) [function]

Purpose: To change the value of a system parameter.

Syntax: Note that item should be quoted. If newvalue is not given, item is set back to its default.

Examples:

(tweak ’*qa-iterations* 1)

Remarks: The tweakable parameters are described under the areas of the system they deal with in this
manual. They may be displayed by calling tweak with no arguments. Limited checking is done on
newvalue to ensure that it is a valid value for item .

There is a display option tweak which may be used to print out information on all or specific tweakable
parameters:

(display ’tweak items)
If no items are specified, all are printed. If specific items are given, only they are printed. If -full or -f
is specified, the current and default values of the parameter, as well as its description are printed. With
-brief or -b , only the description is printed. If -key or -k is specified, any tweakable parameters which
have any of items in their names are printed.

1.8 Checkpointing and Retraction

These routines allow you to set checkpoints during a session and to retract any formulas or changes to
hierarchies entered after a checkpoint. This does not include changes to system parameters or the list
of items being currently traced. Note that retraction always removes things in reverse, starting with the
latest formula entered.

There are two main checkpointing/retraction methods. One is to use named checkpoints, and to
retract to those named points. These may be nested, so that you can retract as much or as little as you

CHAPTER 1. USE OF EPILOG 18

like. The other is to use numbers, and retract the last number of formulas entered. The two methods may
be mixed so that you can retract a number of formulas while still keeping track of a named checkpoint.

(checkpoint &optional item) [function]

Purpose: To set up a named checkpoint, or to start a revolving checkpoint to enable retraction of formulas.

Syntax: If item is a number, a revolving checkpoint is set up which allows retraction of up to the last
item formulas. If item is a string, or is absent, a checkpoint is set up which allows retraction of
any formulas entered after the checkpoint, regardless of how many there are. The function returns
a symbol which can later be given to the retract function. If item is a string, it is included in the
symbol’s name, to make examining the checkpoint stack more informative.

Examples:

(checkpoint ’start)

(checkpoint 5)

(retract item) [function]

Purpose: To retract all formulas entered since a given checkpoint, or to retract a certain number of
formulas (in reverse order).

Syntax: If item is a number, the last item formulas are retracted, if possible. Forward inferences done when
a formula is entered are also retracted. If item is a symbol previously returned by the checkpoint
function, all formulas since that checkpoint was set up are retracted.

Examples:

(retract ’start)

(retract 2)

Remarks: You cannot retract more formulas than were entered since the checkpoint command. Also,
once you have retracted the maximum number of formulas being keep in the revolving checkpoint,
you cannot retract anymore, even if that many have been entered. For example, if a (checkpoint 4)
command is issued, and some forumlas entered, a (retract 3) will work fine, but if another (retract
3) command is issued, only one more can be retracted. To display the checkpoint names already
given, use the display command with topic checkpoint - i.e. (display ’checkpoint)
To permanently remove the named checkpoint after the retraction is done, use (retract name
:remove t) . This stops checkpointing for that name.

1.9 Permanent Memory

Sometimes it is desirable to save the formulas and inferences made up to a given point, and reload them
later, saving the trouble and time of re-doing the loading and inferences. One method of doing this is to
use the Lisp disksave facility, but that requires a great deal of storage space. An alternative method is
handled by EPILOG. All current formulas, and their properties, and constants and variables and their

CHAPTER 1. USE OF EPILOG 19

properties may be save in a relatively small file, and reloaded quickly from that file. Currently only
the information in the main system itself is saved - information in the specialists own storage media
is not saved. What this means is that information which has not been sent to a specialist (like the
time specialist) for storage can be quickly and easily saved and restored without changing the system’s
performance, although questions and inferences that rely on that specially stored information will not
work.

The flag *memory-load-specs* can be used to indicate that the specialist information should be
rebuilt when the permanent memory file is loaded in. If set to t (the default), each formula will be sent
to any applicable specialists to enter into their domain. Although the newly built specialist domains will
have a slightly different internal arrangement than the version the memory was stored from (because the
formulas are entered in a different order), the results when question answering should be the same. This
is a little slower than just loading the formulas themselves (with *memory-load-specs* nil), but still
much faster than loading the entire test from scratch, including all input-driven inferencing.

This works especially well for a system with a large, fixed set of rules - these can be easily stored in
a permanent memory file and loaded quickly. The storage mechanism does not store hierarchies or topic
indicators - it is assumed that the identical hierarchies and topic indicators will be reloaded before the
permanent memory file is called in. Any specialists which were active at the time of the storage are also
activated. Parameter values are not saved, nor are trace values.

(write-perm-memory &optional file-name) [function]

Purpose: Saves all current formulas, their classifications, and properties about them and the constants
and variables involved in them in a disk file.

Syntax: file-name is optional, and will default to ”perm-memory” in the current directory.

Examples:

(write-perm-memory ”lrrh-knowledge”)

Remarks: Only formulas stored in the main system are saved - information saved in the specialists’
representations is not saved yet. Parameter and trace values are not saved either. It is assumed
that the identical hierarchy and indicator values will be loaded before the file is read in again.
Write-perm-memory may be abbreviated to wpm .

(read-perm-memory &optional file-name) [function]

Purpose: Reads in the information saved by a write-perm-memory to restore the wffs and constants
in the system at that time.

Syntax: file-name is optional, and will default to ”perm-memory” in the current directory.

Examples:

(read-perm-memory ”lrrh-knowledge”)

Remarks: This command cannot be executed after a wff has been loaded. The same hierarchy that
existed at the time of the writing of the file should already be loaded. Read-perm-memory may
be abbreviated to rpm .

Chapter 2

EPILOG Representation

This chapter describes the logical syntax used for formulas accepted by EPILOG , as well as the
probabilities the system uses. The logical syntax is intended to be the same as the logical syntax given
for episodic logic in Chung Hee Hwang’s thesis A Logical Approach to Narrative Understanding (see
references), although the description here is slightly different (for historic and implementation reasons).

2.1 Logical Syntax Summary

To read this syntax summary, note the following: ’*’ means 0 or more occurrences, ’+’ means 1 or
more occurrences, ’|’ and ’,’ mean choices (as do separate lines for multiline definitions) and{} indicates
optionality. Items in italics are syntax types, in bold are actual input (the () are included although they
don’t really look bold), regular print includes syntax instructions, and comments.

wff->({negation}quantifier variable{wff}wff)
({negation}term pred term*)
(wff-op wff)
({negation}wff logical-conn wff+)
({negation}wff episodic-op term)
({negation} wff causal-conn wff)
({negation} wff true)

wff-op -> name examples: nec, poss, probably, perhaps, past, perf, futr, pres, prog, ...
(sentence-modifier pred)
Note:pred is a 1 place predicate

sentence-modifier->nameexamples:adv-s, adv-e, adv-f, adv-p , ...

quantifier->A, E, the, most, many, some, few, none
(quantifier-modifier quantifier)

quantifier-modifier-> nameexamples:nearly, ...

variable->name|name sort

sort->episode, ep, event, set, time, number, num, real, integer, int, string, propos

negation->not

20

CHAPTER 2. EPILOG REPRESENTATION 21

logical-conn->and, or, implies, <=>, number-pred
(number-pred variable+) controlled variables

episodic-op-> **, *, @,

causal-conn-> because

name-> lisp symbol name, consisting of a string of characters and numbers,
starting with a character

number-pred-> real number <= 1

term -> constant
(pred-nominalization-op pred)
(sentence-nominalization-op wff)
(function term+)
quasi-quoted-expression
record
quoted-expression

pred-nominalization-op->nameexamples:K, K1, Ka, To,...

sentence-nominalization-op-> nameexamples:that, whether, Ke, YN-q, ...

record->($´sort constant+)

quoted-expression-> quoted list, contents unspecified 1

quasi-quoted-expressionR ->(qquotewff)|(qqwff)
(qquoteterm)|(qqterm)

constant->name|name sort| number | string

function->nameexamples:set-of, date, cardinality-of, start-of, pair, fst, rst, ...

pred->nameexamples:kill, love, eat, pretty, ...
(pred-modifier pred)
(multi-pred-modifier pred+)
lambda-pred

lambda-pred->lambda-expr
(lambda-pred term*)

lambda-expr->(Lvariable wff)|(Lvariable pred)

pred-modifier->number|nameexamples:very, plur, coll, almost, sort-of, former, in-manner, ly ...
(modifier-forming-op pred)

modifier-forming-op->nameexamples:coll-of, attr, adv-a, nn, na, adv-q, ...

multi-pred-modifier-> nameexamples:rel, mos, ...

In addition, each subpart may be named using the symbol ! and a name just before the
closing bracket. These names may then be used instead of the whole expression wherever
the expression is legal. For example, (A x (x wolf ! p1) (x grey) ! p2)would mean p2 could
now be used for (Ax (x wolf) (x grey)), and p1 could be used for (x wolf) - e.g. (A x p1

1 Note that no meta variables (variables over wffs, predicates, etc) may be quantified within a quasi-quoted expression.
Any quantification outside a quasi-quoted expression in a meaning postulate or simplification schema must be over a meta
variable or a sorted variable.

CHAPTER 2. EPILOG REPRESENTATION 22

(x fierce)).

The thesis description of episodic logic has the negation operator acting on a sentence
argument, rather than inside the sentence. EPILOG will accept this form as well and
move the negation inside.

Notes: Some operators are stored but not used for inference yet. Infix position is used
for wffs themselves, prefix for all other constructions. Wherever a syntax type is defined
as type -> name , the user may add his own names there using the add-predicate, add-
operator, etc functions. Where there is a fixed set, no new ones may be added (logical
connectives, quantifiers, etc). Controlled variables are stored but not currently involved
in inference.

This syntax is really somewhat more permissive than intended. For example, the syntax
ignores predicate adicity, so it permits [John gives], (very gives), and other oddities. For
more details on particular constructions, see the ”Logical Syntax Details” section in the
User Manual.

Some examples (each followed by the system’s attempt at English generation):

(A x (x wolf) (A y (y human) (A z ep ((x meet y) * z) ((y in-danger) @ z))))

If someone is met by a wolf, he is in some danger.

(not wolf1 friendly)

WOLF1 is not friendly.

(nec (A x (x wolf) (x fierce)))

Necessarily wolves are fierce.

((lrrh pretty) and (lrrh friendly))

Little Red Riding Hood is friendly and pretty.

((wolf1 meet lrrh) ** ep1 episode)

WOLF1 met Little Red Riding Hood.

(((lrrh in-danger) @ ep2 ep) because ((wolf1 meet lrrh) * ep1))

Little Red Riding Hood was in some danger because she was met by WOLF1.

((wolf1 want (To (L x (E y ep ((x eat lrrh) * y))))) ** ep3 ep)

WOLF1 wanted to eat Little Red Riding Hood.

(lrrh (mos pretty girl))

Little Red Riding Hood is the most pretty (prettiest) girl.

((start-of ep2) during ep1)

The start of WOLF1 wanted to eat Little Red Riding Hood while WOLF1 met her.

((wolf1 ((ly quick) eat) gm) ** ep4 ep)

WOLF1 quickly ate Grandmother.

CHAPTER 2. EPILOG REPRESENTATION 23

2.2 Logical Syntax Details

An informal sketch of the logical syntax is provided here. More details of the logical syntax are given in
the documents described under References. Throughout this manual, examples are sometimes shown in
the manner described in the article mentioned above, and sometimes in the form that the system accepts,
which is slightly different. To convert the form in the paper to the form the system accepts, note the
following: () are used instead of [], : are eliminated, ∗∗ is **, ∀ is A, ∃ is E, λ is L, → is implies, and →n

is just n .

2.2.1 Formulas

Formulas are entered in infix form, with the first argument preceeding the predicate, and all other
arguments following the predicate. This makes it more readable. For example,

(lrrh smaller-than wolf1)

Functions, operators, and other such expressions are always entered in prefix form, with the function
or operator first, and arguments following. For example,

((start-of e1) before (date 1989 12 01 12 00 00))

2.2.1.1 Quantification

Quantification may be restricted or unrestricted. If restricted, it takes the form of (Qα Φ Ψ), where Q
is a quantifier, α is a variable, and Φ and Ψ are formulas. Thus, (∀α Φ Ψ) and (∃α Φ Ψ) are equivalent
to (∀α) Φ → Ψ and (∃α) Φ & Ψ, respectively. For example, Every bomb is dangerous is represented as
(note that English letters A and E are used for ∀ and ∃ for computer implementation and that we use
infix expression which puts the predicate after its first argument):

(A x (x bomb) (x dangerous))
or

(A x ((x bomb) implies (x dangerous)))
while “There is a hand-made bomb” will be represented as

(E x (x bomb) (x hand-made))
or

(E x ((x bomb) and (x hand-made)))

In addition to the standard quantifiers A and E , some additional quantifiers are recognized by
EPILOG . These are some, many, most, few, WH and none 2 . The current version handles only A
and E completely, although it can make some inferences with the others, and some wh-questions using
WH can be answered. In addition, some other quantifiers E! and the are recognized as being similar to
E , but adding a uniqueness attribute to the specified object. The system currently normalizes top level
constructs using these to have an additional part showing the uniqueness, but the exact actions have not
been fully determined, so care should be taken when using them.

In existentially quantified facts, the restriction will always get probability 1, and the fractional prob-
ability (if this is an inference) will be placed on the main clause.

2 none is actually no , except that using no causes confusion during verification, as there may be YES and NO atoms
temporarily inserted into clauses

CHAPTER 2. EPILOG REPRESENTATION 24

Quantification over meta-level objects, such as predicates, is allowed restrictively in schemas - in
meaning postulates or simplification schemas. Mp’s or simplification schemas must contain quantification
over meta-level variables (wffs, predicates, operators, etc) or sorted variables. Additional quantification
over over variables must take place within quasi-quoted expressions in these schemas. Regular knowledge
rules may not quantify over meta level objects.

2.2.1.2 Connectives

Two types of connectives are used for implication. As shown above, in universally quantified statements,
English word implies is used instead of traditional implication symbol rightarrow. (For semantic reasons,
it is preferable to represent implies as the probability 1 .) Generic conditionals use implications with
lower objective probabilities attached (e.g., rightarrow.85), and these implications are expressed by the
probabilities themselves. For example, “Most guerrillas are dangerous” could be represented as

((E x (x guerrilla)) 0.85 (x dangerous))
interpreting Most as lower objective probability 0.85 (this number just “seems” reasonable. Similar num-
bers can be chosen for other quantifiers, and the response generator does correspond English quantifiers
with numbers, but only for the purpose of producing natural sounding English).

Conjunctive and disjunctive connectives take the form of and and or respectively (& and | may also
be used, and will be converted to and and or , respectively, by the system). These connectives should be
placed after their first argument. Note that enumerative connectives can take arbitrarily many (but at
least two) arguments. Thus, “There is a male Palestinian guerrilla” may be represented as

(E x ((x guerrilla) and (x male) (x Palestinian)))

Equivalences are represented using the symbol ⇔ (<=> for Epilog). (φ ⇔ ψ) is equivalent to

((φ → ψ) and (ψ → φ))

2.2.1.3 Episodic and Propositional Operators

Episodic and propositional operators connect formulas to episodes and propositions respectively. Three
kinds of episodic operators are used: ** (equivalent to ∗∗), *, and @. Expressions (Φ ∗∗η) and (Φ ∗η) mean
that Φ is an overall description of episode η and Φ is a (partial) description of episode η, respectively.
For example:

(A x set (x (coll people)) (A y ep ((x walk) ** y)

(A z (z member-of x) ((z walk) * y))))

(Φ @ η) is used as an abbreviation for

(E e (e same− time η) (Φ ∗ ∗ η))
although the temporal aspect of this does not get passed along to the temporal specialist. It is better to
use * and ** and explicitly state the temporal aspect, or add the above as a simplifications schema.

(A x wff (A y term ((qq (x @ y)) true) ((qq (E e ep (e same-time y) (x ** e))) true)))

An underscore () is used to specify a proposition, (Φ P) meaning that Φ is the content of
proposition P . Then, “John believes that a guerrilla kidnaped Mary” could be represented as

(E x ((E y (y before now) (E z (z guerrilla) ((z kidnap Mary) ** y))) x)

CHAPTER 2. EPILOG REPRESENTATION 25

(E x1 (now during x1) ((John believe x) ** x1)))
or, equivalently, as

(E x ((E y (y before now) (E z (z guerrilla) ((z kidnap Mary) ** y))) x))
and

(E x1 (now during x1) ((John believe x) ** x1))
Note that existential variables inside the content of a proposition cannot be freely skolemized. They

are however, given unique variable names by the normalizer. In the above formulas, for instance, y and
z cannot be skolemized, whereas x and x1 can.

The following example illustrates some of the syntax discussed so far.

“An explosives-laden car blew up in a Shiite neighborhood in Beirut, police say.”

(E p1 propos ((E e1 ep ((e1 before now) and (E x1 ((x1 .SHiite neighborhood))

and

(x1 in Beirut) (e1 occur-in x1))))

(E x2 ((x2 car) and (E e2 ep (e1 during e2)

(E x3 (x3 (plur explosive))

((x2 laden-with x3) ** e2)))) ((x2 blow-up) ** e1))) p1)

(E e3 ep (now during e3) (E x4 (x5 police) ((x5 say p1) ** e3))))

2.2.1.4 Sentential Operators

A number of operators may act on a formula to add information. The nec operator makes a formula
necessarily true. adv-p translates a propositional adverbial - e.g. ((adv-p certain) (John happy)) . adv-f
is translates a frequency adverbial - e.g. (past ((adv-f regular) (John see Mary))) . adv-e translates an
adverbial over an event - e.g. ((adv-e (in-loc California)) (John see Mary)) .

2.2.1.4.1 Negation

The negation operator is not (˜ may also be used, and will be converted to not by the system). To
minimize the levels of nesting of clauses, the negation operator is moved inside its argument expression.
Thus, “John is not a rebel” will be formulated as

(not John rebel)

If a formula is entered with the negation outside its argument expression (e.g. (not (John rebel))),
the system will move the negation to its preferred location.

CHAPTER 2. EPILOG REPRESENTATION 26

2.2.2 Predicates

So far the predicates illustrated have been simple entities (names), but more complex predicates can also
be handled. In particular, lambda abstracts can be used to represent predicates with arguments, and
predicate modifiers can modify a predicate in various ways.

2.2.2.1 Lambda Abstracts

Lambda abstracts express more complex predicates than can be handled by a single symbol, although they
can also express those. They can be used in predicate position as a predicate, or more commonly, be used
in a construction with an operator that requires a predicate as its argument (especially nominalization
operators - see below). The English letter L is used for λ. For example, predicates happy and kiss Mary
can be represented as

(L x (L y ((x happy) ** y)))
and

(L x (L y ((x kiss Mary) ** y)))

Lambda reduction and conversion is done during the normalization process for lambda expressions
used in predicate position, where the subject is a symbol. For example,

(John (L x (E y ((x happy) * y))))
would be converted to

(E y ((John happy) * y))
and this wff would replace the original one. Similarly,

(John ((L x (L y (E z ((x love y) * z)))) Mary))
would be converted to

(E z ((Mary love John) * z))

2.2.2.2 Predicate Modifiers

A number of predicate modifiers are recognized (and you can add more if you desire - see the section on
adding operators). For example, coll or plur modify a type predicate to mean a collection or group of
entities of that type. To express that c1 is a pack of wolves , (c1 (coll wolf)) can be used. Some other
modifiers are intensifiers, such as very or extremely . These operate on appropriate predicates (not types!)
- for example, (lrrh (very pretty)) . (Notice that predicate modifiers such as coll or very are expressed
in prefix form.) There are also non-monotonic operators, such as sort-of , and almost . The predicate
they modify is not true of the entity it is being predicated of ((couch1 (almost red)) does not mean that
couch1 is red).

When used in inference, a modified predicate will not match the unmodified version of the predicate
- meaning postulates should be used to make any such valid inferences. For example, something that is
very pretty is also pretty, while something that is almost pretty is not pretty.

CHAPTER 2. EPILOG REPRESENTATION 27

2.2.3 Terms

Terms are the arguments to the predicates and functions used in formulas in EPILOG . So far only
simple named constants and variables have been shown, some of them with sort information attached.
Additional types of terms can also be represented, including other kinds of constants (numbers, strings,
and more complex entities), and complex terms involving operators. This section describes these other
kinds of terms, as well as some caveats on naming terms.

2.2.3.1 Sorts

Sorts are a subset of the main (fixed) type hierarchy. They differentiate arguments so that specialists
can tell whether or not something is in their domain. Currently the sorts are: episode, time, set, propos,
string, number, integer, and real .

There are two ways to have a sort attached to an item - one is to do it manually, by following the
argument name with an underscore and the sort (e.g. e1 episode). (This is the way ECoNet appended
sorts, so to maintain some sense of consistency between the two implementations, the same method is
used here.) Note that this is the same underscore used as the propositional predicate . Since there are
no spaces around the underscore when used as a sort attacher, no confusion should result. Currently, no
testing is done to ensure that the sort given is a valid one. Abbreviations are allowed for the longer sorts.
Recognized abbreviations are in () : episode (ep, event), integer (int), string (str) , and number (num) .

The other method is to allow the system to automatically put it there for you, which it can do in
certain restricted circumstances. If a constant is asserted to be of that type (for example, (e1 episode)),
the sort will automatically be added. Also, arguments in the final position in a proposition with predicate
**, * or @ will have sort episode automatically added to them, although if they occur in a quantified
expression with a restriction, it is usually a good idea to put the episode on the quantified variable
anyway - if the restriction is complex the sort sometimes isn’t put on in time to be useful. Similarly, the
final argument for propositions with predicate will have sort propos added. In some complex formulas,
allowing the system to automatically add the sort may result in the sort being added too late for some
operations, so it is a good idea to manually add sorts when quantifying variables, or when adding a new
constant in a long, complex sentence. Another possibility is to explicity add the sort as a type restriction.
For example, (A x episode (A y ...)) could also be input as (A x (x episode) (A y ...)) .

Once a constant has been given a sort, it never loses it, so after the first use (e.g. n1 number), the
item may be referred to simply by its name (n1), without losing sort information. Variables have this
property also, within a single proposition. The sorts on variables are wiped out before the next propostion
is entered.

2.2.3.2 Constants

Symbolic names, simple numbers and strings may simply be used as themselves. Examples:

(mm number less-than 3)

((’time 1988 12 01 00 00 00) before e1 episode)

(city1 has-name “Edmonton”)

CHAPTER 2. EPILOG REPRESENTATION 28

2.2.3.3 Records

For complex entities (such as dates or sets), we have introduced records, which are similar to the quoted
expressions ECoNet used. A record is a list of the form ($ ’sort ...) , in argument position in a
proposition, where sort is a legitimate sort, and the rest of the list may contain almost anything. An
example of a date is ($ ’time 1988 12 01 00 00 00) . Note that substitution and function evaluation
within a record are handled.

2.2.3.4 Quoted Expressions

A future enhancement will be to handle arbitrary list structures and symbolic expressions, including real
”quoted expressions” of the form ′(τ1 τ2 ... τn). Currently these may be input to the system, but their
use is limited. No substitution or function evaluation occurs within a quoted expression.

2.2.3.5 Quasi-Quoted Expressions

Quasi-quoted expressions are list structures which are similar to quoted expressions, except that limited
substitution may be done into them. They look like (qq ...) or (qquote ...) . Variables over meta-
level objects (wffs, predicates, operators, etc) may be substituted for, and meta-level functions may
be evaluated. No other substitution or evaluation takes place inside a quasi-quoted expression though.
Quantification is allowed inside these expressions, but not over meta-level variables. These expressions
are used mainly in meaning postulates and simplification schemas where complex formulas need to be
matched to make a rule fire, or where the resulting inference is quantified or complex. Quasi-quoted
expressions most often occur with the true predicate. For examples, note the quasi-quoted expressions
in the following meaning postulates:

(A x pred (A y term ((qq (y (very x))) true) ((qq (y x)) true)))

(A x wff (A y wff ((qq (most z x y)) true) ((qq ((E z x) 0.8 y)) true)))
There is more discussion of this in the section of meaning postulate and simplification schema syntax.

2.2.3.6 Functions

Functional terms are lists which consist of a function name (no operators allowed!) followed by a number
of terms which are arguments to the functions. A few have been predefined, and some of the specialists
recognize some functions (e.g. set-of , start-of , etc).

2.2.3.7 Naming Conventions

When a formula is entered, the formula and each subpart are normalized to atoms which contain all
the information about the portion - if there is an operator, the arguments, probability, etc. The system
can generate names for the atoms, or the user may name them by putting ! name before the closing
parenthesis. For example, (A x (x wolf) (x fierce) ! wolfrule) would be normalized, and the resulting
atom would be named wolfrule . The names, user and system generated, are available to the user to use
in other formulas where the identical subpart is desired. (The “long” form of any name is available on it
as its ’print property).

CHAPTER 2. EPILOG REPRESENTATION 29

Normalization also standardizes variable names, and skolemizes if possible. The standardization of
variable name ensures that they will have all the necessary information with them whenever they are used
- thier sorts, and whether or not they are matchable variables. Matchable variables are those that can
be unified with a constant, leading to an input driven inference or a goal reduction. These are variables
which occur in a positive context (for example, a rule consequent or fact) with quantifier A , or those
which occur in a negative context (for example, a rule antecedent) with quantifier E . For example, in

(A x (x wolf) (E y (y girl) (x friend-of y)))
x is matchable, and y is not. In

((E x (x wolf)) 0.8 (x grey))
x is matchable. For goal chaining, the reverse is true, with the matchable variables occurring in a positive
context, and the non-matchable ones being in a negative context. For example, x in (E x (x wolf)) is
matchable if this is a goal (for backward chaining).

Standard variable names are x, y, z, x1, y1, z1, ... for matchable variables, and u, v, w, u1, v1, w1, ...
for non-matchable variables. Variables with sorts will be normalized to these names as well, with a short
form of the sort and a dash in front (e.g. ep-x, set-y, num-u, int-v, real-x1, time-z). Although almost
anything can be used as a variable name on input, these names should NOT be used for constants. Also,
a “sorted” variable (e.g. ep-x) should not be used to represent a variable of a different sort. Lambda
variables are not matchable (except with other lambda variables), and have L- in front of the standardized
name.

When an existential variable has been skolemized, the new constant will have the name c followed
by some number (e.g. c3), or a sort, followed by a dash, the c and a number (e.g. ep-c14). It is not
recommended that the user enter any of his/her own constants using that form, and especially one should
not use that form for variables.

2.2.3.8 Nominalization Operators

The nominalization operator To takes a predicate as its argument, and the whole construct becomes a
term. This is where the lambda abstracted form of predicates comes in quite handy. For example, “John
wants to kiss Mary” can be represented as

(E e1 (now during e1) ((John want (To (L x (L y ((x kiss Mary) ** y))))) ** e1))
As seen in this example, lambda abstracts are particularly useful when one wants to use a construct con-
taining a predicate and some argument(s) as a predicate.

In addition to To , there are kind forming operators K and K1 , as in (K (plur rebel)) , ”rebels” as a
kind, or (K1 bomb) , “a bomb” as a kind. For example,

((K wolf) fierce)
represents “Wolves are fierce”. Note that meaning postulates must be used to convert these to appropriate
forms for inference (depending on the predicate, a formula involving such an operator can be interpreted
in different ways - e.g. “Dogs are friendly,” “Dogs are barking,” “Dogs are widespread” will all have
different interpretations, although they can all be expressed using the kind operator).

2.2.4 Operators

Operators can modify wffs, predicates, quantifiers, terms, and even other operators! A number of them
have already been discussed under predicate modifiers and nominalization operators. A number of oper-

CHAPTER 2. EPILOG REPRESENTATION 30

ators are recognized by the system, including the sentential operators nec and poss , predicate modifiers
very, almost, sort-of, plur and coll , nominalization operators K, K1, and To , and the adverb forming
operator ly .

2.2.5 Meaning Postulate and Simplification Schema Syntax

Meaning postulates (MPs), i.e., axiom schemas expressing analytical facts about various operators and
types of predicates (etc), can be used to generate useful input-driven inferences, in a manner entirely
analogous to the use of ordinary axioms. In particular, MPs in the form of conditionals are accessible for
input-chaining via one or two top- level operators in the antecedent. Simplification schemas are axiom
schemas expressing equivalent forms for wffs, and can be used to replace an input wff by its (more useful)
equivalent. They MUST express an equivalence!

Both types of axiom schemas are input using the same syntax as the rest of the system (using com-
mand mp), except that quantification over formulas, predicates, operators, and quantifiers is required.
Additional sorts (pred, wff, operator, quantifier, term , etc) are used. Quantification over non-meta level
entities is only allowed for sorted variables (i.e. over episodes, sets, etc). Quantification over other non
meta-entities must be done inside quasi-quoted expressions. Variables may only be used in place of wffs,
predicates, operators, etc inside a quasi-quoted expression.

(A x wff (A y term (x ** y) (x * y)))
is a meaning postulate stating that “characterizing descriptions” of episodes are also partial descriptions,
(this is just an example - currently the system recognizes this without explicitly storing the inference).

(A x pred (A y operator (y monotonic) (A z (z (y x)) (z x))))
states that a monotonic operator (like very) modifies a predicate without changing its truth value (cur-
rently this “meta” information about predicate, operators, etc, can be entered just like story information -
(meta ’(very monotonic)) - and a meta-specialist is also used to help get the information when necessary).

For some mp’s, it is necessary to match on larger units than simple literals. For example, if we want
an mp to apply to formulas with a particular quantifier, say most ,

(A x wff (A y wff (most z x y) ...))
will have x and y as its trigger keys - that is not what we want! (and also has quantification over a non
meta-entity - z). In such cases, quasi-quoted expressions should be used, in conjunction with the predicate
true . The mp,

(A x wff (A y wff ((qq (Most z x y)) true) ((qq ((E z x) 0.85 y)) true)))
forces the system to match the entire (Most z x y) part to fire the rule. ((qq wff) true) is equivalent to
wff and so can be used whenever desired. The difference between using the two different representations
is the trigger keys that result from them - the quasi-quoted representation gives larger trigger keys. In
the above example, note that the normalization would preserve the fact that the two z ’s are the same
(because they are in quoted formulas). Normally these would be normalized to two different variables.

If the above rule were instead to be used as a simplification schema,

(A x wff (A y wff (((qq (Most z x y)) true) <=> ((qq ((E z x) 0.85 y)) true))))
any formula of the form (Most x ...) would be REPLACED by the equivalent form ((E x ..) 0.85 ...) .

CHAPTER 2. EPILOG REPRESENTATION 31

2.3 Adding New Syntactic Entities

2.3.1 Adding New Predicates

New predicates may be defined by adding them to a type or part hierarchy (which makes them type
predicates), adding them to predicate hierarchy, adding topic indicators to the predicate names, or adding
a new specialist which handles the predicates. However, the system will also ”assume” that a new object
it finds where it expects a predicate is a predicate.

(add-predicate &key type part hier subnodes parent hier-type indicators part-type package
entry-rtn) [function]

Purpose: adds a new predicate.

Syntax: If type is t , this will be a type predicate. To be a type predicate it must be on a type hierarchy.
You may specify the hierarchy name with hier , parent node with parent and subnodes with subnodes
, and even give the hierarchy type with hier-type . If they are not specified, a new hierarchy will
be invented for the predicate automatically. It is usually easier to add type hierarchies using the
add-hier command (described a little later in the manual), but this serves to add type predicates
quickly and easily for testing. For type predicates which are also sorts, sort should be set to the sort
so that automatic sort addition can be done to entities declared to be of that type. Part predicates
are specified when part is t. A small hierarchy is built for these predicates as is done for the type
predicates. Part-type predicates (exist on both a part and a type hierarchy) may be specified by
setting part-type to t , although the system usually can calculate and set this itself.

Topic indicators may be added here, or through the command add-indicate . Specialists is a list
of specialists interested in the predicate. The specialists are usually added during activation of a
specialist, so this will rarely be needed by a user.

For externally defined routines to be accessed through the ”other” specialist, a package to find the
evaluation routine should be specified. If there is in addition an entry routine to save information
using this predicate, entry-rtn should also be specified.

Examples:

(add-predicate ’pillow :type t)

simply adds a type predicate pillow , without adding any connections for it (other than to entity).
This is useful for on the fly testing when there isn’t time to bother with deciding where something
should go on which hierarchy.

(add-predicate ’next-to :package ’space :entry-rtn ’space::set-next)

would add the predicate next-to , which would be evaluated and stored by an external routine in
the space package.

2.3.2 Adding New Functions

Functions must be added before they are used. EPILOG will not ”guess” that they are functions.

(add-function fnname &key rel-pred sort specialists package) [function]

Purpose: Adds a new function.

CHAPTER 2. EPILOG REPRESENTATION 32

Syntax: fnname . The keys are all optional. If this function may be evaluated by an external routine
(through the ”other” specialist), the package the other routine lives in should be specified in package
. Specialists is a list of the specialists that are interested in the function. Rel-pred is the predicate
this function can be transformed to if necessary during flattening for specialists. Sort indicates the
sort of the object resulting when the function is applied.

Examples:

(add-function ’time-of)

just adds time-of as a function. This is probably all that most users will need, as specialists usually
add the functions themselves.

(add-function ’nearest-neighbors :package ’space)
adds the function nearest-neighbors , which would be evaluated using the external routine space::nearest-
neighbors .

2.3.3 Adding New Operators

A user may desire more operators, and this section describes how to add them. To allow the system to
interpret the new operators correctly as operators and to know what kinds of arguments should follow
an operator, some additional commands have been set up. New operators MUST be defined as operators
- the system cannot ”guess” that they are operators.

To add operators, the following commands will be useful:

(add-operator operator &key op-type result-type arg-types indicators specialists) [function]

Syntax: operator is the name of the new operator, and either the type of operator op-type , or the resulting
type result-type and the types of the arguments arg-types must be specified. Types which may be
used are pred , operator , wff , and term (all as defined in the syntax summary), as well as any
predefined or user defined operator types. Predifined operator types are: pred-op (makes a pred out
of a pred), term-op (makes a term out of a term , and wff-op , makes a wff out of a wff). Indicators
is a list of topic indicators for this operator. Unless these are specified, the operator will generally
be ignored in the classification phase of the system. This works well for operators like very , but
operators like make are probably important enough that they should have special classifications (so
indicators should be specified for them). Specialists is a list of interested specialists - unless you are
adding a new specialist do not include this field!

Examples:

(add-operator ’nec :op-type ’wff-op)

adds the necessity operator, which is a wff-op , where wff-op is a predefined operator type with result
wff and argument type wff .

(add-operator ’K :result-type ’term :arg-types ’pred)
adds the kind operator K , which takes a predicate and makes it into a term .

Remarks: This does not allow the definition of operators which might take more than one different type
of argument, or which require several arguments of different types. In addition, the number of
arguments cannot be specified, so if too many are given the syntax checker will not be able to warn
the user. Predefined operator definitions are in the file epi/epilib/objects.lisp .

CHAPTER 2. EPILOG REPRESENTATION 33

(add-operator-type op-type &key result-type arg-types) [function]

Purpose: adds a new operator type.

Syntax: Operators defined to be of this type create objects of type result-type , and accept arguments of
type arg-types . This can be used to simplify definitions for operators if there are a large number
which take the same type of arguments and return the same type of result.

Examples:

(add-operator-type ’wff-op :result-type ’wff :arg-types ’wff)

2.3.4 Adding New Sorts

New specialists may find that inventing a new sort for their domain is useful. To do so:

(add-sort sort &key nicknames) [function]

Syntax: nicknames is a list of other possible names for sort . These are usually shorter than sort . The
first nickname is taken as the short form for the sort and will be used in building variable and
constant names for entities of that sort.

Examples:

(add-sort ’episode :nicknames ’(ep event))

2.3.5 Adding New Quantifiers

Although most of the quantifiers imaginable are already recognized by the system, it is possible that
there are more one might want to add. These must be added before using them. Note - the average user
will never need to use this! Most of the quantifiers one could ever need are already there!

(add-quantifier quant &key prob negation distributive) [function]

Purpose: adds a new quantifier quant .

Syntax: If applied as part of a rule, prob is included in the probability calculations of the result. If prob
is not specified, 1 is used. Negation is a lambda expression denoting how to negate an expression
involving the quantifier. Distributive is t if the quantifier is distributive.

Examples:

(add-quantifier ’most :prob 0.8)

(add-quantifier ’WH :prob 1)

2.4 Probabilities

Each proposition has a probability associated with it that is the lower subjective probability of that
proposition. Input formulas will all have probability 1, but inferred formulas will have a probability
that is a combination of the probabilities of all the formulas used to make the inference, and the rule’s
probability. For example, if we infer (lrrh pretty) from the input fact

CHAPTER 2. EPILOG REPRESENTATION 34

(lrrh girl)
and the input rule

((E x (x girl)) 0.7 (x pretty))
(lrrh pretty) will have probability 0.7.

If it is desirable that an input formula have a probability less than 1, it should be input as ’(YES
number wff) . This will be normalized to wff with probability number .

If an existentially quantified formula is inferred, the probability of the restriction will be 1, and the
probability of the main clause will be based on the rules and wffs used to infer it. This is because restric-
tions generally contain type and time relationship information which is considered “presuppositional”.
For example,

((E x (x girl)) 0.7 (E y (y building) (E z ep ((x live-in y) ** z))))
applied to

(lrrh girl)
would yield

(c1 building)
with probability 1, and

((lrrh live-in c1) ** ep-c2)
with probability 0.7.

Sometimes the same formula (or its negation) can be inferred using several different paths. In such
cases we would like to combine the various pieces of evidence and recalculate the probability of the formula.
Currently the system can combine several answers during the question answering phase, and determine
the resulting answer and probability, but this has not been extrapolated to input driven inference yet.
There are still some problems with ordering of the evidence, as well as using the combined probabilities
later on in future calculations. These should be resolved soon.

In addition to the numeric probability stored with each formula, a support-set is also associated with
it, which is a list of the formulas whose probabilities need to be taken into account when inferring a new
formula from this one. For an input formula, the support-set is the formula’s probability. If a formula
is split into several wffs, a special probability atom is created to hold the probability before the split,
and this atom is in the support-sets of the new formulas. Otherwise the support-set consists of given or
conjunctive wff-names, and objective probabilities used in inferring the proposition.

This ensures that we do not include the same subjective probability of a proposition more than once
in a calculation (although the objective probabilities should be included for as many times as the rule is
actually applied).

One of the recent improvements to the system was to allow it to combine several pieces of supporting or
contradictory evidence. There are some problems still in determining exactly what should and shouldn’t
be combined, which may lead to supporting combinations where only one should be selected (probabilities
a bit high). The probability produced in combination seems accurate, but the support set information is
not currently being dealt with properly. This means that later uses of the combined formula may result
in inaccurate probabilities (too low). So far our examples have not required much adjudication so the
magnitude of the discrepencies is not known. We are currently working on this.

Chapter 3

Assertions and Other Input

To get information into the system, it must be asserted. There are several kinds of information the
system works with. Formulas use the syntax described in an earlier chapter, and may be story facts,
general knowledge rules, meaning postulate axiom schemas, simplification schemas, or facts about specific
predicates and other meta-level objects.

Other input to the system, in particular the hierarchies, must be input using special commands.
Someday the system may be smart enough to automatically build the hierarchies based on input rules,
but for now they must be built manually.

3.1 Types, Parts and Topics

3.1.1 Hierarchies

EPILOG needs to know some information about the predicates used in formulas in order to topically
classify them properly. Predicates are broadly divided into type and non-type predicates, where types
are treated specially by classification (both the main and topical classifications). A type predicate is
any predicate that exists on a type hierarchy. These predicates are monadic - they take one argument,
Predicates which should be placed on type hierarchies are basic kinds - nouns like thing, wolf, human,
chair , etc. Monadic predicates which should NOT be on type hierarchies include adjectives such as
pretty , happy , red , etc.

In addition to providing the type distinction, the hierarchies are also ”climbed” in order to find other
applicable rules for a fact (e.g. girls are humans, so any rule applying to humans also applies to girls),
or descended to find more specific facts or individuals for a rule (e.g. if we are looking for a creature, a
wolf will do nicely). The hierarchies are also used by the type-specialist (to be discussed later) to quickly
determine relations between type predicates.

A fixed type hierarchy is automatically loaded when the system starts up, and contains the sort
hierarchy, as well as an entity hierarchy. In addition to these, a set of optional type hierarchies is
included, in the file eg.hier . New hierarchies or extra entries for the given hierarchies are easily added
using the add-hier command.

The type hierarchies used by EPILOG are similar to those used by ECoNet , with some extensions.
Each hierarchy has a name, a root, and some properties associated with it. The root and hierarchy
name are usually the same, but need not be, especially if it is desirable to have the same root broken

35

CHAPTER 3. ASSERTIONS AND OTHER INPUT 36

down in several different ways (giving different hierarchies). Any number of type hierarchies may exist
at one time. Each is treated independently, unless there are identical predicates in more than one. These
”connections” can then be used to determine relationships between predicates on different hierarchies
when possible. A particular type predicate may be broken down in any number of ways, with the root
node being the same and a different hierarchy name for each breakdown.

Another property of the hierarchies indicates whether a type hierarchy or a non-type predicate hi-
erarchy - type hierarchy is the default. Predicates on these other hierarchies have no special properties
(unlike the type predicates) other than fast determination of relations between them by virtue of being
on a hierarchy. They are useful when a number of predicates are special cases of some other predicate -
for example, there are a number of different actions that could be considered ”repairing”.

The type hierarchies are used both for organization of input facts and rules (the type hierarchies in
particular), and for fast determination of relations between predicates on them. A preorder numbering
scheme is used to number the nodes on the hierarchy so that relationships between nodes in the same
hierarchy can be determined in constant time. The numbering is done in a depth first manner, with each
node containing an id number of its own, and the maximum id of any subnode beneath it. A comparison
between these numbers indicates whether a subsumption or disjointedness relation holds between nodes.
One property of the hierarchies decides the relation between sibling nodes. On an exclusion hierarchy, all
sibling nodes considered disjoing, and so are incompatible. In overlap hierarchies, the relation between
sibling nodes is unknown. Inference using rules must be used to determine the relation between sibling
nodes. Only subsumption relations may be determined on such hierarchies. All hierarchies are considered
exclusion unless the function set-hier-type is used to indicate otherwise.

Part hierarchies also exist in the system. Each level of the hierarchy indicates a breakdown into
component parts. Tangling of part and type hierarchies is allowed and seems to give the intuitively
correct responses by the system. These are much like type hierarchies - parts are also types - but are not
”climbed”. The part specialist also uses these hierarchies. The usefulness of these hierarchies is currently
limited by the fact that we cannot yet represent exhaustiveness in the hierarchies, so we cannot say that
”Little Red Riding Hood does not have a tail” based soley on information in the hierarchies.

Consistency testing is optionally done on entries to the hierarchies and can detect loops and other
irritations (set *specialist-entry-effort* to something greater than 0). Full consistency testing for
tangled hierarchies os co-NP-complete, but the checks done here will catch most errors. This is strongly
recommended for new hierarchies and testing. For hierarchies that are used on an everyday basis and
not changed often, you should tweak the flag to 0 so that the hierarchy will load faster, but remember to
tweak it back after!

Hierarchies may be exhaustive or non-exhaustive. Part hierarchies are assumed to be exhaustive
unless otherwise indicated; type hierarchies are assumed non-exhaustive unless otherwise indicated. Ex-
haustiveness is implemented at a hierarchy level, not on a node by node basis, so if a particular node
in an exhaustive hierarchy is not exhaustively subdivided, a remainder subnode should be added for
it. A remainder subnode is assumed to be one which ends in -remainder, -other , or -rest . Currently
exhaustiveness on part hierarchies is used in conjunction with a set of familiar parts to determine when
a particular type of part cannot belong to a particular type of entity. Exhaustiveness on type hierarchies
is currently not being used.

Sample type hierarchies and a sample topic hierarchy are located in file eg.hier in the test-files direc-
tory.

(add-hier hier-name parent-node child-nodes) [function]

CHAPTER 3. ASSERTIONS AND OTHER INPUT 37

Purpose: Creates and adds to type/topic/predicate hierarchies.

Syntax: Adds to hierarchy named hier-name . If this hierarchy did not previously exist, parent-node is
made the root. Each node in child-nodes is added under parent-node .

Examples:

(add-hier ’thing ’creature ’animal ’human)

(add-hier ’explode ’explode ’blow-up ’go-boom)

Remarks: If a non-type predicate hierarchy is desired, use (set-hier-type hier-name ’pred-hier) before
any add-hier commands.If *specialist-entry-effort* is set > 0, the new entries are checked for
consistency before adding to the hierarchy. The hierarchy name and root node may be the same,
but hierarchy names must be unique, while root nodes do not have to be.

(set-hier-type hier-name type) [function]

Purpose: Indicates various hierarchy properties, including whether hierarchy is exclusion or overlap,
exhaustive or non-exhaustive, part hierarchy types (form, function, state) or whether the hierarchy
is a non-type hierarchy (pred-hier). By default, all hierarchies are exclusion; part hierarchies are
exhaustive and type hierarchies are non-exhaustive; part hierarchies are of type form.

Syntax: type is one of overlap, exclusion, exhaustive, non-exhaustive, form, function, state , or
pred-hier . Form, function , and state are elements on the tweakable parameter *part-hierarchy-
types* . If the user wishes, he may add to this list. The only requirement is that some consistency
be maintained in adding the types to the part hierarchies.

Examples:

(set-hier-type ’occupation ’overlap)

(set-hier-type ’explode ’pred-hier)

(set-hier-type ’animal-parts ’non-exhaustive)

(set-hier-type ’human-parts2 ’function)

(add-part-hier hier-name parent-node child-nodes-with-bounds) [function]

Purpose: Creates and adds to part hierarchies.

Syntax: Each child node must be in the form (node bound) or node . If no bound is given, exactly 1 is
assumed. Bounds should be in the form number (for exactly that number of parts), or (min max) ,
where max may be nil if unlimited. If the node is a remainder node (i.e. ends in -other, -remainder,
-rest), bounds of 0 to infinity will be automatically added for it if none are specified by the user.

Examples:

(add-part-hier ’human-parts ’body ’(leg 2) ’(arm 2) ’trunk)

(add-part-hier ’human-parts ’mouth ’tongue ’(tooth (0 32)))

To print a hierarchy, use the display command with topic hier , and the names of the hierarchies
to be printed (e.g. (display ’hier ’entity ’-f)). If you specify -full or -f , the entire hierarchy will be

CHAPTER 3. ASSERTIONS AND OTHER INPUT 38

displayed, recursively; otherwise only its properties and connections will be shown. If no hierarchies are
specified, they all will be printed.

3.1.2 Topic Indicators

One part of the classification process requires ”topics”. Topics are considered to be those items which
exist on a special hierarchy called tp.topics . During topical classification, predicates are expected to
supply a list of topics to use. To do this, predicates contain a list of indicators, which consist of either a
topic, or a topic and particular argument positions (so the classification of a formula may have different
topics for each argument in the formula). For example, the predicate eat indicates topic tp.feeding for
the subject argument (the eater), and tp.existence for the object argument (the thing being eaten). This
causes

(wolf1 eat lrrh)
to get classified under (wolf1 tp.feeding) , and (lrrh tp.existence) . Classification will be discussed more
later. The predicate before has an indicator of tp.time-relationship , with no argument numbers supplied,
so all arguments will be classified with the same topic. If no indicators are associated with a predicate,
a warning will be printed, and the default topic tp.unknown will be used for all arguments.

The topic hierarchy contains some topics which the system expects to be there. These special entries
are:

tp.type - types of individuals classified here

tp.spec - instances of types classified here

tp.content - formulas involving classified here

tp.description - episodic formulas involving **, * and @ classified here

tp.mental-attitude - modal subnets classified here

tp.role - parts and roles classified here

tp.mental-attitude-object - modal propositions about facts

tp.unknown - new predicates with no information are stored here

To add additional topics (never remove the given ones!), use the add-hier command described in the
previous section. (The file eg.hier also contains a sample topic hierarchy).

The rest of this section describes commands which can be used to add the topic indicators to predi-
cates. The file eg.indicate in directory test-files contains a sample of indicator links.

(add-topic topic predicate-list) [function]

Purpose: Adds indicator links to predicates for a topic

Syntax: predicate-list consists of a list of predicates, optionally followed with a role. An indicator link to
topic is added to each predicate in predicate-list .

Examples:

CHAPTER 3. ASSERTIONS AND OTHER INPUT 39

(add-topic ’tp.emotional-giver ’love ’subject ’kiss ’subject)

Remarks: (Note - previously this worked with argument numbers instead of roles - this is still supported).
Indicators may be added to operators in the same way.

(add-indicate predicate indicator-list) [function]

Purpose: Adds indicator links for topics to a predicate

Syntax: Each entry in indicator-list is either a topic, or a list consisting of a topic and an argument role.
An indicator link is added to predicate for each entry in indicator-list .

Examples”

(add-indicate ’try ’(tp.experimenter subject) ’(tp.experiment object))

Remarks: (Note - previously this worked with argument numbers instead of roles - this is still supported).
Indicators may be added to operators in the same way.

To display the topic indicators, and other information about a predicate, use the display command
with topic ’pred - for example (display ’pred ’eat) . The -full and -brief options have no effect.

3.2 The Assertion Process

When a formula is entered, negations are distributed, top level conjuncts split, and skolemization is done
for top level existentially quantified variables. The resulting wff (or wffs if it has been split) is (are) then
normalized. After normalization, simplification schemas may operate on the formula, replacing it by an
equivalent form, which then goes through the entire normalization procedure again. Then the resulting
formula is tested for consistency and simplified, and finally stored under the appropriate classifications.
(Thus, when a formula - fact or rule - is loaded, one may notice that it is in a slightly different form from
the one given by the user.) Story sentences are also stored in a special array *input-array* which will
eventually be used for narrative inference.

For story facts and knowledge rules, EPILOG makes input-driven inferences from world knowledge,
and semantic discourse knowledge. World knowledge may take the form of either a universal implication
or a generic conditional. Semantic knowledge consists of meaning postulates, i.e. necessary universal
axioms or axiom schemas. (For input-driven inference, the necessity operator can be ignored). Meaning
postulates are always applied when appropriate, but inference with other kinds of knowledge may be
controlled by a number of parameters. These parameters control whether or not forward inference is even
attemted (*story-forward* , and *rule-forward*), as well as when an inference chain is terminated
(*interest-threshold* , etc). These parameters and the processes they affect will be described in more
detail shortly.

3.2.1 Asserting Formulas

Use knowledge to load general knowledge, such as rules, story to load specific story facts, goal-
knowledge to load rules which should be used only during question answering, meaning-postulate
to load meaning postulate axiom schemas, simplification-schema to load simplification schemas, and
meta to load assertions about meta-level objects, such as predicates.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 40

The formulas loaded should all conform to the logical syntax described in Chapter 2. Formulas entered
using knowledge , story or goal-knowledge may not contain quantification over meta-level entities,
such as predicates, or have predicates or operators as terms. Formulas entered using meta may not con-
tain quantification over meta level entities either, but may make assertions about predicates and operators
where they are used as terms. Formulas entered using meaning-postulate or simplification-schema
MUST contain quantification over meta-level variables. Any other quantification must be contained
within a quasi-quoted expression. Use of variables in predicate, wff, or operator position must be done
within quasi-quoted expressions as well.

Load all hierarchy and topic indicator information before story and world knowledge. Additional
hierarchy and indicator information may be added at any time, but the system will not reclassify what
is already there. Any predicates should be either on a type hierarchy or have indicator links associated
with them before being used - if these are not present, the system will print a warning, and assume the
topic tp.unknown .

When asserting story facts, always assert the type of an entity first. This will ensure that applicable
rules all fire when subsequent data is entered.

(knowledge &rest formulas) [function]

Purpose: Loads linguistic or world knowledge.

Examples:

(knowledge ’(A x (x wolf) (x predator)) ’(A x (x child) (x person)))

Remarks: Knowledge can be abbreviated to kn.

(goal-knowledge &rest formulas) [function]

Purpose: Loads linguistic or world knowledge which is to be used only for goal chaining, not for input
driven inference.

Examples:

(goal-knowledge ’(A x (x human) (E y (y man) (y father-of x))))

Remarks: Goal-knowledge can be abbreviated to goal-kn or gkn . The only difference between goal-
kn and kn is that formulae entered through goal − kn are not used during input-driven inference.

(story &rest formulas) [function]

Purpose: Loads story sentences.

Examples:

(story ’(LRRH girl) ’(E x1 (x1 wolf) (x1 bad)))

Remarks: The system performs input-driven inferences as story sentences are loaded. To see inferences
that are being made, make sure you are tracing forward (or entry). Input driven inferencing

CHAPTER 3. ASSERTIONS AND OTHER INPUT 41

continues until the inference made is not interesting (product of probability and interest is less than
interest-threshold).

The only difference between story and kn is that formulae entered through story are also kept in an
input array. This array is not currently used for anything except display purposes, but could possibly be
used in inference merging later.

(meaning-postulate &rest formulas) [function]

Purpose: Loads schematic meaning postulates.

Examples:

(mp ’(A x pred (A y term ((qq (y (almost x))) true) ((qq (not y x)) true))) ’(A x wff (A y wff (A
z term ((qq ((x and y) * z)) true) ((qq ((x * z) and (y * z))) true)))))

Remarks: Meaning − postulate can be abbreviated to mp.

(simplification-schema &rest formulas) [function]

Purpose: Loads simplification schemas.

Examples:

(simp-schema ’(A x wff (A y wff (((qq (most z x y)) true) <=> ((qq ((E z x) 0.85 y)) true)))))

Remarks: Simplification− schema can be abbreviated to simp− schema or ss. The difference between
ss and mp is that ss inferences REPLACE the original formula, where mp inferences are added in
addition to the original formula. SS formulas are also required to be equivalences.

(meta &rest formulas) [function]

Purpose: Loads meta information to be used during meaning postulate inference.

Examples:

(meta ’(kill action-pred))

Remarks: This is similar to story except that additional flexibility is allowed in the sysntax (i.e. having
predicates as arguments), and no forward inferencing is done.

3.2.2 Re-asserting Formulas

Sometimes it is interesting to reassert a formula to see inferences can be made, especially if some new
information has just been added.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 42

(reassert phi-name) [function]

Purpose: To reassert a given formula so that input-driven inferencing can be tried again for it.

Examples:

(reassert ’wff1)

Remarks: The formula is not stored again, in either the knowledge base or specialist domains, nor is
classification recomputed. If the formula is not found, nil is returned. Only input-driven inferences
are affected. This is useful when new rules have been added after story information (and *rule-
forward* is not on), or when type information for an entity is added after other information. For
a single entity, this can be used in the following manner:

(mapcar ’reassert (retrieve ’entity))

where retrieve can get all information (as it would here), or only a specific topic, or to redo the
entire knowledge base:

(mapcar ’reassert (get-everything))

3.3 Normalization

When a wff is asserted, inferred, or questioned, it first goes through a normalization process. This
process transforms the given list form of the formula into an atom which contains all the information as
properties. Each subpart is also an atom containing all its information as properties. In addition, operator
distribution is done, skolemization is done if applicable, variable names are standardized, sorts are stripped
off terms, and the wff is split into several wffs if applicable (for conjunctive wffs and conjunctive episodic
wffs). For example,

((lrrh girl) and (lrrh pretty))
would be split into separate wffs

(lrrh girl)

(lrrh pretty)
and

((lrrh meet wolf1) and (wolf1 meet lrrh)) * e1)
would be split into

((lrrh meet wolf1) * e1)

((wolf1 meet lrrh) * e1)
(the latter case can now be handled by meaning postulates, but currently is still being handled by the
normalization phase).

In addition, simplification is done to eliminate any YES or NO atoms in the formula. Formulas with
patterns ((qq wff) true) or ((that wff) true) are normalized to wff (at the top level). This enables more
complex meaning postulates to be written, and the resulting inference will be normalized to the expected
result.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 43

During the normalization process, the formula and each subpart are made into atoms. These atoms
are kept in a hash table, hashing on the longer list version of the item. Whenever we normalize a new
item, we check to see if we have done that subpart before, and if so, can immediately return the atom
corresponding to it. If not, a new atom is created, and the relevant properties added. The hash table is
checkpointed and retracted with the rest of the system.

The parts of a disjunction or conjunction, at whatever level of embedding they occur, are always
ordered in a consistent manner to facilitate looking them up however they are specified. This means that
((wolf1 grey) or (wolf1 black)) will be identical to ((wolf1 black) or (wolf1 grey)) .

A note about skolemization: Since an existentially quantified variable can occur outside the scope of
the quantifier, the user should keep track of the variable names introduced with an existential quantifier.
This problem will disappear once a logical translator is written.

Top level episodic formulas with an embedded conjunction are currently split (e.g . (((lrrh smile) and
(lrrh happy)) ** e1) is split into ((lrrh smile) * e1) and ((lrrh happy) * e1)). For the average user this
is desirable (and so the default is to split), but the original formula is lost, and in some instances this is
not desirable. A tweakable flag controls whether or not this is done - *split-episodic* . If this flag is
turned off, the splitting is not done automatically. A meaning postulate

(A x wff (A y wff (A z ep ((qq ((x and y) * z)) true) ((qq ((x * z) and (y * z))) true))))
should be added to do it. Then you’ll have the original and split formulas.

The normalization process also checks to ensure that all quantified variables in meaning postulate
and simplification schemas are meta-variables - i.e. have a meta sort on them (term, wff, pred , etc). In
addition, simplification schemas must be equivalences.

3.3.1 Controlling Normalization

Trace values which show the normalization process:

lambda - shows lambda conversion

norm - shows normalization

Tweakable parameters which can affect normalization:

stop-if-error
indicates whether the system should pause and wait for the user to press return when an error is
detected in the syntax of an input formula. The default for this is t - stop and wait. If lisp is not
being run interactively, the system will determine this and set the flag off when it starts up.

quoted-indicators
a list of symbols which indicate that what follows is a quoted list for EPILOG. This is initially set
to be just the lisp quote symbol (’) .

name-symbol
the symbol which indicates that the next item following is to be used as a name for the preceeding
structure. Initially this is set to ! .

CHAPTER 3. ASSERTIONS AND OTHER INPUT 44

expand-names
indicates whether or not named symbols (using the symbol above) should be expanded when printed.
This is initially set to t. Note, if you change this, it will not affect the printing of formulas already
input, only new ones.

split-episodic
indicates whether or not top level episodic formulas with embedded conjuntions should be auto-
matically split. The default is t - split them. If this is turned off, a meaning postulate should be
entered to make the split inference, as follows

(A x wff (A y wff (A z ep (’((x and y) * z) true) (’((x * z) and (y * z)) true))))

check-pred-parts
when a new predicate is input which can be split into several parts (between -),this flag indicates
that both parts must exist as predicates on their own to make this a ”compound” predicate, in
which case it will inherit properties from the last part. Otherwise only the last part is checked (the
default - nil)

The application of simplification schemas uses exactly the same inference procedure as the meaning
postulate inference (to be described shortly) with the exception that the inference REPLACES the original
formula rather than augments the knowledge base. This means exactly one simplification schema can
operate on a formula. Simplification schemas are applied recursively to the resulting formula, until no
more are applicable. No schema can apply more than once.

Although the simplification schemas are equivalences, they are applied in one direction only - as if
they were implications. Their usual role is to transform a less preferable input form into a more preferable
input form. If a less preferable form is entered, it will be transformed into the more preferable one, but
we don’t want the reverse taking place! When using them, expect them to be applied like implications,
but make sure that they are entered as equivalences or the system will complain.

3.3.2 Controlling Simplification Schema Application

Trace values which show when simplification schemas replace a formula:

simplification-schema - shows original and new unnormalized form

Note that application of these schemas can be traced by tracing the same values that are available
for watching meaning postulate inference.

3.4 Classification

Formulas are classified to figure out where to store them so that they are most accessible for later use.
The classification is also used as a starting point to find rules, meaning postulates and other facts which
might be applicable to a given formula. Two different classifications are used for story facts and general
rules: one which is based on the arguments of a formula, and the predicate itself (the main classification),
and another based on the arguments and a topic suggested by the predicate (the topical classification).
Both classifications are required, as the main classification gives the fastest access for inference, and the
topical classification groups the formulas together in a logical manner for display and partial answers.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 45

For example, if someone asks ”Does John love Mary?”, in the absence of other information, we might
answer ”Well, he admires her.” Meaning postulates are classified a little differently and will be described
shortly.

Classification uses simple lists as indices. The main classification is of the form:

(concept predicate role)
or

(concept specialist-name)

Topical classification is of the form:

(concept topic)
The parts of the classification lists will be described in more detail shortly. For example, (lrrh pretty)
would be classified under

(lrrh pretty subject)
for the main classification, and under

(lrrh tp.appearance)
for the topical classification.

((wolf1 eat lrrh) ** e1) would be classified under

(lrrh eat object)

(wolf1 eat subject)

(e1 episode-specialist)
for the main classification, and

(wolf1 tp.feeding)

(lrrh tp.existence)

(e1 tp.description)
for the topical classification.

These classification lists are used to index into a hash table. Each entry in the hash table is either a
list of proposition names, or another hash table (for subnets). Subnets will be described later.

The classification phase has several parts to it - first type information for variables is temporarily saved,
keys and trigger keys are determined, and then the main classification is calculated. This classification
is then used to get the topical classification as well.

Type predicates are used with predicates to classify rules, so that rules which have no chance of
succeeding because of type clashes are not tested (there is no point in looking at a rule which applies to
foxes meeting rabbits when Little Red Riding Hood meets the wolf!). If an rule argument (variable) has
no type available, entity is used. If the input is translated from English, we should always have a type
available, since it is usually included in the sentence. For example: ”anyTHING that is in someTHING
is smaller than it” or ”If someTHING is in someTHING, it is smaller than it”. In EPILOG this would
be

(A x ((x thing) and (E y (y thing) (E z ((x in y) * z)))) (x smaller-than y))
or

((E x (x thing) (E y (y thing) (E z ((x in y) * z)))) implies (x smaller-than y))
and would be classified under

CHAPTER 3. ASSERTIONS AND OTHER INPUT 46

(thing smaller-than subject)

(thing smaller-than object)
and also topically classified under

(thing tp.size-to)

(thing tp.size-from)

Type predications in EPILOG are classified under

(individual type-specialist)
for individual constants, as well as under (pred) for positive type predications. For example, (wolf1 wolf)
would be classified and stored under (wolf1 type-specialist) and (wolf) . This allows the system to find
all instances of a particular type easily.

Functions are classified as if they were formulas - using the function name (or specialist name) and the
arguments. For example, ((cardinality-of set-c1) greater-than 3) will get classified under

(set-c1 set-specialist)

Most operators are treated as modifiers, and so are ignored for the classification. However, operators
with indicators attached are treated as important, and are used like predicates in the classification.

Within each classification, wffs are further organized in order of increasing complexity, and decreas-
ing probability. Complexity is calculated based on the number of literals, and the type of arguments
(constants or variables). This is initally set so that each literal has a base complexity, to which is added
the complexity of its arguments (where constants are considered to have higher complexity than vari-
ables). This calculation may be changed by tweaking the parameters *literal-complexity* , *variable-
complexity* , *constant-complexity* , and *function-complexity* .

There are no topic access skeletons (which were used in ECoNet) - instead,if you wish to know
everything about a particular individual, you must hash on each pair consisting of that individual and a
topic (using the topically organized table instead of the main one) - the routine retrieve (or display-
concept) does this for you. The topic access skeletons no longer serve a useful function (except in that
one case), and do take up a lot of storage. (display individual) will give the topically indexed facts
about an individual.

3.4.1 Key Selection

Before the classification itself is done, the trigger keys for the formula are determined. For an input
fact, the trigger key is the fact itself; for a conditional statement, there will be at least two trigger keys
(one from the antecedent, one from the consequent), and these are what must be matched to trigger the
rule for both input-driven or goal-directed reasoning. Only the trigger keys will be classified, and the
classification of these keys is the classification used for the whole formula.

First the positive (consequent) and negative (antecedent) keys of the rule are determined - this is
done so that each variable is represented at least once, but no more often than necessary, and episodic
keys are preferred to non-episodic keys. These lists are then checked to find the trigger keys. The trigger
keys are determined based on their interest values - the most interesting key from the negative keys is
chosen, and the most interesting from the positive keys. If several keys are ”tied” for most interesting,
or if their interest is above a threshold value (*key-threshold*), they will all be trigger keys.

For example, the rule ”Any physical-object which is in a location when a bomb explodes near that
location is probably destroyed”

CHAPTER 3. ASSERTIONS AND OTHER INPUT 47

((E x1 (x1 location)

(E x2 (x2 physical-object)

(E e1 ((x2 in x1) ** e1)

(E e2 ((e2 during e1) and (e2 occurred-near x1))

(E x3 (x3 bomb) ((x3 explode) ** e2))))))

0.9 (E e3 ((e3 episode) and (e2 cause-of e3))

((x2 destroyed) ** e3)))

has many positive and negative keys. The negative keys (which make the rule fire on input story facts)
are:

(x1 location), (x2 physical-object), ((x2 in x1) ** e1), (e2 during e1),

(e2 occurred-near x1), (x3 bomb) , and ((x3 explode) ** e2).

Clearly we don’t want this rule to fire every time it encounters a physical-object, or a temporal
relation, or a location! The negative keys selected here as appropriate and most interesting are: (e2
occurred-near x1) and ((x3 explode) ** e2) . Both of these keys are required because there is no way to
guarantee order of input. These will become the ”trigger” keys, and the rule will be classified according
to the classifications of those keys. Type information is extracted from the rest of the rule first to fill in
the classification. Similarly, the positive ”trigger” keys will be (e2 cause-of e3) and ((x2 destroyed) **
e3) .

Selection of keys can be changed by modifying the interest levels of predicates, and also by changing
the key interest threshold (*key-threshold*). Any key which has an interest level above this threshold
will automatically be included, regardless of other considerations.

If the *forward-full* flag is tweaked on, the *key-threshold* flag MUST be tweaked to 0. Other-
wise only specific keys will be selected as triggers, and since partial instantiations are not allowed, some
desirable forward inferences may not be made.

Formulas involving the predicate true have as keys the first argument, which is usually a quasi-quoted
formula. The quasi-quoted formula is itself the key - it is not split into smaller literals.

3.4.2 Main Classification

Classification of formulas is done to store new ones, and to look up existing ones which can be compared
against a given formula, either for input driven or goal directed inference. Formulas are classified using
lists of the following form:

(concept predicate role)
or

(concept specialist-name)
where a concept is either an individual constant or a type predicate, and role is one of subject, object,
iobj . If the predicate has specialists associated with it, the second form is used; otherwise the first
form is. This allows that formula to be retrieved and then compared with other formulas that particular
specialist is interested in (because specialists allow formulas with different predicates to be compared).
If the predicate is a non-type predicate, and is on a hierarchy, the root of the hierarchy is used instead of

CHAPTER 3. ASSERTIONS AND OTHER INPUT 48

the predicate itself (or the specialist). These hierarchies are generally not tangled, and define a class of
predicates (like different types of repair). The roles are automatically assigned by the system, as follows:
The first argument is always has role subject . If there are exactly two arguments, the second one is object
, otherwise the second one is iobj and all others are object.

General knowledge will usually be classfied under (type-pred predicate subject) indices, while specific
story information will usually go under (individual predicate subject) indices. For example,

(lrrh small)
will be classified under

(lrrh small subject)
and

(A x (x wolf) (A y (y girl) (A z ep ((x meet y) ** z) ((y in-danger) @ z))))
would be classified under

(wolf meet subject)

(girl meet object)

(girl in-danger subject)

Where operators on predicates are involved, the assumption is made that most are just modifiers,
and so the operator arguments are more important. So (lrrh (very pretty)) will be classified under (lrrh
pretty subject) . However, this is not true in all cases. The system uses the presence of topic indicators
on an operator to tell it that the operator is important. It then combines the operator arguments and
the arguments to the modified predicate to determine the classification. So (john (make juice)) will get
classified under (john make subject) and (juice make object) .

It is important when writing rules to ensure that the types of the arguments are included, since as
the above example shows, they are essential to the classification of the rule. If the types are not included,
”entity” will be assumed. Rules are classified using both the antecedent and the consequent of the rule,
since they may be applied in either the forward or backward direction.

3.4.3 Topical Classification

In addition to the main classification, which is required for inferencing, a topical classification is done, to
use for displaying information, and perhaps later to assist in answering some kinds of wh-questions (such
as What does Little Red Riding Hood look like?). The main classification itself is used to generate the
topical classification. Topical classifications are of the form:

(concept topic)
where a concept is either an individual constant or a type predicate. The concept part comes directly
from the main classifiation, and the predicate and role (or specialist name) are used to determine the
topic. General knowledge will usually be classfied under (type-pred topic) indices, while specific story
information will usually go under (individual topic) indices. For the examples given earlier,

(lrrh pretty)
will be classified under

(lrrh tp.appearance)
and

(A x (x wolf) (A y (y girl) (A z ep ((x meet y) ** z) ((y in-danger) @ z))))

CHAPTER 3. ASSERTIONS AND OTHER INPUT 49

would be classified under

(wolf tp.social)

(girl tp.social)

(girl tp.existence)

3.4.4 Modal Classification

In addition to the simple list classifications, there is another classification method for peoples’ ”mental
worlds”. Each individual has his/her own subnet(s), where all formulas about what he or she believes,
thinks, wishes, etc are kept. For the main classification, there is a subnet for each possible modal
predicate, while in the topical classification, all beliefs, hopes, etc are kept together under the topic
tp.mental-attitude . (Tweakable parameters *modal-topics* and *subnet-topics* contain this in-
formation. Although they are changable, doing so may be dangerous.) Within such a subnet may
be other subnets corresponding to formulas about what a person believes/thinks/wishes another per-
son believes/thinks/wishes. For mental world information in EPILOG , classification is as follows:
Main classification:

((concept1 modal-pred subject) (concept2 modal-pred subject) ... (concept pred role))

Topical classification:

((concept1 tp.mental-attitude) (concept2 tp.mental-attitude) ... (concept topic))
concept1 , concept2 , ... are either individual constants or type predicates, modal-pred is one of believe,
hope, wish, etc , and the last classification is the classification of the proposition that the other concepts
have the attitude about. For example, John believes Joe said Mary kissed Bill. would be classified under:

john believe subject

joe said subject

mary kiss subject
and

john believe subject

joe said subject

bill kiss object
and topically under:

john tp.mental-attitude

joe tp.mental-attitude

mary tp.emotional-giver
and

john tp.mental-attitude

joe tp.mental-attitude

bill tp.emotional-object

The first pair is used in the main hash-table to get the subnet’s hash table, and then the next is used
to index into that hash table, and so on.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 50

3.4.5 Part/Role Classification

One method of handling classification of parts is to put all parts of an individual into a separate subnet.
This appeared promising early on, but as the mechanism to handle parts is still undergoing revision, and
a part specialist has been included in the picture, it is still under evaluation. Until resolved, parts are
not being entered into separate subnets.

However, we can have specific part types. Part hierarchies are actually orthogonal to the type hierar-
chy. Each node in the type hierarchy has a part hierarchy associated with it, but we are not representing
those as yet, as we cannot capture the inheritance. What it amounts to is that for each part, there is a
hierarchy that mirrors the type hierarchy. For example, in the type hierarchy we have creature -> animal
human , and human -> adult minor , etc. For head , we have a corresponding hierarchy creature-head ->
animal-head human-head , and human-head -> adult-head minor-head , etc. Then when we index rules
about heads, we can look under the appropriate one. We would then like to have rules in the knowledge
base to the effect

((E x (x person) (E y (y head) and (y part-of x)))) implies (y person-head))
rather than explicitly typing the head each time. However, in practise, for rules, we need to include that
type so that things are indexed properly. For example, if we wanted a rule that said anyone with a green
head is likely ugly , we would have to phrase it as

((E x (x person) (E y ((y person-head) and (y part-of x)) (y green))) 0.8 (x ugly))
so that the rule is indexed also under (person-head green subject) . Then later if we find an instance of
a person’s head being green, we can find this rule again. This aspect of classification is still undergoing
revisions.

3.4.6 Meaning Postulate and Simplification Schema Classification

Since the axiom schemas used for meaning postulates and simplification schemas are so powerful, we must
be very careful to only use them in restricted circumstances. During input-driven inferencing, they are
applied in the forward direction only, and during goal-driven inference, only in the backward direction.
To manage this, a special form of classification is used for them, which is also a list, but its contents differ
somewhat. The second entry of the list is the top level operator, and the first is either the next level
operator, or the type of object the first one is being applied to. Note that if a quasi-quoted expression
is involved, the contents of it are used to determine the classification. Both antecedent and consequent
keys are used, as, like other rules, meaning postulates may be used in both directions. So

(A x pred (A y term ((qq (y (very x))) true) ((qq (y x)) true)))
would get classified under (pred very) and (term pred) , while

(A x pred (A y operator (y nonmonotonic) (A z term ((qq (z (y x))) true) ((qq (not z x)) true))))
would get classified under (pred operator) , (operator nonmonotonic) , and (term pred) .

(A x wff (A y term ((qq (x ** y)) true) ((qq (x * y)) true)))
would be classified under (wff episode-specialist) (since both * and ** are handled by the episode special-
ist), while

(A x wff (A y wff (A z term ((qq ((x and y) * z)) true) ((qq ((x * z) and (y * z))) true))))
would be classified under (and episode-specialist) and (* and) .

Input formulae are classified in this special way to find applicable meaning postulates to apply, but
are not stored under these classifications. Both the antecedents and consequents are classified, although

CHAPTER 3. ASSERTIONS AND OTHER INPUT 51

the mp’s may only be applied in the forward direction during input-driven inference, and in the backward
direction during goal-driven inference. Also note that there is no topical classification done for mp’s.

3.4.7 Controlling Classification and Storage

The parameters which may be tweaked to affect classification and storage are as follows:

default-indicators
A list of indicators to use for new predicates which do not specify indicators of their own. This
is initially set to (tp.unknown) , but may be changed to something more meaningful to your own
system if you will be entering a large number of predicates which belong to a particular category.

key-threshold
The threshold of interest beyond which all keys will be included in the list of trigger keys for a rule.
These trigger keys are then used to classify the rule, as well as for matching against input formulas.

literal-complexity
The base complexity for each literal in the complexity calculation. This is initially set to 2, but
may be changed using the tweak command.

variable-complexity
The complexity for a variable in the complexity calculation. This is initially set to 0, but may be
changed using the tweak command.

constant-complexity
The complexity for a constant (or record, or quoted expression) in the complexity calculation. This
is initially set to 1, but may be changed using the tweak command.

function-complexity
The complexity for a functional term in the complexity calculation. This is initially set to 2, but
may be changed using the tweak command.

subnet-topics
Topics that indicate separate subnet storage (tp.mental-attitude and tp.role). Note: it may be
dangerous to change this.

useful-nonepisodic-topics
a list of topics which are considered ”important” enough to ensure that literals involving predicates
which indicate these topics should be included in the trigger keys for rules. This is initially set to
(tp.causal-relationship tp.kinship tp.happening tp.location) .

input-array-expansion-size
indicates the increment by which the input array is expanded. This is initially set to 100. Changing
it should not be necessary unless it is known that a huge number of story sentences are to be input.

The trace values which can be used to watch classification:

class - traces start and results of classification

entry-class - traces classifications used to store each wff input to or inferred by the system.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 52

keys - traces selection of trigger keys for rules

memory - traces expansion of input array

3.5 Consistency Testing and Simplification

Upon assertion, the input formula is tested to see if it is already true, or contradicts known information.
How hard it tries to determine this can be decided by the user - it can just do a simple lookup or
evaluation, a simple backchaining attempt, or a full blown proof by contradiction. (The default is lookup
and specialist evaluation)

If the formula already exists, or a contradiction is found, adjudication is necessary to combine the
different pieces of evidence. If the new formula contradicts previous information, the higher probability
will be adjusted up, and the lower down. If it supports previous information, the probability will be ad-
justed up. All descendants of formulas whose probabilities have been adjusted are recalculated. However,
further use of these formulas may then have inaccurate probability calculations. The system also has
trouble determining whether or not the two items should be combined - if one inference path subsumes
the other, or is more specific, the two should not be combined, but the system cannot detect most cases
of this yet.

Currently the default mode is to attempt the adjudication. The system can be told to operate like
a previous version by changing the *consistency-action* flag to 1 - then it will accept contradictions,
but warn the user, and print that a duplicate is found if supporting wffs are detected. Also, if a new
supporting formula has higher probability than the old one, it is accepted, and the probability becomes
the higher one.

Consistency testing is also done on some other kinds of input, including additions to the hierarchies.

The user may indicate the effort the system is to use in determining consistency of input with the
parameter *consistency-effort* . Legal values of this parameter are:

0 - no consistency testing
1 - lookup only
2 - verification using only unit probability propositions (including specialists)
3 - verification using any applicable propositions (including specialists)
7 - full blown question answering

If the consistency effort flag is 1 or 2, this is also used to simplify the input clause. Anything other
than that requires an additional verification to simplify. Actually in this case both should be entered (if
we verify using something other than probability 1, that constitutes an inference), but currently only one
is entered.

Consistency testing is also done on entries to the hierarchies - this was discussed in the section on
Hierarchies earlier in this chapter.

Given that the system has detected an inconsistency, the user may also indicate the action to be taken
using *consistency-action* . Legal values for this are:

0 - enter anyway
1 - print a warning, and then enter anyway
2 - reject the input clause
3 - print a warning, and then reject the input clause
4 - attempt to combine the evidence using adjudication

CHAPTER 3. ASSERTIONS AND OTHER INPUT 53

The default currently is 4, although it can be reset to 1 to act like previous versions of the system.
If the input supports previous evidence, its probability will be adjusted up; if it contradicts, the higher
probability will be adjusted up and the lower one down. All descendants of formulas whose probabilities
have been adjusted have their own probabilities recalculated (and their descendents, and so on). There
are two main problems with the adjudication right now. The first is that further calculations using an
adjudicated formula will not take into consideration formulas that were used in inferring it, so their
probabilities may be multiplied in again - this can lead to probabilities lower than they should be. The
other is that combination will sometimes take place when it shouldn’t because the inference paths are
equivalent, or one is more specific than another and should be used instead of it. This can lead to
probabilities too high. These and other related issues are currently under investigation.

3.5.1 Combining Supporting or Contradictory Evidence

For formulas where several pieces of supporting and/or contradictory evidence have been combined,
the probability support sets of each piece of evidence are kept with the formula, on a supporting list
and a contradictory list. Each time a new piece of evidence is incorporated or the probability is to be
recalculated for some other reason, all the support sets are used to recalculate the probability. First all
the supporting evidence is combined, using the probability calculation

(1 − (1 − p1)(1 − p2) ... (1 − pn))
where the pi are the calculated probabilities from the support sets of the supporting evidence. The same
calculation combines all the contradictory evidence. Then there is one supporting probability and one
negating probability, and these are combined and recalculated as follows:

ps = (ps − (ps ∗ pc)) / (1 − (ps ∗ pc))
and

pc = (pc − (ps ∗ pc)) / (1 − (ps ∗ pc))
where ps is the probability resulting from combining all the supporting evidence, and pc is the probability
resulting from combining all the contradictory evidence. The calculation using both contraditory and
supporting evidence is order dependent, so doing it in this way helps to avoid problems with that.

3.5.2 Controlling Consistency Testing

Tweakable parameters which can affect consistency testing:

consistency-effort
Indicates how hard to try to determine if an assertion is inconsistent with already known facts.
Levels are 0 (no consistency testing), 1 (lookup only), 2 (verification with unit probabilities only),
3 (verification with anything), and 7 (full blown question attempt).

consistency-action
Indicates what to do if inconsistent assertions are made. Actions are 0 (enter anyway), 1 (print a
warning and enter anyway), 2 (reject), 3 (print a warning and reject), 4 (try to combine).

Once a wff is asserted, whether directly by the user or through an inference, input driven inference is
attempted on it to determine the consequences of that information. Any consequences are then asserted
to the system, and undergo the same procedure of normalization, classification, consistency testing, and
input-driven inference. This stops when there are no more rules to apply, or the resulting inference is

CHAPTER 3. ASSERTIONS AND OTHER INPUT 54

not acceptible either because it is not very ”interesting” (more on this later), or because its probability
is not high enough. Meaning postulates are always applied however, regardless of interest or probability.
Meaning postulates are applied whenever applicable, while knowledge rules may be applied only once in
an input driven inference chain. Various controls are available on the input-driven inference mechanism
- see the details section to find out more if you are interested.

3.5.3 Meaning Postulate Inference

The first thing done with the new formula is to classify it as if it were a meaning postulate (but not
to store it there). This classification is then used to find mp’s in the knowledge base which might be
applicable. The input wff is compared to the keys of any mp found, and if it compares successfully, the
system tries to match the rest of the keys in the mp, and to make an inference using it. Once the original
classifications have been exhausted, the system goes up a level (by finding the parents of both parts of
the classification), and repeats the procedure. So for a fact like

(lrrh (very pretty))
the system would first look under the classification

(pred very)
and then try

(pred operator)
where it would find the rule

(A x pred (A y operator (y monotonic) (A z term ((qq (z (y x))) true) ((qq (z x)) true))))
and, given that very is known to be monotonic, it would infer

(lrrh pretty)

Previous versions of EPILOG had schematic meaning postulates built into the system as inference
rules rather than allowing them to be entered as semantic or world knowledge by the user. In fact, the
meaning postulates

(∀ η (Φ ∗∗ η)(Φ ∗ η))

(∀ η ((Φ and Ψ) ∗ η)((Φ ∗ η) and (Ψ ∗ η)))
are still built into the current version of EPILOG as inference rules (the first inference isn’t made explic-
itly, but is made whenever necessary during comparisons). Currently the second one is actually built in
as a simplification schema (the split formula REPLACES the original), but turning the *split-episodic*
flag off can stop that. The system can now accept meaning postulates (using the command mp), and
can normalize and classify some of them.

The meaning postulate inference is similar to that using regular rules (next section), except that it
can only work in the forward direction, and quantification over formulas, predicates and operators is
allowed (resulting in unification and substitution of such creatures during the inference process).

When a formula is entered, it is classified as if it were a meaning postulate, but not stored there,
and this classification gives the system the places to look for possible applicable meaning postulates.
Comparison of keys and evaluation of the resulting formulas can be assisted by the meta-specialist ,
which is described in a later chapter. Basically this specialist allows literals about meta information to
be evaluated, using recursively defined predicates, if necessary (like action-formula).

Unlike input-driven inference with regular rules, which terminate when an ”uninteresting” fact is
inferred, mp’s are always applied to an input clause, no matter what its interest level.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 55

3.5.4 Controlling Meaning Postulate Inference

Trace values which can be used to watch meaning postulate inference:

mp-eval - traces evaluation of literals during meaning postulate inferencing

mp-test - shows comparisons between keys during meaning postulate inference

mp-access - shows accesses of formulas during meaning postulate inference

mp-class - shows classifications checked during meaning postulate inference

mp-all - shows everything during meaning postulate inference

mp-int - shows interesting parts of meaning postulate inference (everything except classification)

mp-min - shows the inferences made, and evaluations during meaning postulate inferencing

3.5.5 Input Driven Inference Machinery

The classification the input formula was actually classified under is used to obtain rules (or facts) from
the knowledge base to apply. A similar process to that of Meaning Postulate inference is used, although
keys both in the antecedent (for regular forward inference) and in the antecedent (for contrapositive
inferences) may be matched. Once a key is matched, the system tries to match the other keys from facts
in the knowledge base. Keys which are not matched are discarded, and when all keys have been matched,
and all the substitutions and simplifications have been done, an inference is made.

Like the meaning postulate mechanism, once the original classifications have been exhausted, the
system goes up a level, but only using the first part of the classification pair (for subnet classifications, it
goes up the first part of each pair in the list, yielding a number of different combinations). For example,
for

(lrrh pretty)
the system would first look for applicable rules under the classification

(lrrh pretty subject)
then under

(girl pretty subject)
then under

(child pretty subject)
and so on. In doing so, if it found a rule like

((E x ((x human) and (x pretty))) 0.8 (x happy))
it would infer

(lrrh happy)
with probability 0.8. If it also found a rule like

((E x ((x human) and (x sullen))) 0.9 (not x pretty))
it would make a contrapositive inference of

(not lrrh sullen)
with probability 0.9.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 56

Special stops are put in so that the same rule is not applied more than once in a forward inference
chain (to prevent computing transitive closure), and to prevent contrapositive inferences from being made
with a rule whose consequent is a type predication (e.g. if the rule states that anything that eats is a
living thing , we don’t want inferences like the rock never eats).

The system does partial rule instantiation , where not all the keys need to be matched to make an
inference. This can result in inferences which are rules themselves, and this may not be desirable for some
applications. To avoid this, tweak the parameter *forward-full* to t , and the system will demand that
all variables be matched for a rule to be applied, and that the result not be conditional. If you choose to
use this however, you should also set *key-threshold* to 0, or you will have an ordering problem with
rule applications.

This used to be called ”Forward Inference Machinery”, since the only inferences made on input were
in the ”forward” direction - if the antecedent of a rule could be verified, the consequent could be inferred.
For example, if we know all wolves are grey, and we have a particular wolf, we can infer that he is grey.
Now the system can do this inference in both directions - forward, and backward (contrapositive). So if
the consequent of a rule can be disproven, you can infer the negation of the antecedent. For example, if
we know any fierce wolf is mean, and we know that a particular wolf is not mean, we can infer that he
isn’t fierce (if he was, we would infer that he was mean, and that isn’t true!).

Here is a more complicated example of input-driven inferencing. Consider world knowledge ”If a dog
sees a cat, it will probably chase it” and story fragment ”Fido is a dog; Morris is a cat; Fido sees Morris,”
represented in logical form as follows:

R1. ((∃ x (x dog) (∃ y (y cat) (∃ e1 ((x see y) ∗∗ e1))))

→. 8 (∃ e2 ((e2 right-after e1) & (e1 cause-of e2)) ((x chase y) ∗∗ e2)))

S1. (Fido dog)

S2. (Morris cat)

S3. (now during EP1) ; after

S4. ((Fido see Morris) ∗∗ EP1) ; skolemization

Notice that rule R1 will be stored under (dog see subject) and (cat see object) among others. S1 and
S2 cannot trigger rule R1 as they do not contain any predicates which indicate tp.perception . When S4 is
loaded, however, the system looks under (Fido see subject) (Morris see object) (dog see subject) (cat see
object) (animal see subject) ... , for rules to be tried for input-driven inference, and hence finds R1. Once
S4 is successfully unified with a part of R1, namely, ((x see y) ∗∗ e1), with bindings {Fido/x, Morris/y,
EP1/e1}, EPILOG next checks whether the rest of the antecedent with the same bindings is known to
be true. Fido and Morris must have been classed as type dog and cat respectively when S1 and S2 were
loaded, and thus the consequent of R1 would be concluded by instantiating the variables with the same
bindings. Thus, the program infers

(∃ e2 ((e2 right-after EP1) & (EP1 cause-of e2))

((Fido chase Morris) ∗∗ e2))
with lower subjective probability .8 (the probability is obtained by multiplying the lower subjective prob-
abilities of formulas – default is 1 – that verify the antecedent of the rule and the objective probability
of the conditional itself). This method of making inferences was earlier called rule instantiation . It can
be considered a generalization of modus ponens , universal instantiation, and “statistical modus ponens

CHAPTER 3. ASSERTIONS AND OTHER INPUT 57

”. (It is also closely related to Andrew’s “general matings” and Bibel’s “connection method”.)

The general method for input-driven inferencing is as follows. During the standardization of variables,
literals which occur positively and negatively are also determined, and saved on the wff. For a rule, the
positive literals are usually in the consequent, and the negative ones in the antecedent. The triggering
(most interesting) keys of the positive and negative literals are selected and saved. Wffs are then retrieved
from the knowledge base, based on the classification of those keys. Each wff is checked to see if it is of
the appropriate type to use. Currently if a rule or disjunctive fact is entered, a non-conditional, non-
disjunctive fact may be applied to it; and vice-versa. This may not be general enough, but requires more
investigation (disjunction management in general is not handled yet).

When a wff is obtained to attempt for possible application to a given input, the trigger keys are
searched to find one which resolves with the input fact. The matching key literal is replaced in the rule
by NO for non-negated keys, YES for negated ones. The resulting substitutions are made throughout the
rule and in the remaining keys as well. We then remove the key from the set of keys, and also remove any
keys made up entirely of constants. The remaining keys are ordered with those with the least number
of variables first. Next, we try to find all formulas which resolve with those keys. When all keys are
matched (or we can’t do anymore), we simplify the result, using formulae whose probability is 1, and
specialist evaluations.

This process is called “rule instantiation”. If all keys are matched (i.e. all variables bound), we have
total rule instantiation; otherwise partial rule instantiation. Sometimes inferences made from the latter
are of questionable usefulness. To force full instantiation, the parameter *forward-full* may be tweaked
to t , but if this is done, *key-threshold* should also be tweaked to 0.

Forward inference continues to try to infer new formulas from the input clause and the resulting
inferred formulas until the following condition is met:

The inference is not very “interesting”. The combination of probability and interestingness is not
greater that *interest-threshold* , and the inherited interest is not above 0 either. Interestingness
will be discussed shortly.

Even when the stopping criteria are met, the current wff is still loaded - but no more input-driven
inferencing will be attempted on it. The justification is that after all that work making the inference, we
might as well keep it, even if it isn’t particularly interesting or high in probability.

Note that the same rule is not applied more than once - this prevents producing the transitive closure
of an axiom, and makes things faster. It also prevents infinite looping for recursively related axioms (e.g.
there is person, so there is a building that person lives in, which was made by a person, who also lives
in a building ...) Also, contrapositive inferences where the consequent key matched is a type predication
are not done (to prevent rules like “Anything that eats is a living thing” from generating inferences like
“rock1 never eats”).

Type information should be entered before other knowledge about an entity. This problem is due to
the way rules are classified - usually under the types of the entities. To get around this ordering problem,
all facts about an entity would have to be reasserted any time new type information is given about it.
This could be very slow, so is not done automatically. A user can use the command reassert to get the
same effect though.

In normal operation of the system, rules should be given before story facts to be used in input-
driven inference, although this is not always necessary. For example, given “Fido loves every one of
Mary’s cats; Morris is Mary’s cat” in the specified order, the program infers ”Fido loves Mary”; however,
if they are entered in reverse order, the same inference will still be made, if Fido and Mary are still

CHAPTER 3. ASSERTIONS AND OTHER INPUT 58

salient. The distinction between rules and story information is quite blurred (consider “LRRH likes
the cake in the basket” “LRRH likes everything in the basket” “LRRH likes everything her mother
bakes”). Our tendency is towards eliminating the distinction altogether, and the current input-driven
inference mechanism reflects that. There are some controls on the input-driven inferencing: the flag
rule-forward , which is initially set to t . If it is tweaked to nil , no story facts will be retrieved to
apply a new rule to. In addition, forward inferencing for story facts is controlled by the flag *story-
forward* , which is initially on. If this is turned off, forward inferencing will not be attempted at all.

Note: Disjunctions in rules are now handled properly, and specialists may be consistently used in
determining whether a key matches a fact. Fact-fact inference with disjunctions is now handled as well.
For example, if we are given that the wolf is either nasty or happy, and we later find out that the wolf
is not happy, we can now infer that the wolf is nasty. And if a rule key is (not x gt 1) , we can use the
number specialist to match it with (n1 gt= 3) .

Forward inferencing is not attempted on disjunctive facts right now - this will have to wait for some
sort of “disjunction management”.

3.5.6 Inference Termination Criteria

As mentioned before, the criteria for determining whether or not to continue making inferences given a
particular inference is based on how “interesting” that inference is. The interestingness termination test
is to prevent huge numbers of useless and uninteresting inferences from being made when a large body of
rules is present (such things as “lrrh is a girl” generating “lrrh has a head”, “lrrh has an eye”, ..., “lrrh
has a mother”, “her mother has a head”, ...).

Interestingness, in this system, is a numeric value given to a concept or a formula which indicates
in a quantitative way how “interesting” or “valuable” a piece of information is. This is used to decide
what facts are worth following up and which aren’t. For example, the wolf ate Little Red Riding Hood is
far more interesting than the wolf ate a cookie , and we want to follow up the consequences of the first
fact, but not necessarily the second. The interestingness depends on the individuals involved, what is
being predicated about them, how improbable that is, and possibly other factors as well. Not all of these
factors are used in the current version; the interestingness is currently based on the “interestingness” of
the argumentsin a formula, and the “interestingness” of the predicate involved. In addition, a formula
may “inherit” some interest from the formula which it was inferred from. This “inherited interest” can
overcome some dips in the interestingness in chains of input-driven inferencing.

An individual’s interestingness is the sum of the interestingness contributions from all the formulas
the individual is involved in. So the more we know about something, the more interesting it is. Although
this seems circular (the interest of an individual is dependent on the formulas it is involved in, and vice
versa), it isn’t. The interest of wffs is based on the current interest of the arguments, and does not change
once it is set. Only the individual’s interest changes.

A predicate’s interest value may be set directly, or may be taken from whatever topics it indicates
(see section on topics in previous chapter). When the system starts up, a number of interest values on
predicates are already set up. The threshold for testing is set very low, so for most applications you won’t
need to change it.

Once adjudication of evidence is handled properly, this will give another bit of information which may
be used as a termination criterion.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 59

3.5.6.1 Interestingness

The “interestingness” values help the system decide what facts to follow up on (i.e. continue input-driven
inferencing on), and which ones not to. Currently this is based on the interest level of the predicate
involved in a wff, and the highest interest of any of its arguments. An arguments interest is the sum of
all contributions of interest made by the wffs involving the individual. When calculating the interest of
a formula, the current interest level of the individual is used, and once calculated, a wff’s interest never
changes, although that of the individuals involved does. Originally we also attempted to incorporate
a salience factor into this calculation, “degrading” the interest level of an individual from the time it
was last mentioned to the current usage, but this did not produce satisfactory results, and seemsed not
important to the decision to continue inference. Salience will be important in determing referents of
anaphora, but for inference termination we have rules it out for now.

For example, the interest level of

(lrrh pretty)
would be the product of lrrh ’s current interest (say 10), and the interest level of pretty (from the topic
tp.appearance - 3), giving 30. The contribution a wff makes to the individual is forced to be within 10
(otherwise the numbers get astronomical very quickly), so lrrh would be updated to have an interest of
20. Ideally, each argument in the literal will contribute some measure of interest, weighted perhaps. This
has not been done yet because of other unresolved questions about interestingness.

Interest can be added to topics, and to types and other predicates using the add-interest command.

An inherited interest component is added to each wff from the parent that generated it - this is also
used when testing for termination of forward inferencing. This inherited interest allows the system to
“ride over” dips in the interestingness of a chain of inferences.

In addition, interest can be propagated backwards through a chain of causal connections - a formula
is at least as interesting as anything it causes. So far this has not been investigated enough, and can be
quite slow, so is turned off when the system starts up, but may be turned on by tweaking the parameter
back-up-interest to t .

(add-interest node interest) [function]

Purpose: Adds interest levels to type and topic hierarchies.

Examples:

(add-interest ’human 5)

(add-interest ’tp.existence 10)

Remarks: Interest is propagated down the hierarchy until it reaches a higher interest level, or the bottom
of the hierarchy. Note that this is most likely going to change in the next version.

3.5.6.1.1 Controlling Interestingness

Tweakable parameters which can affect interestingness calculations are as follows:

CHAPTER 3. ASSERTIONS AND OTHER INPUT 60

maximum-interest
Indicates the maximum interest value any object may have. This is initially set to 1000.

minimum-interest
Indicates the minimum interest value any object may have. This is initially set to 1.

deep-thought
a multiplier used on the interest during calculations to see whether to continue a particular inference
line. Low numbers (< 1) indicate shallow thinking (i.e. prefer short inference paths), while high
numbers indicate that longer inference paths are desirable. This is initially set to 1 (i.e. the interest
alone makes the decision with no preference for inference path length either way).

back-up-interest
tells whether or not to back interestingness up causal paths. An interesting conclusion would then
affect its causal precondition by increasing its interest. This is initially set off (nil), but may be
set on for testing. There is still work to be done on determining exactly what constitutes a causal
chain.

initial-charge
this is the amount to start the inherited interest component of new story sentences with. It may
be necessary to give a new formula an extra boost to get it over the initial hump. However, our
testing so far has not had this problem, so it is initially set at 0.

inherit-amount
this is the amount to decrease the inherited interest by at each step in an inference path. It is
initially set to 5.

check-inherit
this flag indicates that forward inference should be allowed to continue based only on inherited
interest values if the interest level of the particular formula is too low by itself. This is initially set
to t (allow continuance).

wff-component
a multiplier used to indicate how much of a formula’s interest should be used to update the interest
value of its arguments. This is initially set to 0.1. Making the number higher makes the interest
levels of new formulas involving existing entities increase more rapidly.

arg-component
a weighting used to indicate how much the interest of an argument affects the interest value of the
entire formula. This is initially set to 1. Specific predicates may have weighting factors of their own
for specific argument positions - this is an overal weighting to use after that.

operator-component
a weighting used to indicate how much the interest of an operator, predicate, or function affects
the interest value of the entire formula. This is initially set to 1.

3.5.7 Controlling Input Driven Inference

The parameters which can be changed and affect input-driven inference are:

CHAPTER 3. ASSERTIONS AND OTHER INPUT 61

forward-full
Indicates whether or not to allow partial rule instantiation. If this flag is set to t , all variables must
be matched in a rule before it is instantiated. The default is to allow partial rule instantiation.

forward-effort
Indicates how hard to try to verify rule antecedents during input-driven inferencing. Initially set
to 0, if it is tweaked to something greater than 0, a simple backchaining effort will be attempted to
verify the antecedent instead of just lookup or specialist evaluation.

interest-threshold
The minimum interest level (product of interest and probability) an inferred wff can have that will
still enable more input-driven inferencing. This is initially set to 6, but may be changed using the
tweak command.

key-threshold
The threshold of interest beyond which all keys will be included in the list of trigger keys for a rule.

salience
The maximum difference allowed between the current story array index, and the last index an entity
in a wff was involved in. This ensures that we don’t go making inferences with things that were
talked about long ago. This is initially set to 10, but may be changed using the tweak command.

rule-forward
Indicates whether or not input-driven inferencing should be attempted on conditionals. Initially
set on, but may be turned off using tweak .

story-forward
Indicates whether or not input-driven inferencing should be attempted on story facts. Initially set
on, but may be turned off using tweak .

unify-sorts
Indicates whether sorts should be considered when unifying terms. Initially set on, but may be
turned off using tweak .

Trace values which can be used to watch input-driven inference:

forward - traces forward inferences as they are made

forward-details - shows parent formulas when wff printed

infer-details - shows details of inference decision (for debugging)

forward-eval - traces evaluation of literals during forward inferencing

forward-test - shows comparisons between keys during forward inference

forward-access - shows accesses of formulas during forward inference

forward-class - shows classifications checked during forward inference

forward-qa - shows mini-question attempts during forward inference

CHAPTER 3. ASSERTIONS AND OTHER INPUT 62

forward-all - shows everything to do with forward inferencing, including forward, rules, access, forward-
rejction, forward-test, forward-unify, entry-time and forward-eval .

forward-int - shows interesting parts of forward inference (everything except classification)

forward-min - shows the inferences made, and evaluations during forward inferencing

entry-eval - traces verifications done during input

entry-time - keeps track of how long it takes to enter a story formula, including all the forward
inferences.

entry - shows interesting parts of story entry, including forward and entry-time .

entry-eval - shows evaluations during input of formulas

entry-min - shows inferences made through forward and mp inferences.

entry-int - shows interesting stuff for both forward and mp inferences.

entry-int - shows everyhting possible about entry of formulas including everything about both forward
and meaning postulate inferences.

3.6 Input-driven Inference vs Goal-driven Inference

Given the problem of determining when an input-driven inference should be kept, one might ask why we
shouldn’t just turn off forward inference, and get all the inferences using goal-directed inference (which
might take longer). It seems at first sight reasonable to be able to do so. But as a matter of fact, there
is a rather good argument against it, as follows. (In outline, the argument goes like this: when we work
out in detail what would be needed to get complete goal-driven inference with out input-chaining, we
find that we would need to index ”facts” in a way that can only be done reliably by input-chaining on
those facts!)

We begin by considering how we would prove a goal like (LRRH pretty) , given [LRRH (very pretty))
. Even if we had indexed the latter fact under (LRRH pretty subject), it’s not at all clear how this would
allow us to infer the goal. One suggestion is that we trigger forward MP-based inferences on retrieved
facts, but that is a rather complex strategy and also one in violation of the assumption that forward
inference has been turned off. So, we would need to chain backward on MPs such as the one that says
that necessarily, if something is (very P) then it is P.

But, though such MP-based goal chaining may well be useful at times, it should not be done indis-
criminately. We don’t want to chain back from (LRRH pretty) to (LRRH (very pretty)) , (LRRH (very
(very pretty))) , (LRRH (very (very (very pretty)))) , (LRRH (extremely pretty)) , (LRRH (exceptionally
pretty)) , (LRRH (unusually pretty)) , (LRRH (amazingly pretty)) , etc. If we have retrieved (LRRH
(very pretty)) , we would like to use just those MP’s that promise to make a connection between the
seemingly relevant retrieved fact and the goal; i.e., we would like to use just those MPs which have
a positively occurring part matching a goal key and a negatively occurring part matching (part of) a
seemingly relevant retrieved wff. This could be implemented by only using those MPs for goal-chaining
which are simultaneously indexed (positively) by the goal and (negatively) by a fact seemingly relevant
to the goal. Moreover, we would use a ”simultaneous instantiation” based on the goal and the relevant

CHAPTER 3. ASSERTIONS AND OTHER INPUT 63

fact. this could all be done with minimum fuss by forming new goal (relevant-fact -> goal) and then
doing ordinary goal-chaining (but allowing MPs for goal-chaining).

But all this presupposes that we have indexed a formula like (LRRH (very pretty)) under (LRRH
pretty subject), and that raises the question of how we do such indexing for operator- embedded pred-
icates. One approach would be to make a careful study of predicate operators, and come up with a
comprehensive scheme for classifying all complex predicative expressions. For example, we might dis-
tinguish operators like {very, extremely,...} (i.e., intensifiers) from ones like {somewhat, moderately,
sort-of,...} (i.e., hedges), and from ones like {make, convert-to, ...} (i.e., verbs of synthesis), and from
ones like {become, turn-into,...} (i.e., verbs of becoming), etc. However, that’s a hazardous approach,
likely to lead to unexpected ”holes” in inference behavior, because it is so dependent on anticipating what
classes of operators will ”come along” as the system is further developed, and on the user understanding
the classification schema and correctly classify- ing all operators in accordance with it.

A much more ”robust” approach, not dependent on explicit operator classification by the user, would
be to base the classification on the MPs involving the operator. For example, the reason it makes sense
to classify (LRRH (very pretty)) under (LRRH pretty subject) is precisely that there is a MP which says
that whatever is (very P) is P. So we should use that MP to automatically obtain the classific- ation of
(LRRH (very pretty)) . So we should match this formula to negative keys in MP’s, just as if we were
going to do a forward inference, to derive its classification. Now at first glance it appears that we could
do this without actually performing any inferences, i.e., we just do some sort of matching on the MP. But
consider input facts like (LRRH (very (very pretty)) or (LRRH (very (Lx ((x pretty) and (x friendly)))))
or (LRRH (became (very pretty))) , etc. (ignoring episodes, obviously). From such examples it becomes
clear that the ”matching” on the MP would implicitly have to duplicate multiple input-chaining steps;
e.g., it recognizes that (LRRH (very (very pretty))) implies (LRRH (very pretty)) , which in turn implies
(LRRH pretty) and that’s why it should be classified under (LRRH pretty subject); similarly it recognizes
(from one MP) that (LRRH (became (very pretty))) implies (LRRH (very pretty)) , and (from another
MP) that this in turn implies (LRRH pretty) , and hence the original formula should be classified under
(LRRH pretty subject); etc.

But it would be silly (and hard) to duplicate the input-chaining mechanism in some implicit way in
the classifier! We might as well do the input chaining, and having done it, we might as well retain the
conclusions, and classify these directly and straightforwardly based on their explicit predicates (complex
or atomic). Q.E.D!

3.7 Problems

Inference merging has not been implemented yet, but is particularly important for connecting up story
sentences. Thus EPILOG is not capable of finding the causal connections between story sentences yet.

3.8 TroubleShooting

This section describes how to track down some of the more common problems associated with input
driven inference. If, after trying the following, you still cannot solve the problem, feel free to send it to
one of the authors to solve.

CHAPTER 3. ASSERTIONS AND OTHER INPUT 64

3.8.1 What to do if a Desirable Inference is NOT made

When an inference that is expected is not made, the user should run the system until it gets to the
formula that he/she was expecting to trigger the inference, and trace the system operations to see what
is happening. To get the system to try again to make the inference, use the command reassert with the
formula name of the one you expected it to make the inference from.

First figure out what rule you expected to fire on the input (inference or initial assertion). Then trace
forward-int and forward-test (mp-int and mp-test if it is an mp inference you were expecting). Get the
system to try making inferences with the input formula again using (reassert wff-name) . Watch and
see if the system ever even tries to compare the input formula with the expected rule.

There are a number of reasons that could possibly explain why an inference isn’t made:

The applicable rule was not found
If no comparison with the expected rule occurs, look to see where the rule is classified (use (classify
rule-name) or (mp-classify rule-name) for an mp). Try again, tracing forward-class and forward-access (
mp-class and mp-access if this is an mp inference) to see if it ever looks under the classifications for the
rule. If it does, check the next possible problems; otherwise continue here.

One possible problem could be that there is a type mismatch between the input and the rule so the formula
is never found. This would mean that the first part of the classifications checked never matches the first
part of the classifications the rule is stored under. This may also be an ordering problem - remember
that an entity’s type must be input before any other information about that entity. If ordering is the
problem (especially types), ensure that input types are done first, and that rules which create existentially
quantified entities in their consequents have types in the restriction clause of the existentially quantified
expression.

It is also possible that the system has missed a ”trigger” key in the rule or input, and the predicate
involved should be set up differently so that the system thinks it is more important. This would mean
the second part of the classifications doesn’t match any of the ones the rule is stored under. The rule
itself may not have an important key selected as a trigger key. If you look at the classifications for the
rule, and it seems that there is nothing for an important part of the rule, this may be the problem. This
means that you’ll have to restart from before that rule was even entered, however. You can force the
system to make all keys trigger keys by setting *key-threshold* to 0. If the desired inference is made,
you’ll know that trigger key selection is the problem, and can boost the interestingness of the predicate
involved (using command add-interest) so that it is selected as a trigger key, and then run normally
(with the key threshold at its normal level).

The applicable rule was found but had been applied previously
To prevent computing transitive closures, EPILOG will not allow any rule to apply more than once in an
input-driven inference chain. If the rule was already used in this particular chain, it will not be attempted
again. If it is essential that this inference be made, perhaps another, similar rule can be entered which is
more specific to this particular stage in the chain. Meaning postulates, however, CAN be applied more
than once, so this should only occur with regular knowledge rules.

The applicable rule was found but did not match the input formula
Trace forward-test - and when you see the comparison between the rule and the input, watch to see which
keys of the rule it compares with. If none of the comparisons succeed, the rule will not be used. If the key

CHAPTER 3. ASSERTIONS AND OTHER INPUT 65

that should have been compared with in the rule is not even attempted, it is a trigger key problem, and
can be solved as discussed above. If the key is being compared, but the comparison is not successful, there
are several possibilities depending on the actual key. A common problem is that the rule is expecting
** and the input has only * - if this rule really has to succeed the antecedent must be made less strict.
Another problem could be that appropriate sorts have not been assigned to the input entities - but this
rarely causes problems here.

The appropriate match was made, but the rule didn’t completely fire
In this case, other information in the rule was expected to be evaluated, and it was not available. If
only full instantiation is allowed (i.e. *forward-full* is t), no inference will be made, otherwise a strange
looking one like ((wolf1 grey) implies (wolf1 fierce)) will be. If you are tracing qa-int , you should be able
to see it trying to find formulas to match the other trigger keys, as well as trying to verify the non-trigger
keys. A failure for any of these could be at fault, although a failure to match or evaluate something is
certainly not always a problem (the desired inference won’t be matched or evaluated!) If the system is
looking up something to match another trigger key, and the information isn’t currently available, the
rule will be fired again when it does become available. If this won’t happen because it was expected that
the information should already be there through another inference, the problem is with THAT (unmade)
inference, not this one. If the information IS already available, you should be able to see (via the tracing)
if it finds it and the comparison fails (a comparison problem like above) or doesn’t find it (classification).
Non-trigger keys are evaluated either by simple lookup or by a specialist. If a particular key was expected
to be evaluated by a specialist, trace that particular specialist’s actions to see if the information is there
and why it does not answer. If the appropriate sorts were not on the arguments when the information
was first entered, the specialist may not have accepted the input, which would explain why it is not used
when you expected it (especially notable with the time specialist - all temporal input must have sort time
or episode on the arguments to be recognized by the specialist).

In the case of meaning postulates, all meta-level variables must be matched before the rule will fire, so
this may explain why an expected inference is not made.

The system just stopped looking for rules before getting there
Make sure that it didn’t just run out of classifications - when tracing qa-access , you would see it enter
the formula, and then NOT access anything to apply. If it does access classifications looking for rules,
the problem is that it doesn’t find the rule, not that it just stops.

If it just stops, this suggests an interestingness problem - the system has decided that the information
leading to the desired inference isn’t interesting enough to continue with. To test this, set *interest-
threshold* to something very small (e.g. -10), and try again. If you get the inference, then you know
this is the problem. That can be fixed by changing the interest level of one of the predicates along the
chain of inferences before it stopped. If this doesn’t get the inference for you, then the problem is one
of the above - either an appropriate rule is not being found, or is not being compared successfully. This
problem is quite unlikely to occur, unless the interest threshold has been boosted beyond its default.

3.8.2 What to do if an Undesirable Inference IS made

Sometimes the opposite problem occurs - an unexpected, and undesirable inference is made. There are
several types of these:

CHAPTER 3. ASSERTIONS AND OTHER INPUT 66

Those which indicate some information was missing
These are like the ((wolf1 grey) implies (wolf1 fierce)) above or ((wolf1 wolf) or (wolf1 fox)) , where
expected information was not present. Usually this is caused by types being entered after other informa-
tion about entities, or expected inferences not being made. See the section above on when a rule doesn’t
completely fire for more tips.

Conditional Inferences
The system generates partial rule instantiations, which often are rules themselves. These may then be
applied like regular input rules. Although they seem annoying and useless to the user, often it is these that
allow the later, more interesting inferences to be made. An alternative is to use total rule instantiation
(*forward-full* must be t and *key-threshold* must be 0). However, this doesn’t always give the
best results either. If the system really is generating ”garbage”, it may fit into the next category.

Garbage and incorrect inferences
These usually can be traced back to strange rules or rule combinations. Look at the inference history of
the strange inference (using (display ’infer wff-name -f)), and see if the rules that applied were applied
correctly (i.e. the antecedents were true, etc). If so, look at the rules themselves to see if they make
sense. Incorrect bracketing can cause a rule to say something other than what was intended so check
carefully. If the rule seems to have applied when it shouldn’t have, look at the other formulas involved
which triggered the rule - maybe one of them came from an inference from another rule which didn’t
make sense. Another possibility is that the hierarchies are tangled incorrectly, making some entities of a
type which you didn’t anticipate.

Chapter 4

Questions and Queries

4.1 Using Equality Information

When equalities have been entered into the system (usually with equal), they are available for use by the
main system to use in looking up formulas, and comparison and unification of formulas. The set specialist
detects and stores the equivalences in a hash table accessible to EPILOG. When retrieving information
for a given classification, it also retrieves information stored under equivalent classifications, by using the
equivalence class for the first element of the classification. When comparing two formulas to see if one
supports the other, the arguments are compared taking equivalence classes into consideration. The same
is used during unification when two constants are being compared.

The equivalence information is modal-predicate sensitive. The equality-specialist, which detects and
stores the equalities, and handles the modal embedding properly. To ensure that all modally embedded
information is available for all equivalent items, formulas which are modally embedded are duplicated
in specialists - they are stored under all equivalent subnets. This is not necessary in the main EPILOG
system. Evaluations and comparisons using specialists need only check one subnet though - as it is
guaranteed that any of them will have the relevant information.

4.2 Queries

The following functions are used only to display information in the knowledge base, and require no
inference. Questions which do required inference are handled by the question answering routines in the
next section. The ”display” commands are intended to display information in a pretty form for the user;
the ”retrieval” commands return lists of information which can be used either by the user or another Lisp
routine.

4.2.1 Display

The following display options may be used with the display command:

(display ’infer wff-name+)
Displays the inference path which led to the given wff names. If -brief or -b is specified, only the
last inference is shown. If -full or -f is specified, the inference path right back to the input formulas

67

CHAPTER 4. QUESTIONS AND QUERIES 68

is shown. If you are tracing ’forward-details this information is automatically displayed for each
inference. This display option allows you to see the inference process ”after the fact”. (Note,
this was previously achieved using the functions display-infer and display-infer-short . These
functions are still available but this option provides a more uniform and easier to use interface).
Some examples:

(display ’infer ’wff1 ’-f)
will display all inferences leading up to the formula wff1 .

(display ’infer ’wff2)
will display the particular inference which generated the formula wff2 .

(display ’formula wff-name+) or (display ’wff wff-name+)
Displays the formula (list form) corresponding to the given wff names. For example:

(display ’formula ’wff1)
might print out WFF1: (lrrh girl)

(display ’prob wff-name+)
Displays the lower subjective probability associated with the wff names given. For example:

(display ’prob ’wff1)
might print out Probability of WFF1 is 1

(display ’node entity topic) or (display entity topic)
Retrieves and prints information classified under a concept from the topical classification table.
If topic is not specified, all topics are printed, otherwise only wffs under that topic, and topics
beneath it are printed. If -full or -f is specified, subnets for the entity are also printed. If concept is
a skolemized variable, it will be replaced by its skolem constant for the retrieval. This is the default
for the display command in EPILOG, so no option is necessary (i.e. you can eliminate the ’node
). Note: this function was originally performed by the routine

(display-concept concept topic super sub print-subnets subnet)
That routine is still available, but the display option is easier to use. Examples:

(display ’lrrh)

displays all information about lrrh , except her belief subnets.

(display ’lrrh ’-f)

displays all information about lrrh , including any belief subnets associated with her.

(display-concept ’animal ’tp.spec)

displays all formulas which assert that something is an animal .

(display-concept ’animal ’tp.spec ’-f)

displays all formulas which assert that something is an animal , or any subtype of animal.

(display ’wffs)
retrieves and prints, with classifications, every formula that has been entered. The main classifica-
tion is used to organize and display the output. If -full is specified, subnets will also be printed.

(display ’wffs-by-topic)
retrieves and prints, with classifications, every formula that has been entered into the topically
organized table. This is all the formulas except meaning postulates. If -full is specified, subnets

CHAPTER 4. QUESTIONS AND QUERIES 69

will also be printed. The topical classification is used to organize and display the output. Note:
the previous two display options (wffs and wffs-by-topic) were previously handled by the routine
show-everything . This is still available, but the display interface is much easier to use.

(display ’input-array) or (display ’input)
Displays in input order story sentences that have been loaded so far as stored in the knowledge
base. Previously this was handled by the command show-input-array , which is still available.

4.2.2 Retrieval

(retrieve concept topic super sub print-subnets) [function]

Purpose: Retrieves wff names of propositions classified under a particular concept from the topical
classification table.

Syntax: Retrieves the propositions for topic and concept . If print-subnets is t, the contents of subnets
will be exhaustively retrieved. If sub is t, topics beneath topic in the hierarchy are also printed
(also concepts beneath concept in the type hierarchy); if super is t, concepts above concept are also
included. If no topic is specified, all topics are retrieved. Retrieve may be abbreviated to ret .

Examples:

(retrieve ’lrrh)

returns a list of wff-names which are about lrrh , not including beliefs.

(retrieve ’animal ’tp.spec nil t)

returns a list of wff-names which assert instances of animal , and any subtype of animal .

(get-everything subnet &optional (print-subnets t)) [function]

Purpose: Retrieves a list of all wff names in a subnet

Syntax: subnet may be (environment-main-net *environment*), (environment-topic-net *en-
vironment*) , or any other subnet. Note that if you use a topic net, meaning postulates won’t
be included. Get-everything returns a list of all the propositions in subnet , including its subnets if
print-subnets is t.

Examples:

(get-everything (environment-topic-net *environment*) t)

returns a list of every formula name, including modal formulas, but no meaning postulates.

4.3 Asking Questions

These routines are to be used when asking a yes/no or wh question. Numerous system parameters are
available to change for maximum control of the system. These are described in a later section.

(question &optional formula number effort) [function]

Purpose: To answer yes/no and some wh questions.

CHAPTER 4. QUESTIONS AND QUERIES 70

Examples:

(question ’(E x (x girl) (x happy)))

(question ’(WH x (x girl) (x happy)) 2)

(question ’(WH x (x girl) (x happy)) 2 1)

(q)

Remarks: Question may be abbreviated to q . This uses a goal-directed inference mechanism which will
be described in detail shortly. If no formula is given, the system continues working on the previous
question. For wh-questions, if number is specified, the system stops after finding number answers. If
effort is specified (must be an integer between 0 and 3), it controls how hard the question-answerer
will work; otherwise *question-effort* is used. An effort of 0 specifies lookup and specialist
evaluation only; 1 indicates that splitting of subgoals may be done; 2 allows inference as well; and
3 allows assumptions to be made. The answer returned is a list of solutions. For yes/no questions,
each list consists of Yes or No, the wffs involved, and the probability. For wh-questions, each list
consists of the set of entities that matched the variables quantified by WH in the question, as well
as the wffs involved, and the probability.

If you want the system to concentrate on a specific answer which you expect, use command proof-q
(or pq) to ask a question whose answer you believe is YES, and disproof-q (dq) to ask a question
whose answer you believe is NO. These should only be used for debugging purposes. Parameters are the
same as for question .

Some display options which may be useful:

(display ’agenda number)
prints access and subgoal actions from the question answering agenda in a readable format. This
should be used when the question answerer has stopped in the middle of answering a question and it
is desirable to see what options it is considering. If number is not specified, all items on the agenda
will be printed; otherwise only the top number of them. Note - this was previously accomplished
using the print-agenda command. For example:

(display ’agenda)
will print out the entire agenda.

(display ’agenda 5)
will print out only the top 5 entries in the agenda.

(display ’subgoal subgoal)
prints a trace of the proof process for a given subgoal in a readable format. It shows at each
stage the subgoal in question, and the further breakdown into subgoals, and how they should be
combined. This may be called in the middle of a question or when the question has finished.
Subgoal is optional for a successful questioning attempt, or may be specified. It must be one
of ’proof or *proof* (the proof attempt) or ’disproof or *disproof* (the disproof attempt). If the
question terminated successfully, ’disproof will be the default if the answer was NO, otherwise ’proof
. If -full or -f is specified, some extra debugging information will also be printed. If debug is not
specified, and the question attempt finished successfully, only those subgoals in the subgoal tree on
the ”proof path” (the ones that contributed to the answer) will be printed. Otherwise all subgoals

CHAPTER 4. QUESTIONS AND QUERIES 71

in the subgoal tree are printed. Note - this was previously accomplished using the print-subgoal
command. For example:

(display ’subgoal ’proof)
displays the subgoal corresponding to the proof attempt.

(display ’subgoal)
displays the proof subgoal if the answer to the current question was YES, and the disproof subgoal
if the answer was NO. Note that no subgoal will be printed if the question hasn’t been answered.

(display ’subgoal ’disproof ’-f)
displays extra information for the current disproof attempt.

(display ’proof)
is just a shorter form for (display ’subgoal ’proof) .

(display ’disproof)
is just a shorter form for (display ’subgoal ’disproof) .

(display ’question) or (display ’q)
displays the current question.

(display ’solutions) , (display ’solution) , (display ’answers) , or (display ’answer)
repeats the answers for the last question.

Useful global variables and constants:

solutions
This contains the list of all answers found during a question answering attempt, the wffs used to
get the answer, and their probabilities.

question
The current question being asked.

The system can respond to questions which can be answered Yes or No. The same syntax is used to
ask questions as is used for asserting formulas. For example,

(q ’(lrrh pretty)
would be answered Yes (assuming the input given earlier),

(q ’(E x (x girl) (x pretty)))
would be answered Yes, and

(q ’(A x (x girl) (not x pretty)))
would be answered No.

The system first tries the fastest, easiest method available - a simple lookup, or specialist evaluation.
If this fails, the current effort level governs how hard the system will try to answer the question. Besides
the effort level, there are numerous controls set up so that the user can control the question answerer if
he so desires (see the section on controlling the question answerer).

The system takes the question and its negation as the proof and disproof attempts, respectively (note
that the old system used the negation of the question as the proof attempt, and the question itself as the
disproof - but the new version does not work by contradiction because it is harder to follow the proof) .

CHAPTER 4. QUESTIONS AND QUERIES 72

It then tries to prove both simultaneously - if the proof subgoal can be proven, the answer to the question
is YES; if the disproof subgoal is, the answer is NO.

Each subgoal (top level or result of an inference) is put through a natural-deduction-like splitting pro-
cess, where it is split into simpler subgoals. Quantified conditionals and logical conditionals are handled
by assuming the antecedent, and adding a new subgoal to prove the consequent. Logical (independent)
and s are split into a separate subgoal for each component of the conjunction, and these are all added
as new subgoals. For disjunctions, the negation of all except the first part is assumed, and a subgoal is
added for the first member of the disjunction. Nothing else is considered splittable.

When a subgoal is no longer splittable, access actions are created for it and added to an agenda of
things to do when answering the question. The system then looks up rules and facts in the knowledge
base and compares them against the subgoal, creating new subgoals, until eventually one of the subgoals
is proven true (or it runs out of time). MP’s may also be used (in reverse) to help answer the question.

When finished, the answer is printed, as well as an indication of how hard the system had to work to
answer the question.

Sometimes the system can find more than one inference path leading to an answer, and these may
support or contradict each other. EPILOG adjudicates the answers to determine what the answer is and
what the probability should be. However, currently it cannot determine inference path subsumption or
specificity of the inference paths, so it does not take that into account when doing the calculations. This
can lead to probabilities higher than they should be.

Responses to questions may optionally be ”said” in English - see the section called Response Gener-
ation for details.

The current method has changed significantly from previous versions, which tried lookup and specialist
evaluation, then simple backchaining, and finally proof by contradiction to answer the question. The
new method also tries the lookup and specialist verification, and has both a proof attempt and a disproof
attempt, and uses an agenda, but the backchaining and proof by contradiction have been replaced by a new
method which uses a natural-deduction-like breakdown of subgoals, along with a modified backchaining
approach.

An effort level controls how hard the question answerer works. This may be specified for an individual
question (when the question routine is called), or globally using the tweakable paramter *question-
effort* . The effort levels are as follows:

0: Lookup/verify only - the system does a simple lookup of the question, or may use a specialist to
evaluate it.

1: Allow natural-deduction-like breakdown of subgoals. This also allows the use of the agenda. For
questions which consist of several parts, or with variables to be matched, this is the minimum level
required (especially for wh-questions). No inference is actually done, just retrieval of facts and
unification.

2: Allow inference. Not only facts are allowed to be used, but also conditional statements (rules and to
a limited extent, meaning postulates).

3: Allow assumptions to be made. For some kinds of subgoals, the natural way to solve them is to assume
one part, and try to prove the rest (for conditionals and disjunctions). These assumptions are
actually entered (temporarily) into the knowledge base, and input-driven inferencing is optionally
attempted on them. This is the most expensive operation because the assumptions must be retracted

CHAPTER 4. QUESTIONS AND QUERIES 73

when the question is finished. Unlike ECoNet, ONLY these assumptions are actually entered into
the knowledge base - the subgoals themselves are not.

If a simple lookup or specialist evaluation fail to answer the question, the system tries to simultaneously
prove the question (the proof attempt) and its negation (the disproof attempt). If the question itself can
be proven, the answer is obviously YES; if its negation, the answer is NO. Note that the previous version
worked by contradiction, and the question was the disproof attempt, and its negation, the proof attempt.
The current version could also have used contradiction, but it is more difficult to follow the proof, and
also requires more retraction later.

An agenda of actions is used to keep track of what is left to try. There are two types of actions on
the agenda: access actions, and subgoal actions. Access actions look for more wffs to compare against a
set-of-support proof or disproof wff. Both regular backward inference and contrapositive inference are
supported here (i.e. matching the consequent, resulting in the antecedent becoming the new subgoal; or
contradicting the antecedent, resulting in the negation of the consequent becoming the new subgoal). If
any wff is useful for either direction with that set-of-support wff, a subgoal action is added to the agenda
for it. Some checking is done to try to avoid runaway recursion, especially with transitive rules. Also,
meaning postulates (and simplification schemas) are retrieved and applied (in the backward direction
only). These are highly penalized in the agenda ordering so that they occur at the bottom of the agenda,
as a last resort.

Subgoal actions prepare and add a new subgoal using the two wffs and the comparison information
from the access (substitutions, residues, etc). After subgoal splitting, access actions for this new subgoal
are added to the agenda.

When a subgoal is first entered, it may be split into smaller subgoals. The answers to the smaller
subgoals are then combined if necessary to get the answer to the parent subgoal. Subgoal splitting
continues, building a subgoal tree, until a ”leaf” subgoal is reached (unsplittable), and access actions are
added for that subgoal. A ”difficulty” measure is added to each subgoal depending on the split done.

The agenda, at any time, contains actions for both the proof and disproof attempts, ordered by depth
of search so far, interest level of the particular subgoal, complexity of wffs involved, the ”difficulty” value
determined by subgoal splitting, and probability. The system takes one action from the agenda at a time,
and does it. If subgoal action result is YES or NO, the answer is backed up to the parent subgoal. This
may or may not solve the parent subgoal as well - if so, the answer is backed up again. If the top level
proof subgoal answer is YES, the answer to the question is YES; if the top level disproof subgoal answer
is YES, the answer to the question is NO. We stop going through the agenda if any one of the following
stopping conditions are met:

1) There are no more items on the agenda.
There is not enough information to answer the question.

2) The maximum number of iterations has been reached.
The tweakable parameter *qa-iterations* is used to control the search process so that if a question
cannot be answered, we stop fairly soon instead of going on forever. This can also be used to single
step through the system and inspect things as they happen.

3) An answer has been reached, and it is of sufficient probability.
An answer has been reached and its probability is greater than the threshold *question-threshold*
. This threshold allows us to ignore answers that are not very likely, and to keep searching for oth-
ers. (Note, if the minimum effort *minimum-effort* has not yet been expended, the system will
continue looking for answers until it has been).

CHAPTER 4. QUESTIONS AND QUERIES 74

4) *max-wh-difference* has been specified, and any further searching will go to depths lower than
this flag indicates (wh-questions only).

If the system stops because the maximum number of iterations has been reached, the process can
be continued by invoking question with no formula. If it stops because an answer was reached, we can
either accept that answer, or tell the system to go on and find others (again, by invoking question with
no arguments). The easiest answer to obtain is the one that comes back first; this may or may not be
the one with the highest probability.

If an answer to a YES/NO question is found, and its probability is less than 1, there is a possibility
that there is more evidence out there to support or contradict the answer. One should be able to examine
the agenda to see if the information there is likely to lead to another answer. Since that is quite difficult
to do (you might as well continue trying to answer the question!), a *minimum-effort* parameter has
been introduced. This is the minimum number of iterations to use when answering a question. If an
answer is found (of probability less than 1) and this many iterations (the default is 5) have not been used,
the system will continue trying to find another answer until that minimum is reached. Multiple inference
paths for YES/NO questions are combined to give the correct answer and probability.

For wh-questions, often all the answers are obtainable with the same amount of work each - i.e.
the same depth. To prevent the system from ”trying too hard” to get more answers, the *max-wh-
difference* flag was introduced. This flag is the maximum difference between the depth required to get
the first answer, andthe depth required to get any subsequent answer. If set to nil, this flag has no effect
at all on the search. Otherwise, once the first answer is detected, the agenda is reordered in more of a
”breadth-first” manner, and search continues until a depth lower than the maximum is detected on the
agenda. This is most efficient if the flag is set to 0 - which appears to give the desirable results in most
cases (so it is the default). If the system stops because of this, doing (q) again will resume the search (at
least for a while).

Actions on the agenda are ranked based on their depth (rank) (high rank preferred over low), type
(subgoal preferred over access) (regular preferred to contrapositive), a combination of interest and com-
plexity (the interest is divided by the complexity to ”normalize” it, and a high value of this ration is pre-
ferred to a low value), difficulty (low preferred over high) and probability (high preferred over low). How
much each of these contributes to the ranking is handled by tweakable parameters *qa-access-weight*
, *contra-weight* , *rank-importance* , *interest-importance* , *difficulty-importance* and
prob-importance . These are initially set up so that rank, depth and type are highly important,
followed by difficulty, interest and complexity. These may be fiddled with by the user to the optimal
performance for a specific group of questions if desired. Setting one of these to 0 eliminates that item
from consideration in the ranking. Higher ranks, i.e. deeper subgoals are intially preferred. But if the
system goes off on a tangent, it can go deeper and deeper getting nowhere. To prevent this, the system
initially prefers deeper depths, until they get to half of a ”maximum” depth *qa-depth* . After this
they become less and less important, and when the depth reaches the maximum it will not be considered
at all in the calculation (which should make the subgoal quite undesirable, unless it is one of the few
remaining). Since the initial probability is not known, *initial-prob* is used as the probability to order
initial access actions with. This is initially .75, and should be less than 1 so that the initial subgoals
are not favored over later ones simply because the later ones have used knowledge base formulas with
probabilities less than 1. This does not affect the probability of answers - just agenda positioning.

Interest calculations may also include ”inherited” interest - similar to what the input-driven inference
mechanism uses. Here the maximum of the agenda item’s interest and its inherited interest is used in
the interest-complexity calculation.

CHAPTER 4. QUESTIONS AND QUERIES 75

For access actions, the ranking also includes the complexity of the testing literal selected from the
proposition, with high complexity being preferred over low, and an additional weight for comparisons
which involve residues.

Even with carefully chosen parameter values, it is still possible for the system to ”go off on a tangent”
and work completely on on proof/disproof attempt to the complete exclusion of the other. If half of
qa-iterations have been used up (with no answer) on just one of the attempts, the top agenda item
for the other attempt is extracted from the agenda, ”primed” to make it more interesting, and the system
attempts to work with that for a little while. This doesn’t happend very often, but it can make the
difference between answering a question or not answering it. This is only done for yes/no questions where
qa-iterations is greater than 5.

4.3.1 Subgoal Splitting

Subgoals are put through the splitting process whenever added, whether the subgoal is a top level subgoal
(the question or its negation), the result of a previous split, or a new subgoal resulting from an inference.
The subgoal tree is built by recursively splitting subgoals using the following:

1) For a conditional subgoal, the antecedent is assumed, and a subgoal is created to prove the consequent.
If the effort level is set so that assumptions are not allowed, conditional subgoals are not even
attempted.

2) For a conjunction where all the parts are ”independent” (i.e. none of them contain variables quantified
in another part), each part becomes a new subgoal, and the ”child” subgoals’ answers will be
combined with and to get the parent subgoal’s answer.

3) For a disjunction (again with ”independent” parts), the negation of all except the first part are
assumed, and a new subgoal is added to prove the first part. If the effort level is such that
assumptions are not allowed, new subgoals will be added for each part, and their answers will be
combined with or to get the answer to the parent subgoal.

4) All other subgoals are considered non-splittable ”leaf” subgoals. Access actions are added for these
to the agenda.

Assumptions are actually entered into the knowledge base during this process. They are flagged as
assumptions, and may only be used in verification or inference by the subgoal resulting from the split
where the assumption was made, and any descendants of that subgoal. Forward inference may optionally
be attempted on the assumption (if *goal-forward* is t), and any inferences made will also be flagged as
assumptions, and will be available to any subgoal the original assumption is available to. The assumptions
and their inferences are all retracted when the question is finished.

A difficulty measure is added during the splitting process - splits which requiring assumptions have
the highest difficulty; those requiring no splitting have the lowest difficulty. This difficulty measure is also
cumulative - the difficulty of a particular subgoal is the sum of the difficulty measure obtained in each split
required up to that subgoal. The difficulty levels are handled by tweakable parameters: *quantified-
difficulty* (value 20) is the difficulty assigned to non-conditional quantified subgoals; *conditional-
difficulty* (value 30) is assigned to conditional subgoals solved using the ”assume antecedent - prove
consequent” method; *split-difficulty* (value 10) is for subgoals which are split into several parts
(simple and/or splits), and *assume-difficulty* (value 30) is for disjunctive subgoals which are solved
by assuming the negation of one of the disjuncts.

CHAPTER 4. QUESTIONS AND QUERIES 76

Each node in the subgoal tree also contains information on how the answers returned from its children
should be combined (and or or).

4.3.2 Access Actions

Each access action consists of a set-of-support wff, a testing key from that wff, and classifications to
use to find formulas to compare with the literal. For each formula retrieved, the trigger keys are taken
from it and compared with the testing key. Positive trigger keys are compared for compatibility, negative
for incompatibility (regular and contrapositive backward chaining). If the obtained wff is a meaning
postulate, only its positive keys will be checked.

We go through this list of classifications, retrieving clauses and comparing against the set-of-support
key until:

1) A wff is found which compares favorably with the set-of-support key.
Subgoal actions are added to the agenda with information from this comparison (there may be
more than one - several keys from the retrieved wff match, or with different unifications from the
specialists). The remaining wffs from that retrieval, as well as remaining classifications are put back
onto the access action, and it is placed back on the agenda in a lower position.

2) The maximum number of wffs to test per access (*max-wffs*) has been reached.
The remaining wffs and classifications are put back on the agenda just as for a matching wff (but
no subgoal is added).

3) The maximum number of classifications to retrieve per access (*max-class*) has been reached.
The remaining classifications are put back on the agenda as above.

Anytime a classification has been exhausted, if appropriate, we add ”super” classes (using the parent
or types (if a constant) of the first part of the classification and the same topic), and ”sub” classes (using
the children and instances of the first part of the classification, and the same topic). For example, a super
access for (wolf . tp.social) would be (warm-blooded-quadruped . tp.social) , and sub accesses for (creature
. tp.appearance) could be (human . tp.appearance), (animal . tp.appearance), (c1 . tp.appearance) , etc.

These access actions are similar to the ones used by ECoNet . If we do only one classification per
access, and allow unlimited comparisons with wffs per access, we have essentially the same action, except
that EPILOG stops after the first match and attempts to use it, whereas ECoNet had to compare
against all clauses in a classification at once. This sometimes was rather annoying since it would compare
against a whole pile of clauses, any one of which was good enough to answer the question. EPILOG
avoids that, without losing any possibilities for comparison, since they are still waiting on the agenda.
The maximum wffs and maximum classifications allowed is an attempt to equalize the actions on the
agenda somewhat - an access that retrieves nothing is very fast, and gives no results. We may need
numerous of these actions to get anywhere. However, if the same number of actions are allowed where
lots of comparisons are being done, they take much longer. This means that setting the number of
iterations as a method of controlling how long a question should be allowed to take will not work quite
the way we want. By changing those maximums, we can get more control.

Access actions are now ranked based only on the set-of-support formulas they are looking for wffs for,
unlike ECoNet , which also took into account the number of propositions available through an access. If
the testing literal is negated, it is placed further down on the agenda than if not (using *contra-weight*

CHAPTER 4. QUESTIONS AND QUERIES 77

for the amount since it is more likely that it will be incompatible with something, and inompatibility
is only used for contrapositive inference). The ordering of access classifications is an independent
problem from the ordering of agenda items. Access classifications are ordered in the following manner:
classifications involving individuals firsts, followed by those involving a type predicate, followed by those
involving sorts, followed by all others. If the first classification in a set to look at is a type classification,
and the subgoal is existentially quantified, the system will look at the instances and subtypes of the
classification before the classification itself, and before the other classifications.

If a rule has been applied once, it may be applied again, but only if the same trigger key is used.
This prevents the same rule from firing in both the forward and backward directions, which could cause
the system to oscillate forever. Access actions must also ensure that we are not recursively digging into
a hole, which can happend especially with transitive rules. To prevent this from happening, the system
insists that for any particular rule to be used more than once in a proof, a non-conditional must have
been applied between the two uses. For example, suppose we have as facts e1 before e2 before e3 before
e4 , and rule

(A x (A y (x before y) (A z (y before z) (x before z))))
We can apply the rule to question (e1 before e4) , resulting in subgoal

(E x (e1 before x) (x before e4))
If we immediately apply the rule again, we’ll get subgoal

(E x (e1 before x) (E y (x before y) (y before e4)))
which is going nowhere fast! However, by forcing it to apply a fact (e.g. (e3 before e4)) first, we can
prevent this - the resulting subgoal would be (e1 before e3) , and we can apply the rule again, and then
(e1 before e2) to answer the question.

4.3.3 Subgoal Actions

These actions correspond to the resolution actions in ECoNet , although the techniques used are some-
what different here.

Subgoals are created using ”goal reduction” - the dual of rule instantiation. The matching literal in
the retrieved formula is replaced by YES (for negatively occurring literals), or NO (for postively occurring
literals). Substitutions and normalization are done, and the result negated. The resulting formula then
replaces the testing key in the original set-of-support wff.

This new subgoal is then verified - if it evaluates to YES, we have an answer for the current subgoal.
(If the answer is NO, we do have an answer, but it is not of any use to us - just because one set of
circumstances led to a NO, doesn’t mean there isn’t a set that will lead to YES. If the answer is NO,
the other attempt will find it.) This process may also simplify the subgoal. If we have an answer for
this subgoal, the answer is propagated to the parent subgoal, which will examine it and the answers from
its other subgoals so far, and use its combination information to see if the parent subgoal is solved. If
so, the answer is propagated to its parent, and so on. When the top level proof or disproof subgoal has
an answer, the question itself is answered - YES if the proof attempt was successful; NO if the disproof
attempt was.

Unless we had a YES (or NO - in which case this subgoal is ignored) evaluation, we now enter the new
subgoal through the subgoal splitting process, and add access actions for it. The subgoal is also added
as a child node of the parent subgoal it started from. The subgoal tree is not finished after the splitting
process - inference can add to it through the subgoal actions. However, if this subgoal has already been
created from a previous action, or the parent subgoal already has an identical child subgoal, the subgoal

CHAPTER 4. QUESTIONS AND QUERIES 78

will not be added.

4.3.4 Answer Combinations

To combine several answers for a YES/NO question, the following is done: (Note that the rules and the
process is identical to that used by the adjudication in formula assertion). All positive (YES) answers
are gathered, and the resulting probability determined using the rule

(1 − (1 − p1)(1 − p2) ... (1 − pn))
where the pi are the probabilities of the different answers. All negative (NO) answers are gathered and
combined in the same way. Order is not important when combining supporting answers.

If there were both positive and negative answers, the resulting probabilities of these are now combined,
using the rules

pyes = (pyes− (pyes ∗ pno))/(1− (pyes ∗ pno))

pno = (pno− (pyes ∗ pno))/(1− (pyes ∗ pno))
where the pyes is the resulting probability from combining all the positive answers, and the pno is the
probability from combining all the negative answers. The answer is YES is the resulting pyes is higher
than pno, NO otherwise. Note that combinations of negative and positive using these rules are order de-
pendent - this gathering of like answers and combination using the non-order-dependent rule counteracts
that for answer combination, but all answers are not available during forward inference so another rule
will have to be determined that isn’t order dependent to use there.

Note: the system is not yet sophisticated enough to determine inference path subsumption, or that
one path uses more specific information, so occasionally answers will be combined where one should have
been discarded as redundant (e.g. two identical paths except that one uses many humans are happy while
another uses most girls are happy - the girl rule is more specific than the human rule so that should be
used RATHER than the other one, not in combination with it).

The combination method is not being used on WH questions yet.

4.3.5 Comments on Question Answering

When using the question answering subsystem, there are some things to be aware of. There is no
differentiation yet between input-driven rules and explanation (goal-directed) rules, so the same ones are
used for both. Although you can restrict some rules to only be active during this process, the ones that
are used for input-driven inferencing are available here too. For some questions one might ask, the answer
will already be there through input-driven inferencing. The question subsystem can help you for questions
such as ”Does there exist a ...” or ”Do all ...” or for specific questions that input-driven inferencing would
normally have answered already but was stopped due to low probability or too many rule applications,
or for questions whose answers involve the rules which have been flagged as goal only . If additional rules
have been added after the story information has been loaded (without *rule-forward* on), the question
answerer can help there too.

4.4 WH Questions

A wh-question (to this system) is a quantified formula whose top level quantifier is WH . The question
answering mechanism described above is used to answer the question, with one difference - it doesn’t stop

CHAPTER 4. QUESTIONS AND QUERIES 79

after the first answer is obtained - it continues looking for more YES answers. The user may specify that
all answers are to be found, or only n answers. This number parameter can be useful if you only want
a few answers - for example, if one needs to find out who knows Lisp to ask him a question, only a few
names are needed, but for a classlist all names would be.

For example,

(q ’(WH x (x girl)))
would give a list of all the girls the system knows about.

(q ’(WH x (E y ((lrrh meet x) @ y))))
will show everyone who met Little Red Riding Hood.

(q ’(WH x (x human) (x know-about LISP)) 2)
will give the first two people it finds who know about Lisp.

The answers returned for a wh-question contain lists of the entities which matched the variables
quantified by WH in the question. If any of the matches is a functional term, the system will try to
simplify it using a specialist. Note that answer adjudication is not being done yet for wh-questions.

Currently wh-questions are handled by the main question answering mechanism. The user may specify
if all answers are to be returned or only the first n . Only YES answers are considered. A wh-question
is one which contains a variable quantified by WH, which is not embedded in a term somewhere. While
yes/no questions are answered with YES or NO, wh-questions return the list of entities which match the
variables quantified by WH in the question. However, if there cannot be any entities of that type, the
system will answer NO (just as if the question were phrased with E instead of WH). The same answer
may be obtained through different inference paths. The system will detect these, but only when the path
has finished and it can compare the matching entities.

4.5 Saving Question Results

Optionally, the results of a query can be permanently saved by the system. If the *save-results* flag
is t , any query result which required inference is saved (either a specialist answered it, or one or more
rules had to be applied to answer the question). If the question was existentially quantified, or was a
wh-question, the ”answers” are substituted for the variables before the result is saved. The user may
control how hard the system had to work to get the answer before it is saved - either all results are saved,
or only those requiring n or more rules to answer the question (flag *result-difficulty*). Optionally,
input-driven inference will be done on the result when it is loaded (*result-forward*).

Note that if the answer is a combined answer (i.e. several answers were found and adjudicated),
further calculations using the formula may result in inaccurate probabilities. When this is solved for
input driven inference, this will be remedied as well.

4.6 Controlling the Question Answerer

Parameters which may be tweaked to control the proof process:

General Question Parameters:

qa-iterations

CHAPTER 4. QUESTIONS AND QUERIES 80

The maximum number of actions to be done from the agenda during a question answering attempt.
If the attempt stops due to reaching this maximum, it can be restarted by just doing a (q) command
with no formula. The default is 10, but it may be changed using the tweak command.

question-effort
The default effort level which will be used for all questions. The values are 0 -lookup/specialist

evaluation only, 1 - allow subgoal splitting, 2 - allow inference, 3 - allow assumptions. The default
is 3 - the maximum effort level.

question-threshold
The probability threshold above which answers are accepted. Any answer obtained with a proba-

bility lower than this is rejected (but is saved on the *other-answers* list). This threshold is initially
0.4, but may be reset using tweak .

minimum-effort
The minimum number of iterations to use in finding answers to a question. If an answer with
probability less than 1 is found, and this many iterations have not been used yet, the system will
try again to find another answer. The default is 5.

max-wh-difference
The maximum difference allowed between the depth of the first answer obtained for a wh-question,
and any subsequent answer. If set to nil, all possibilities are tried to exhaustion. The default is 0,
which gives the most efficient result, although may not give all the desirable answers in all cases.

Parameters which affect position in the question-answering agenda:

qa-access-weight
This is the penalty used for access actions when ranking them to put them on the agenda. It is

initially 40, which ensures that subgoals get preference over access actions. This may be changed
using tweak as well.

contra-weight
This is the penalty for contrapositive subgoals, and for accesses which will lead to contrapositive

subgoals. It is initially 10. This may be changed using tweak as well.

rank-importance
This is the weight of the rank when calculating agenda position for actions. It determines how

much higher ranked actions are preferred over lower ranked actions. It is initially set to 100, which
makes it the most important features for ranking agenda items, but may be reset with tweak .

qa-depth
This is the ”maximum” depth that will be considered in the agenda positioning calculation. When a
subgoal’s depth gets to half this amount, the amount it contributes to the agenda position gradually
tapers off until at the maximum, there is no contribution. This makes the subgoal or access action
quite undesirable, unless it is the only one available. This is initially set to 20, which means that
the rank importance starts tapering off at 10.

prob-importance
This is the weight of probability when calculating agenda position for actions. It determines how

much actions with higher probability are preferred over those with lower probability. It is initially
set to 100, which makes it the second most important feature forranking agenda items (probability
numbers are less than 1, rank numbers are usually greater - this is why probability becomes second

CHAPTER 4. QUESTIONS AND QUERIES 81

most important feature even though the ”importance” numbers are the same), but may be reset
with tweak .

initial-prob
This is the probability to use in calculating the agenda position of initial (depth 0) subgoals. It

is set to .75 initially, and should be less than 1 to prevent the system from preferring the initial
accesses to later ones which have actually retrieved information from the knowledge base. Note:
this does NOT affect the probability of the answer, only the agenda positioning of initial subgoals.

interest-importance
This is the weight of the subgoal’s interest to complexity ratio when calculating agenda position for
accesses or subgoals. It determines how much actions with higher interest measures are preferred
to those with lower measures. It is initially set to 10.

difficulty-importance
This is the weight of subgoal difficulty when calculating agenda position for accesses or subgoals.

It determines how much actions with lower difficulty measures are preferred overthose with higher
measures. It is initially set to 50.

quantified-difficulty
This is the difficulty value added to subgoals which are quantified but are not conditionals (e.g.

existentially quantified). It is set to 20, which penalizes existentially quantified subgoals moreso
than simpler subgoals, but less than the more difficult subgoals requiring assumption.

conditional-difficulty
This is the difficulty value added to conditional subgoals which are solved by assuming the an-

tecedent and trying to prove the consequent. It is initially set to 30 (quite high).

split-difficulty
This is the difficulty value added to subgoals which are split into several simpler subgoals, without
any assumptions. It is initially set to 10 (low).

assume-difficulty
This is the difficulty value added to disjunctive subgoals which are solved by assuming the negation
of one of the disjuncts and trying to prove the rest. It is initially set to 30 (quite high).

mp-weight
This indicates how much to penalize access actions which are looking for mp’s to infer with. It is

initially set to 10000, a very large penalty, as the mp’s are rarely helpful in question answering (but
can be, so they must be available).

residue-penalty
This indicates how much to penalize subgoal actions which have a residue involved in the compar-
ison. The residues are rarely helpful and so the penalty is set quite large (10000).

use-inherit
This flag indicates whether or not to consider ”inherited” interest in positioning agenda items. It

is set to t (use) by default.

qa-inherit-amount
This flag controls how much the inherited interest descreases from parent subgoal to child subgoal.
It is initially set at 20.

CHAPTER 4. QUESTIONS AND QUERIES 82

favor-interest
This is the amount to ”prime” an agenda item with when it is moved to the top of the agenda after
too much time has been spent on the other proof/disproof attempt. It is initially set to 1000. Note
that *use-inherit* must be t for this to be considered, as the interest is added as an inherited
interest value.

favor-position
This is the amount above the highest agenda item to place an agenda item when it is moved to

the top of the agenda after too much time has been spent on the other proof/disproof attempt. It
is initially set to 100.

Parameters which affect ACCESS actions:

max-wffs
The maximum number of retrieved formulas to test in an access action. Any formulas not tested

are put back on the agenda, so nothing is lost. This is used to control how long actions can take.
It is initially set to 10, but may be changed using tweak . Changing it to a higher value may make
some accesses take longer because more wffs are tested, but the matching wff may be found sooner.
There is a trade-off - if this access action does not contain the wff we need, having a low *max-wffs*
allows us to get on to the next action more quickly.

max-class
This contains the maximum number of classifications to retrieve wffs for in an access action. Addi-
tional classifications are put back on the agenda for a later time. This is initally set to 5, and may
be reset using tweak . If this parameter is set to 1, and *max-wffs* set to a very large number, the
access actions are more similar to ECoNet ’s.

unify-sorts
indicates wheterh sorts should be considered when unifying terms. Initially set on (t).

Parameters which affect SUBGOAL actions:

goal-forward
This flag indicates whether or not input-driven inferencing should be attempted on assumptions
made during the proof process (it will only have an effect if input-driven inferencing in general is
turned on - using *story-forward* and *rule-forward*). It is initially turned off, but may be
turned on using the tweak command.

Trace values which can be used to view the question answering process:

subgoal -Shows splitting of subgoals

qa-test -Shows tests for (in)compatibility between set-of support clauses and accessed clauses

qa-success -Shows successful subgoal actions during the qa process

qa-access -Shows access actions done during the qa process

qa-eval -Shows evaluations and simplifications that take place during the qa process

qa-time - Keeps track of how much time each question takes

CHAPTER 4. QUESTIONS AND QUERIES 83

qa-iterations - Keeps track of how many iterations each question takes.

qa-answer - Displays the answers to the question

qa-after - Prints successful subgoal (proof trace) AFTER question has been answered.

qa - Traces the minimum essentials for question answering - the time and iterations, and the answer

qa-all - Traces everything during qa, including qa-time, qa-success, qa-access, qa-eval, qa-test, subgoal

qa-int - Traces the minimum to see how the question was answered, including qa-success, qa-answer,
subgoal, qa-time, qa-iterations .

4.7 TroubleShooting

Sometimes a question does not get answered the way you think it should. This section describes what
to do to find out why. If after trying these things you still can’t figure out why the question is not being
answered correctly, don’t hesitate to contact the authors.

4.7.1 What to do if an Answerable Question is NOT Answered

The first thing to do is to ensure that the information needed to answer the question is actually there
first - both rules and facts. Once you’ve figured out what you think should happen, you can compare it
against what the system is actually doing to get some idea of what is going wrong.

To see what is happening, try tracing qa-int and qa-test , and ask the question (q *question*) again
to see what is happening. You want to see if it retrieves the rules and facts you expect it to use to
solve the problem, as well as seeing if it compares the question subgoals successfully with those formulas.
You should probably set *qa-iterations* to something small (like 1) so you are not overwhelmed with
output, and use (q) to continue the question after it stops. You can also look at the agenda ((display
’agenda)) between steps to see what the next actions are going to be. Common problems which can be
detected this way are described shortly.

Another thing to try is to force the system to spend all its resources trying to answer the question the
way you think it should be. If you think the answer should be yes, use the command proof-q instead of
q ; if you think it should be no, use the command disproof-q . If this gives an answer, then the problem
lies in the ordering of the agenda items. It is possible that changing the interest level of a predicate might
help, but more likely it won’t. You can play with the parameters controlling agenda positioning, but this
most often leads to frustration, with one set of parameters working well for one question, but no others,
etc. This is a problem best left to the authors.

Some possible problems are:

A rule or fact which is needed is not found
This could be a classification problem in that the appropriate classifications are not checked under to find
the rule. Ensure that the types given in the rule and question are not incompatible. There also could be
a problem in that a particular key of a rule or question which should be a trigger key wasn’t selected as
such. The same problem can occur during input-driven inferencing, and the troubleshooting section of

CHAPTER 4. QUESTIONS AND QUERIES 84

that chapter can give some assistance as to what can go wrong and how to fix it. To trace information
on classifications used in question answering, trace qa-access .

The comparison between subgoal and retrieved wff failed
A common problem is to ask a question using **, and have facts which only use *. It is usually better to
ask the weaker form of the question. Trigger keys may not have been selected properly, in which case the
system won’t try to compare the right keys in the subgoal and retrieved formula. This is analagous to the
input-driven inference problem of unsuccessful matches; see that section for more hints. Specialists may
be required to compare two keys, and if this fails and you think it shouldn’t have, trace the particular
specialist to see what has happened. A common problem here is that information applicable to the
specialist wasn’t actually entered into the specialist because of missing sorts on the arguments.

An evaluation failed
At some point along the inference path, evaluations may be needed, and these may be done by simple
lookup or by specialists. If a subgoal is entered into the system which seems like it could be simpler,
or could be completely answered, try tracing the specialist that you believe should have helped with
it. There may be a sort problem like that described in input-driven inference (missing sorts on input
cause facts to not be entered into the appropriate specialists), or perhaps the specialist can indicate why
something won’t evaluate (trace the specialist’s actions). Once you have the problem narrowed down
to something like this, try evaluating that piece of information outside the question (by asking it as a
question) - at least the problem has been simplified to a simpler question which doesn’ t seem solvable.

Type information is missing
A common problem in answering wh-questions or ”does there exist” questions is that the entity which
the question was intended to find cannot be because no type has been associated with it. These types of
questions require that the system start from the top level entity type, and work down the type hierarchies,
looking for instances of each subtype to use. If the desirable entity was not given a type, it cannot be
found this way. All entities should be given types on input.

The question itself should also be phrased with type information (if available), mostly for efficiency
reasons. When asking wh-questions or ”does there exist” questions, if a type is not given for at least one
of the variables, the system will have to waste much of its resources looking at every possible entity in
the system. If given, types can narrow this search down dramatically, and this can make the difference
between the question being answered and not answered.

Not enough resources were devoted to the question
The number of iterations allowed was not high enough (unlikely if the default was used), or the effort
level allowed to be used by the specialists was not high enough (again unlikely if the default is used). It
is possible for some questions to require more than the normal maximum of iterations, but this should
only occur for some wh-questions. Asking with proof-q or disproof-q should help indicate if this is the
case. If the appropriate question routine answers the question, then perhaps increasing *qa-iterations*
will enable the question to be answered by q .

The system is running off on a tangent
It is quite difficult to order and control the agenda for optimum performance on all questions. Controls
have been put in to try to prevent this, but occasionally a question will be asked for which the usual

CHAPTER 4. QUESTIONS AND QUERIES 85

ordering parameters do not work well. Playing with these can be quite a hassle. Check the rules involved
first to make sure they make sense and all the bracketing is correct, and then contact the authors.

4.7.2 What to do if a Question is Answered Wrong

A scarier problem occurs when a question is answered incorrectly. In this case, a NO or YES answer is
recieved for a question which should have been answered the other way, or should be unanswerable. In
this case, look at the inference path used to get the answer (use (display ’subgoal)), and check to see
that all the rules and facts are being applied correctly. There may be an error in a rule which causes this.
If nothing strange can be detected in this way, contact the authors.

Chapter 5

Specialists

Specialists are special purpose inference mechanisms designed to accelerate certain parts of the theorem
prover’s operation in certain domains. These are domains where the usual inference rules are either
grossly inefficient, or cannot be used at all. These specialists may use different representations (trees,
graphs, etc) and methods to achieve their efficiency. Some examples of domains where special methods
can help are time, color, motion, symbolic expressions, space, part-of relationships, etc.

The specialists may assist the theroem prover in several operations, including literal evaluation, func-
tion evaluation (simplification), and comparison of literals and predicates. They also do checkpointing
and retraction so that their representations remain consistent with the rest of the system.

There are two types of specialists in EPILOG: those which maintain their own representation of story
facts in their domain, and those which only contain static information on predicates in their domain. The
specialists can be used to evaluate a wff (tell whether it is true or false), to simplify a wff by evaluating
functional terms, and even to help compare two wffs. Asserted wffs are also offered to the specialists in
case they want to maintain the information in their own representation. Note that only formulas with
probability 1 are entered into specialists’ representations, and all evaluations done by specialists have
probability 1.

The current system has a number of specialists available for doing inference with temporal relations
between episodes and time (time-specialist), arithmetic relations and functions with numbers (number-
specialist), equality with constants (equality-specialist), set membership relations (set-specialist),
relations and functions with strings (string-specialist), relations between types (type-specialist), episodic
relations (episode-specialist), non-type predicates arranged in a hierarchy (hier-specialist), relations
between colors (color-specialist), and part hierarchies and part-of relationships (part-specialist). There
is also a specialist for handling the ”meta” information which is often required for meaning postulates.
A specialist called the other-specialist enables easy addition of external routines to the system.

For example, if we assert

(e1 before e2)
the time-specialist would be able to take that and store it in its graphical representation. Then later, if
we asked

(e2 after-1 e1)
(where after-1 means strictly after), the time specialist would be able to answer No, which would save
numerous applications of rules about temporal relations. Also, a formula like

(n1 equal (add 7 8))

86

CHAPTER 5. SPECIALISTS 87

could be simplified to

(n1 equal 15)
by the number-specialist .

When the system first starts up, the following specialists are automatically active: type-specialist
, episode-specialist , hier-specialist , part-specialist , meta-specialist , and other-specialist . The others
must be activated in order to use them - using the command use-spec (e.g. (use-spec ’time-specialist
’number-specialist)).

Note that specialists currently do NOT handle probabilities in their domains, so will only be allowed
to store formulas with probabilies equal to 1 in their own representations. Also, any evaluation made by
a specialist has probability 1.

The next sections in this chapter describe the specialist interface and using specialists in general,
followed by a description of each individual specialist, what it does, how it does it, and how to control it.

5.1 Using Specialists

These functions show how to see what specialists are available or active, and how to activate one. More
information on individual specialists can be found in the chapter ”Specialists”.

(use-spec specialists) [function]

Purpose: Activates specialists, loading in their object code, and putting information on the property lists
of affected predicates and functions. If information in a specialist’s domain is to be entered, and it
is deirable that the specialist assist the system with that, then the specialist must be activated first,
using this command.

Syntax: specialists are the names of the specialists to be activated. Specialists can be indicated by their
full names or specified nicknames. If no specialists are indicated, the ones remaining available that
have not yet been activated will be displayed.

Examples:

(use-spec ’time-specialist ’number-specialist)

Remarks: Only specialists from the *available-specialists* list (use command (display ’available-specialists)
) may be activated. A message will be printed if a specialist has already been activated. Some spe-
cialists are automatically activated when the system starts up. Nicknames are accepted for some of
the specialists - for example, the time-specialist may be started with (use-spec ’time) .

To determine what specialists are active or available, or to examine what communication paths have
been set up by the specialists, the display command can be used with the following ”topics”:

(display ’active-specs)
Displays the specialists that are currently active.

(display ’avail-specs)
Displays the specialists that are available for activation. Note that this includes the already active
ones.

CHAPTER 5. SPECIALISTS 88

(display ’spec-effort)
Displays the current effort levels for entry and evaluation.

(display ’interested-party concept)
Display the specialists and literals on the interested party list for concept . If concept is a list of
concepts, the interested party list for each is displayed. Interested party lists are an important part
of communication between specialists, and will be discussed shortly.

5.1.1 Controlling the Specialist Interface

Controls for the specialist interface include several flags:

spec-enter
If t, input and inferred formulas will be sent to interested specialists to store in their own domain.
If nil, no additional storage is done. The default is t.

spec-evaluate
If t, formulas will be sent to interested specialists for evaluation when necessary. If nil, specialists
cannot assist in literal evaluation. The default is t.

spec-compare-preds
must be t for specialists to be used in comparing predicates. Note - this flag should NOT be tweaked
to nil except for certain kinds of testing.

spec-compare-lits
If t, specialists may assist in comparing literals during question answering. The default is nil, as
this can be an expensive operation and its uses are limited. Some complex time questions may
require this comparison, but determining when it is useful is still an ongoing problem.

fwd-spec-compare
If t, specialists may assist in comparing literals during input driven inferencing. This is rarely
helpful, but interesting to play with, so the default is nil.

spec-assert
If t, specialists may make assertions back to EPILOG which are then entered in the same way as
other inferences.

Trace values which apply to all the specialists are as follows:

spec-test - Traces comparisons between literals handed to the interface.

spec-entry - shows literals handed to the interface for entry into

spec-eval - show literals handed to the interface for specialists to evaluate

interested-party - Traces addition to interested party lists, and reassertion of literals from there.

function-eval - Traces evaluation of functional arguments by the specialists.

spec-int - traces all aspects of the specialist interface, including spec-test, spec-entry, spec-eval,
interested-party, and function-eval .

CHAPTER 5. SPECIALISTS 89

5.2 Details of the Specialist Interface

In this system, specialists are allowed to assist the theorem prover in several ways:

1) Literal evaluation
A simple literal may be quickly evaluable by a specialist where the main theorem prover may need
many inference steps to do it. For example, if we have

(t1 before t2)

(t2 before t3)
and

(t3 before t4)
in our knowledge base, the time specialist can evaluate

(t1 before t4)
in one step, whereas the theorem prover needs two inference steps using the transitivity axiom.

2) Function evaluation
Functional terms may be simplified by a specialist, simplifying the overall proposition. For example,
(max-of n) might simplify to 3 . This is used to simplify terms. In addition, asserted literals with
functional terms can be transformed into several literals which set the desired information in the
specialist (functional terms are not normally sent to the specialist on assertion). For example, if

((cardinality-of s1) less-than 30)
is asserted, this will be transformed into several assertions (to the specialists only!)

(d number less-than 30)

(s1 set has-cardinality d number)
This allows for complex relations among terms expressed as functions to be maintained (e.g.
((duration-of e1) less-than (duration-of e2))).

3) Predicate comparison
Specialists which do not maintain their own independent storage of story facts ”know” the relation-
ships between particular predicates. These predicate relationships can be used by the main system
to determine incompatiblity or compatibility of literals in a single step which might otherwise take
several inference steps. This is used for simple lookups of information in the knowledge base (for
example, this is how the system knows that

((a kiss b) * e1)
is true when it only has

((a kiss b) ** e1)
or that LRRH is a human when we have (LRRH girl) stored. This is also used during backchaining
to determine compatibility of the clause we have and one we want to use to backchain with, and
during proof by contradiction to determine that the set-of-support clause we have is incompatible
with a proposition we retrieved from the knowledge base.

4) Literal comparison
Specialists who maintain their own individual storage of story facts can sometimes determine in-
compatiblity or compatibility of literals which do not conform to the usual rules (same predicate,
appropriate signs - same for compatible, different for incompatible). These specialists usually work

CHAPTER 5. SPECIALISTS 90

with literals which have more than one argument (e.g. time, numbers) and so the predicate compar-
isons alone are not enough. Also, the internal representation may be used which then also includes
other story facts, so we can combine a number of inference steps into one. These comparisons can
help the theorem prover in proof by contradiction, backchaining and input-driven inference.

5) Assertion
Although a specialist doesn’t really ”help” with assertions, assertions in a specialists domain (with
probability = 1) should be sent to it to maintain in its own representation, for later use in literal
evaluation, function evaluation, and literal comparison.

5.2.1 Specialist Entry and Evaluation

The specialist interface decides which specialist(s) would be interested in a propostion being asserted
(entered), able to evaluate a functional term or a literal, or able to tell if two literals or predicates are
incompatible or compatible. Determining when a specialist is appropriate to call could be done using
pattern matching, but this can be computationally expensive. A simpler mechanism is used which doesn’t
guarantee that all the arguments are appropriate for the given specialist. The specialist itself can do this
last minute checking much more efficiently than the general interface, as it can make generalizations.

Each predicate and function has a list of specialists associated with it. Applicable specialists for
function evaluation, literal evaluation and assertions are simply those specialists on the predicate’s or
function’s property list. For comparing predicates or literals, the list of applicable specialists is the
intersection of the two lists of specialists from the predicates involved.

In addition, each specialist has a list of ”allowed first argument sorts” which gives an additional check
for literal evaluations and assertions to be sent to a specialist. If the first argument matches one of these
sorts, the specialist will be invoked, and further argument checks are done by the specialist itself. Literal
comparison does not check this first argument sort; the specialist must still do unification, and until that
is complete, the first argument sorts may not be known. Functions sorts may be completely different
than those used by literals in the specialist’s domain (for example, the time specialist function date uses
number arguments), so this is left up to the specialist to test as well.

For entry and evaluation, all terms are evaluated first (so far only functions with constant terms are
evaluated). The literal with the evaluated arguments is then entered or evaluated by the specialists. In
ECoNet , for assertions, the specialist interface was called to evaluate literals in the hopes of simplifying
the proposition (including replacing complex functional terms with their values after function evaluation).
The simplified proposition is then kept by the system.

When evaluating, some specialists have different levels of effort that can be used to find an answer.
For example, the time specialist has two: constant time only operations (effort 0), and full blown

search (effort greater than 0). The specialist interface has tweakable global effort values which it gives
the specialists to use - one for entry *specialist-entry-effort* (for any evaluation done for consistency
testing for assertions), and another for evaluation *specialist-eval-effort* (function evaluation and
question answering). These are initially set to the maximum effort level, but may be modified by the
user using the tweak command. The evaluation effort is also used when determining if two literals are
incompatible or compatible.

All applicable specialists are called for assertions, and for determining literal incompatibility (we save
all results and try them one by one). For literal evaluation, function evaluation, and determining predicate
incompatibility, we continue calling specialists until one returns an answer (other than unknown or nil) .

CHAPTER 5. SPECIALISTS 91

When information is modally embedded, information is entered (asserted) into ALL equivalent subnets
within the specialist. Evaluation and literal comparison only required that one subnet be examined
though.

Functions which have corresponding relational predicates may be ”flattened” (e.g. ((cardinality-of s1)
gt 3) -> (s1 has-cardinality cardinality-ofs1) & (cardinality-ofs1 gt 3)) to make it easier for the specialists
to work. This is done only on assertion, and all of the resulting conjunction wffs are asserted (to the
specialists only).

5.2.2 Specialist Communication

Specialists may also communicate with each other through the specialist interface. There are two types
of such communication: immediate evaluation , and delayed communication . Immediate evaluation is
done when a specialist requests that a function or literal be evaluated. All communication is channeled
through the interface itself, so when a specialist requests an evaluation, it is passed to the interface,
which decides who to send it to in exactly the same manner as if it were assisting the theorem prover (as
described above).

Delayed communication involves one specialist adding something to a concept’s interested party list.
The interested party list for a concept consists of entries containing the specialist interested, the assertion
that made him interested, and the current subnet context. Further assertions about that concept cause
the literals on the interested party list to be reasserted to the specialists interested with them. A specialist
may also inform the interface that something has changed about a concept not directly involved in the
current assertion (via propagation for example). The interested party list for this concept will then be
reasserted after the current literal assertion is finished.

Specialists may be activated using the use-spec command. In addition, the user may select what
operations specialists are allowed to assist with, so that a specialists need not participate in all possible
operations even if it is activated. There are several flags set up: *spec-enter* (must be true to enter
anything in a specialists domain), *spec-evaluate* (must be true for specialists to evaluate literals),
spec-compare-preds (must be true for specialists to be used in comparing predicates - Note - this
flag should not be tweaked off except for certain kinds of testing), and *spec-compare-lits* (must be
true for specialists to be used in comparing two literals). The last flag can be tweaked off for most normal
operations.

5.2.3 Specialist Subnets

When storing information into the different specialist representations, subnets are taken into account. In
EcoNet , modal propositions were of the form

[john believes [e1 episode before e2 episode]]

[john believes [mary believes [e1 episode before e2 episode]]]
where EPILOG handles them somewhat differently

[E x [[e1 episode before e2 episode] x] [E y [[john believe x] ** y]]]

[john believes (that [e1 episode before e2 episode])]

[[[e1 episode before e2 episode] p1] and [[john tell mary p1] ** e3]]

[john believes [mary believes (that [e1 episode before e2 episode])]]
In ECoNet , the subnet string was just the first arguments of each embedded modal combined with /’s

CHAPTER 5. SPECIALISTS 92

between (e.g. /john , /john/mary). For EPILOG , however, things aren’t quite that easy. Because of
the storage technique of storing within the subnets based on the content of the proposition, we already
have an ordering constraint on modal propositions forcing the one describing the content to be first (the
one with the), and the ones about who believes it to come after. This means that when we try to enter
something like

[[e1 episode before e2 episode] p1]
we will not have any context available for p1 yet. So we have to wait for propositions of the form

[[john believe p1] * ep1]
and then strip off the episodic embedding clause, detect the modal context and use it to build a sub-
net string (/john-believe for the first two examples, /johnmary-tell for the third ”tell” example, and
/john-believe/mary-believe for the last example). Then the content of the propositional argument (the
last) must be obtained by looking it up in the knowledge base under that argument and topic tp.content
. The the embedding part is stripped off the first wff found there (note, this assumes that there will
only be one phrase describing the content of a propositional constant), The remaining literal is the one
we actually want to store in the specialist representation, and the subnet context is given by the one we
started with.

The same technique is used to separate the literal to be evaluated from the subnet context. This
doesn’t work very well if the propositional argument is a variable, however, since classifications are not
prepared for variables (so there is nothing under tp.content for propos-x for example).

5.3 Type Specialist

The domain of the type specialist consists of literals which contain type predicates. A type predicate is
defined as a predicate which is on one of the type hierarchies, which are set up using command add-hier
. No sorts are involved here, and no functions available either. Predicate operators are not handled by
this specialists - meaning postulates are required to make an assertion from them that the specialist could
use.

5.3.1 Using the Type Specialist

This specialist (’type-specialist) is automatically started up when EPILOG starts up, so is always
active. The hierarchies may be printed using command print-hier , or using the following display
command.

(display ’hier hier-node)
Displays the hierarchy below hier-node , or all hierarchies if no hier-node is specified. If ’-full is specified,
the subtypes are recursively displayed, with their preorder numbers. Otherwise only the hierarchy types
and connections are printed.

Some hierarchies are set up automatically by the system - entity (an overlap hierarchy), term (con-
tains the sorts), and meta-entity (which contains the meta ”sorts” - wff, etc). All type hierarchies are
automatically connected to entity .

The hierarchies themselves may be changed in order to control the actions of the specialist. Con-
sistency testing may optionally be done - controlled by *specialist-entry-effort* . The flag *spec-
compare-preds* controls whether or not the specialist gets invoked at all, and the flag *specialist-
eval-effort* controls how hard it tries to get an answer. An effort level of 0 means constant time checks

CHAPTER 5. SPECIALISTS 93

only (in same hierarchy), 1 means two hierarchies may be involved, and higher means a full search using
all relevant connections will be done if necessary.

Trace values for the type specialist are:

type-test -.SHows comparisons between type predicates

5.3.2 Details of the Type Specialist

Currently, this specialist uses the type hierarchies as a logically true representation of the relationships
among the predicates that appear in the hierarchy. If any change has been made to the hierarchy since the
last renumbering, or there aren’t numbers on two type predicates it is trying to compare, the hierarchies
are renumbered. This numbering makes possible constant time determiantions of the relationships betwen
predicates.

For example, in the ”thing” hierarchy shown below, thing is subdivided into physical-object and
abstract-object , which are further subdivided - physical-object into living-thing and non-living-thing , and
so on. The hierarchy can be used to determine that wolf and human are disjoint because there is no
overlap between the numbering range associated with wolf [38,38] and human [17,26]. Wolf is subsumed
by creature because the numbering range associated with wolf [38,38] is within the numbering range
associated with creature [16,40].

THING [1,112]
| PHYSICAL-OBJECT [2,108]
| | LIVING-THING [3,40]
| | | PLANT [4,15]
| | | ...
| | | CREATURE [16,40]
| | | | HUMAN [17,26]
| | | | | ADULT [18,20]
| | | | | | MAN [19,19]
| | | | | | WOMAN [20,20]
| | | | | MINOR [21,26]
| | | | | | ADOLESCENT [22,22]
| | | | | | CHILD [23,25]
| | | | | | | GIRL [24,24]
| | | | | | | BOY [25,25]
| | | | | | INFANT [26,26]
| | | | ANIMAL [27,40]
| | | | | MICROBE [28,28]
| | | | | BUG [29,31]
| | | | | | ...
| | | | | LARGER-ANIMAL [32,40]
| | | | | | FISHLIKE-ANIMAL [33,33]
| | | | | | BIRDLIKE-ANIMAL [34,35]
| | | | | | | BIRD [35,35]
| | | | | | REPTILE [36,36]
| | | | | | WARM-BLOODED-QUADRAPED [37,39]
| | | | | | | WOLF [38,38]
| | | | | | | FOX [39,39]
| | | | | | SIMIAN [40,40]
| | NON-LIVING-THING [41,108]

CHAPTER 5. SPECIALISTS 94

| | | INANIMATE-NATURAL-OBJECT [42,55]
| | | | ASTRONOMICAL-OBJECT [43,43]
| | | | ROCK [44,44]
| | | | MOUNTAIN [45,45]
| | | | LAKE [46,46]
| | | | ...
| | | ARTIFACT [56,107]
| | | | DEVICE [57,77]
| | | | | VEHICLE [58,60]
| | | | | | CAR [59,59]
| | | | | | TRUCK [60,60]
| | | | | ...
| | | | FURNITURE [78,82]
| | | | | BED [79,79]
| | | | | TABLE [80,80]
| | | | | ...
| | | | ...
| | | FOOD [108,108]
| ABSTRACT-OBJECT [109,112]
| | THOUGHT [110,110]
| | IDEA [111,111]
| | GROUP [112,112]

The thing hierarchy is an exclusion hierarchy - all sibling nodes are mutually exclusive. Overlap
hierarchies are also allowed - in those subsumption can be determined, but not disjointedness. For
example, the subtypes of the explosive hierarchy below are not necessarily incompatible.

EXPLOSIVE [1,]
| BOMB [2,4]
| | CARBOMB [3,3]
| | TIME-BOMB [4,4]
| OTHER-EXPLOSIVE [5,6]
| | CHEMICAL-MIX [6,6]

Any number of different hierarchies are allowed. They will all be connected at the root level to the
entity hierarchy so that individuals of any type can be located even when no specific type information is
given. For type hierarchies which are ”tangled” - that is, the same predicate appears in more than one
hierarchy, we can use this connection to help determine relations across hierarchies. This works much like
the ”metagraph” in the time specialist - within each hierarchy, the preorder numbering scheme is used,
and between hierarchies the connections are used. For example, if we add another breakdown of human:

HUMAN [1,4]
| CAUCASIAN [2,2]
| NEGRO [3,3]
| ASIAN [4,4]

We can determine that Caucasian is subsumed by creature because Caucasian is subsumed by human
(using the preorder numbering from the new hierarchy), and human is subsumed by creature (using the

CHAPTER 5. SPECIALISTS 95

preorder numbering in our original thing hierarchy). Any number of connections between hierarchies may
be used. Consistency checking on input of these hierarchies is very important to ensure that there are
no loops though! (The system does this automatically for you unless the *spec-entry-effort* flag has
been set to 0.)

The type hierarchies have an additional role to play in EPILOG - they help to organize the formulas,
and when the system searches for rules to apply to an input formula or question subgoal, it will ”climb”
the type hierarchy to find additional formulas (e.g. given that wolf1 is a wolf , it would look for rules
about wolf1 , then rules about wolves , then rules about warm-blooded-quadrupeds , and so on).

The type specialist applies the same information and inference methods in modally embedded contexts
(both subnets and simulation environments) as it does to top-level literals. If the system has been informed
that wolf is a subtype of animal, then not only can it prove (wolf1 animal) from (wolf1 wolf), but it
can also prove (lrrh say (that (wolf1 animal))) from (lrrh say (that (wolf1 wolf))), and (lrrh believe (that
(wolf1 animal))) from (lrrh believe (that (wolf1 wolf))).

5.4 Predicate Hierarchy Specialist

The domain of the predicate hierarchy specialist consists of literals which contain predicates that a
hierarchy has been built for. These predicates are set up using command add-hier . Note that before
anything is added to one of these hierarchies using add-hier , the command (set-hier-type newhier
’pred-hier) must be issued, or it will be treated as a type hierarchy! No sorts are involved here, and
no functions available either. Predicate operators are not handled by this specialist - meaning postulates
would be needed to infer the appropriate thing.

5.4.1 Using the Predicate Hierarchy Specialist

This specialist (’hier-specialist) is automatically started up when EPILOG is loaded, so is always
active. Note - all predicates on the same hierarchy must have the same topic indicators for this to work
in a natural way. The hierarchies may be printed using command print-hier , or using the following
display command.

(display ’hier hier-node)
Displays the hierarchy below hier-node , or all hierarchies if no hier-node is specified. ’-full and
’-brief parameters have no effect here.

The hierarchies themselves may be changed in order to control the actions of the specialist, and
consistency checking may optionally be done (controlled by *specialist-entry-effort* . The flag *spec-
compare-preds* determines whether the specialist will even be invoked, and the flag *specialist-eval-
effort* determines how hard the specialist will work. For an effort level of 0, only constant time checks
are done (in same hierarchy), 1 allows two hierarchies to be involved, and anything higher will use a full
search using all relevant connections if necessary. of testing.

Trace values for the predicate hierarchy specialist are:

hier-test - Shows comparisons between predicates on the hierarchy

CHAPTER 5. SPECIALISTS 96

5.4.2 Details of the Predicate Hierarchy Specialist

This specialist uses exactly the same mechanisms (the hierarchies) as the type specialist does. The
predicates on the hierarchies are not types, but the hiearchy mechanism can help determine subsumption
and disjointedness of other kinds of predicates as well. For example, we can have an occurred-near
hierarchy:

OCCURRED-NEAR [1,3]
| OCCURRED-IN [2,2]
| OCCURRED-OUTSIDE-OF [3,3]

This hierarchy can be used to determine that anything that occurred-in something also occurred-near it,
quickly. The difference between these hierarchies and the type hierarchies described above is that these
are not used to help organize the formulas, nor are they ”climbed” to find new formulas. They are used
only for predicate comparison purposes, which saves on the number of rules which must be entered. They
may be tangled just like the type hierarchies.

Like the type specialist, the predicate hierarchy specialist applies the same knowledge and inference
methods in modally embedded contexts that it uses on top-level literals (see page 95).

5.5 Part Specialist

The part specialist is used to accelerate question answering and verification during forward inference
for literals about relations between parts (although so far it can only handle part-of , eventually it will
hopefully handle attachment as well). When a proposition is questioned or asserted in EPILOG which
is in the domain of the part specialist, the specialist is invoked.

5.5.1 Using the Part Specialist

The part specialist is automatically activated when EPILOG starts up.

No special sorts are associated with this specialist.

The domain of the part specialist consists of literals with the following patterns:

Argument1 Predicate Argument2
Sort Sort

part-of
equal

Literals with predicate equal are only handled by this specialist if the entities being equated are parts,
or entities about which parts have been asserted. Literals which have a ”part” or ”part-type” predicate
are also examined by the part specialist. A literal like (h1 hand) will be examined, and the type of h1
saved for later use, or evaluated (depending on the desired operation).

Part predicates are those which exist on a part hierarchy, or on a type hierarchy which connects with
a part hierarchy. Part predicates can be added using the add-part-hier command, and related types
using the add-hier command. Part hierarchies are assumed to be exhaustive unless otherwise indicated;
to indicate otherwise, use the command set-hier-type .

CHAPTER 5. SPECIALISTS 97

5.5.1.1 Part Specialist Display and Control

The part hierarchies may be printed using command print-hier , or using the following display command.

(display ’hier hier-node)
Displays the hierarchy below hier-node , or all hierarchies if no hier-node is specified. If ’-full is specified,
each subpart, its preorder numbers, and bounds are also printed. Otherwise only hierarchy types and
connections are printed.

The usual specialist controls *spec-enter* , *spec-eval* , *spec-compare-lits* work on this
specialist. The part specialist has an additional flag *part-assert* which controls whether or not the
part specialist is allowed to make assertions back to EPILOG. When (p1 part-of p2) is asserted, more
specific information about p1 may be known (such as it is a girl-leg , and not just a leg) and this is
asserted if the *part-assert* flag is t.

Trace values for the part specialist are:

part-entry - Traces input of part-of relations

part-eval - Traces evaluation of part-of relations

part-assert - Traces assertions made by the part specialist

part-test - Traces literal comparisons made by the part specialist

part-min - Traces interesting things about parts, including part-entry, part-eval, part-assert, and
part-test

part-all - Traces everything about parts, including part-entry, part-eval, part-assert, and part-test

5.5.2 Details of the Part Specialist

There are two parts to the part specialist - one is a set of part hierarchies which are very similar to the
type hierarchies (except that subsumption indicates part-of rather than is-a). The root node of any part
hierarchy must be an entity type which occurs on one of the type hierarchies. Any part hierarchies for an
entity type are saved with that entity type so that individuals of that type can inherit the appropriate
parts. The part and type hierarchies may be tangled (parts are types after all!), but the part hierarchies
are not used in organizing formulas, or ”climbed” to find new formulas.

HUMAN-PARTS Root: HUMAN Hierarchy type: EXCLUSION PART HIERARCHY
PROPERTIES: (EXHAUSTIVE) FORM part hierarchy

HUMAN [1,44] Exactly 1, for a total of exactly 1
| BODY [21,44] Exactly 1, for a total of exactly 1
| | ARM [36,44] A set of exactly 2, for a total of exactly 2
| | | WRIST [44,44] Exactly 1, for a total of exactly 2
| | | ELBOW [43,43] Exactly 1, for a total of exactly 2
| | | HAND [39,42] Exactly 1, for a total of exactly 2
| | | | PALM [41,41] Exactly 1, for a total of exactly 2
| | | | FINGER [40,40] A set of exactly 5, for a total of exactly 10
| | | LOWER-ARM [38,38] Exactly 1, for a total of exactly 2
| | | UPPER-ARM [37,37] Exactly 1, for a total of exactly 2
| | LEG [27,35] A set of exactly 2, for a total of exactly 2
| | | ANKLE [35,35] Exactly 1, for a total of exactly 2
| | | KNEE [34,34] Exactly 1, for a total of exactly 2

CHAPTER 5. SPECIALISTS 98

| | | FOOT [30,33] Exactly 1, for a total of exactly 2
| | | | FOOT-OTHER [33,33] A set of at least 0
| | | | HEEL [32,32] Exactly 1, for a total of exactly 2
| | | | TOE [31,31] A set of exactly 5, for a total of exactly 10
| | | LOWER-LEG [29,29] Exactly 1, for a total of exactly 2
| | | THIGH [28,28] Exactly 1, for a total of exactly 2
| | TRUNK [22,26] Exactly 1, for a total of exactly 1
| | | TRUNK-OTHER [26,26] A set of at least 0
| | | ABDOMEN [25,25] Exactly 1, for a total of exactly 1
| | | BACK [24,24] Exactly 1, for a total of exactly 1
| | | CHEST [23,23] Exactly 1, for a total of exactly 1
| NECK [20,20] Exactly 1, for a total of exactly 1
| HEAD [2,19] Exactly 1, for a total of exactly 1
| | HEAD-OTHER [19,19] A set of at least 0
| | BRAIN [18,18] Exactly 1, for a total of exactly 1
| | SKULL [17,17] Exactly 1, for a total of exactly 1
| | EAR [16,16] A set of exactly 2, for a total of exactly 2
| | FACE [3,15] Exactly 1, for a total of exactly 1
| | | FACE-OTHER [15,15] A set of at least 0
| | | CHIN [14,14] Exactly 1, for a total of exactly 1
| | | FOREHEAD [13,13] Exactly 1, for a total of exactly 1
| | | MOUTH [8,12] Exactly 1, for a total of exactly 1
| | | | MOUTH-OTHER [12,12] A set of at least 0
| | | | TONGUE [11,11] Exactly 1, for a total of exactly 1
| | | | TOOTH [10,10] A set of at least 0 and at most 32, for
| | | | a total between 0 and 32
| | | | LIP [9,9] A set of exactly 2, for a total of exactly 2
| | | EYEBROW [7,7] A set of exactly 2, for a total of exactly 2
| | | MOUSTACHE [6,6] Optional, for a total between 0 and 1
| | | NOSE [5,5] Exactly 1, for a total of exactly 1
| | | EYE [4,4] A set of exactly 2, for a total of exactly 2

A sample human part hierarchy is given with name HUMAN-PARTS. Any human, or subtype of
human, will inherit this part hierarchy (unless the subtype has part hierarchies of its own which override
this one). Each entity may be subdivided into parts in a number of different ways, and the part specialist
supports any number of part hierarchies for each entity type. For example, humans can have another part
hierarchy based on functionality of parts (so the top level parts would be skeletal-system , digestive-system
, etc). Note: the part hierarchies are NOT used to generate all the parts of an individual, nor to determine
the existence of the parts, although it may in some cases be used to determine the NON-existence of a
part.

The next hierarchy (HUMAN-PARTS2) shows an alternative part breakdown of parts for a human.
There may be any number of such part breakdowns, but all part hierarchies should have as their root an
type which is an individual entity (e.g. human , animal , chair), not another part (e.g. head , leg). The
same predicates may appear in different arrangements on the various part hierarchies, but each predicate
may only appear once in any hierarchy.

HUMAN-PARTS2 Root: HUMAN Hierarchy type: EXCLUSION PART HIERARCHY
PROPERTIES: (EXHAUSTIVE) FUNCTION part hierarchy

HUMAN [1,29] Exactly 1, for a total of exactly 1
| HUMAN-OTHER [29,29] A set of at least 0
| NERVOUS-SYSTEM [24,28] Exactly 1, for a total of exactly 1
| | NERVOUS-OTHER [28,28] A set of at least 0
| | NERVES [27,27] A set of at least 1, for a total of at least 1

CHAPTER 5. SPECIALISTS 99

| | SPINAL-CHORD [26,26] Exactly 1, for a total of exactly 1
| | BRAIN [25,25] Exactly 1, for a total of exactly 1
| RESPIRATORY-SYSTEM [20,23] Exactly 1, for a total of exactly 1
| | RESPIRATORY-OTHER [23,23] A set of at least 0
| | TRACHEA [22,22] Exactly 1, for a total of exactly 1
| | LUNG [21,21] A set of exactly 2, for a total of exactly 2
| REPRODUCTIVE-SYSTEM [19,19] Exactly 1, for a total of exactly 1
| CIRCULATORY-SYSTEM [14,18] Exactly 1, for a total of exactly 1
| | CIRCULATORY-OTHER [18,18] A set of at least 0
| | ARTERY [17,17] A set of at least 1, for a total of at least 1
| | VEIN [16,16] A set of at least 1, for a total of at least 1
| | HEART [15,15] Exactly 1, for a total of exactly 1
| SKELETAL-SYSTEM [8,13] Exactly 1, for a total of exactly 1
| | SKELETAL-OTHER [13,13] A set of at least 0
| | SKULL [12,12] Exactly 1, for a total of exactly 1
| | LEG-BONES [11,11] A set of at least 4, for a total of at least 4
| | ARM-BONES [10,10] A set of at least 4, for a total of at least 4
| | SPINE [9,9] Exactly 1, for a total of exactly 1
| DIGESTIVE-SYSTEM [2,7] Exactly 1, for a total of exactly 1
| | DIGESTIVE-OTHER [7,7] A set of at least 0
| | TOOTH [6,6] A set of at least 0 and at most 32, for a total between 0 and 32
| | SMALL-INTESTINE [5,5] Exactly 1, for a total of exactly 1
| | LARGE-INTESTINE [4,4] Exactly 1, for a total of exactly 1
| | STOMACH [3,3] Exactly 1, for a total of exactly 1

Since parts are also types, it is possible for there to be subtypes of them, and therefore type hierarchies,
which tangle with the part hierarchies. For example, the finger hierarchy below:

FINGER [1,6]
| INDEX-FINGER [2,2]
| THUMB [3,3]
| RING-FINGER [4,4]
| PINKY-FINGER [5,5]
| MIDDLE-FINGER [6,6]

This allows assertions about specific types of fingers, and these will inherit all the part properties of finger
.

The second part of the part specialist keeps track of part-of relationships which have actually been
asserted. Eventually it may also keep track of relationships among the parts, like attachment. So far
the part specialist can determine if a given part IS part of a particular entity, or another part if it has
been asserted, or a set of transitive part-of inferences can be made that prove it (for example, given that
(hand1 part-of arm1) and (arm1 part-of body1) , it can determine (hand1 part-of body1)). In addition,
if the first part’s type is a subpart of the second part’s type, and the second part is unique (only one per
entity), the part specialist can also answer that the first part is part of the second part (i.e. any eye is
part of the head).

Parts which are on different entities, or different entity types cannot be part of each other. For
example, a leg belonging to Little Red Riding Hood cannot also belong to the wolf, or to Sue. Also, parts
whose types are disjoint cannot be part of each other, so a finger cannot be part of a leg (for a human).

There is a list of familiar parts *familiar-parts* which can be used to tell when a part CANNOT
belong to an entity. A ”normal level” is maintained for each of these parts, and when attempting to
see if an entity can have such a part, if it does not exist on an exhaustive hierarchy which applies to

CHAPTER 5. SPECIALISTS 100

that entity by at least the ”normal level”, it is assumed that the part is not there. So for example, we
could determine that Little Red Riding Hood does not have a tail, because in a FORM hierarchy the
tail occurs at level 1, and after searching 1 level deep in the FORM hierarchies applicable to Little Red
Riding Hood, not tail was found. The normal levels are set up automatically using the part hierarchies
actually loaded. This occurs during the hierarchy numbering, so if you want to add to *familiar-parts*
, you should do so before any numbering takes place (i.e. immediately before or immediately after the
add-part-hier commands).

As for the type and predicate hierarchy specialists, the hierarchical information stored by the part
specialist is applied in modally embedded contexts (both subnets and belief simulations) as well as at the
top level (see page 95). However, the specialist does maintains subnets for part-of relationships. The part
specialist has not yet been updated to accomodate multiple-environment reasoning, so information on
part-of relationships between individuals should not be entered into the shared knowledge environment
(there will be no ill effects, but the information will not be available for reasoning).

5.6 Episode Specialist

This specialist is used only to determine the relationships between **, * and @,and to return these
relationships when requested. This makes the system a little more consistent, although special tests for
the compatibility (or incompatibility) of the arguments still have to be done for propositions involving
these predicates.

5.6.1 Using the Episode Specialist

The domain of the episode specialist consists of literals which contain the episodic predicates **, * and
@. This specialist is only used to determine the relationship between those predicates.

This specialist (’episode-specialist) is automatically started up when EPILOG is loaded, so is
always active.

Trace values for the episode specialist are:

bf episode-test Shows comparisons between episodic predicates

5.7 Time Specialist

The temporal specialist is used to accelerate question answering for questions about temporal relations
between episodes (or events) and/or time points. When a proposition is asserted or questioned in EPI-
LOG which is in the domain of the temporal specialist, the specialist is invoked to store or evaluate the
proposition. For example,

(e1 episode before e2 episode)
would cause the temporal specialist to be invoked to save that relationship for future use.

The temporal specialist maintains its own representation of episodes and times, and uses this repre-
sentation to achieve efficient temporal reasoning. Note that currently episodes are considered to be their
time intervals for this implementation.

CHAPTER 5. SPECIALISTS 101

5.7.1 Using the Time Specialist

To start up the time specialist, issue the following command:

(use-spec ’time-specialist)

The sorts associated with temporal entities are:

episode - used for episodes, events, or intervals - indicating a possible span of time

time - used for ”instants” of time (non-decomposable) or absolute times

The domain of the temporal specialist consists of literals with the following patterns:

Argument1 Predicate Argument2 Argument3
Sort Sort Sort
episode equal episode
time same-time time
episode before episode [episode]
time after time

during
contains
overlaps
overlapped-by

episode between episode episode
time time time
episode at-most-before episode number
time at-least-before time

exactly-before
exactly-after
at-most-after
at-least-after

episode has-duration number

In all patterns except the second last group (with at-most...), a time argument may be either a named
time point or an absolute time specification. For the exception, a time argument must be a named time
point. [] indicates an optional argument of the given sort. Note that predicate stems only are given in
the above table - each group includes all possible predicates with that stem. For example, the second
pattern also includes before-1, after-0, contains-0-1, etc. The predicates will be described in more
detail shortly.

The temporal specialist maintains a graph representation of time points. Events, episodes, and
intervals are considered to have a start point and an end point, and all reasoning is done with those
points, rather than the event/episode/interval itself. For convenience, the start and end points of an
event e1 will be referred to as e1.start and e1.end in this document (in the time graph start is appended
to the episode name to get the start point, and end for the end point).

Arcs between points indicate relationships, which may be strict or nonstrict. Strictness values on the
predicates indicate whether a relationship is to be strict on nonstrict. Predicates look like stem[-strict1[-
strict2]] .

CHAPTER 5. SPECIALISTS 102

Strictness Meaning
0 there is no duration between (meets)
1 there is non-zero duration between (strict)
nil either 0 or 1 (nonstrict)

If two points are equal, they are collapsed into one, so there are no arcs for ”0” strictness.

In addition, points may have absolute times (minimum and maximum) associated with them. Arcs
may have durations (minimum and maximum) associated with them. Absolute times and strictness values
are propagated around the time graph to ensure that the information is as complete as possible.

5.7.1.1 Time Specialist Predicates

Following is a list of predicates that the time specialist knows about. Note that some of these predicates
(equal) are not necessarily temporal in nature - the arguments used tell the specialist that they are.

CHAPTER 5. SPECIALISTS 103

Predicate Meaning (e1 episode predicate e2 episode)
equal e1.start = e2.start and e1.end = e2.end
same-time same as equal
before-0 e1.end = e2.start (meets)
before-1 e1.end < e2.start (strictly before)
before e1.end <= e2.start
after-0 e2.end = e1.start (met-by)
after-1 e2.end < e1.start (strictly after)
after e2.end <= e1.start
during-0-0 same as equal
during-1-0 e1.start > e2.start and e1.end = e2.end (ends)
during–0 e1.start >= e2.start and e1.end = e2.end (ends)
during-0-1 e1.start = e2.start and e1.end < e2.end (starts)
during-0 e1.start = e2.start and e1.end <= e2.end (starts)
during-1-1 e1.start > e2.start and e1.end < e2.end
during-1 e1.start > e2.start and e1.end <= e2.end
during–1 e1.start >= e2.start and e1.end < e2.end
during e1.start >= e2.start and e1.end <= e2.end
contains-0-0 same as equal
contains-1-0 e1.start < e2.start and e1.end = e2.end (ended-by)
contains–0 e1.start <= e2.start and e1.end = e2.end (ended-by)
contains-0-1 e1.start = e2.start and e1.end > e2.end (started-by)
contains-0 e1.start = e2.start and e1.end >= e2.end (started-by)
contains-1-1 e1.start < e2.start and e1.end > e2.end
contains-1 e1.start < e2.start and e1.end >= e2.end
contains–1 e1.start <= e2.start and e1.end > e2.end
contains e1.start <= e2.start and e1.end >= e2.end
overlaps-0-0 same as equal
overlaps-1-0 same as contains-1-0
overlaps–0 same as contains–0
overlaps-0-1 same as during-0-1
overlaps-0 same as during-0
overlaps-1-1 e1.start < e2.start and e1.end < e2.end
overlaps-1 e1.start < e2.start and e1.end <= e2.end
overlaps–1 e1.start <= e2.start and e1.end < e2.end
overlaps e1.start <= e2.start and e1.end <= e2.end
overlapped-by-0-0 same as equal
overlapped-by-1-0 same as during-1-0
overlapped-by–0 same as during–0
overlapped-by-0-1 same as contains-0-1
overlapped-by-0 same as contains-0
overlapped-by-1-1 e1.start > e2.start and e1.end > e2.end
overlapped-by-1 e1.start > e2.start and e1.end >= e2.end
overlapped-by–1 e1.start >= e2.start and e1.end > e2.end
overlapped-by e1.start >= e2.start and e1.end >= e2.end

CHAPTER 5. SPECIALISTS 104

Predicate Meaning (e1 episode pred e2 episode e3 episode)
between-0-0 e1.end = e2.start and e2.end = e3.start
between-1-0 e1.end < e2.start and e2.end = e3.start
between–0 e1.end <= e2.start and e2.end = e3.start
between-0-1 e1.end = e2.start and e2.end < e3.start
between-0 e1.end = e2.start and e2.end <= e3.start
between-1-1 e1.end < e2.start and e2.end < e3.start
between-1 e1.end < e2.start and e2.end <= e3.start
between–1 e1.end <= e2.start and e2.end < e3.start
between e1.end <= e2.start and e2.end <= e3.start

Predicate Meaning (e1 episode pred e2 episode d)
at-most-before e1 before e2 and maximum duration between is d
at-least-before e1 before− 1 e2 and minimum duration is d
exactly-before e1 before− 1 e2 and both maximum and minimum

durations are d
at-most-after e1 after e2 and maximum duration between is d
at-least-after e1 after − 1 e2 and minimum duration is d
exactly-after e1 after − 1 e2 and both maximum and minimum

durations are d

Predicate Meaning (e1 episode pred d)
has-duration e1START before e1END and duration between is d

For all predicates except the last two groups (involving durations), some of the arguments may be
absolute times. In that case, the maximum or minimum absolute time of the point involved is set or
checked, rather than a relationship between points. For example

(e1 episode before (date 1987 04 01 00 00 00))
will set the absolute time maximum of e1.end to be the given time.

The first group of predicates (except equal and same-time) has an optional third argument which
is the ”timeframe” This argument must be an episode, and means that the other arguments are both
during that episode (i.e. within that timeframe).

5.7.1.2 Time Specialist Functions

In addition to predicates, some functions are recognized by the temporal specialist. Arguments to these
functions must all be constants, or functions with constant arguments. Each function returns a concept
which is the result of the function. This can then be used as the argument to a predicate or another
function.

Functions are evaluated with respect to the current subnet, which is the subnet in effect at the level
the function is being evaluated at. For example, (john believes ((start-of e1) before (end-of e2))) will
have the subnet for john used to calculate the start and end points.

The functions are:

(start-of episode) [function]
This function returns a concept which is the start of episode in the current subnet. If episode is not
an episode (i.e. it is a time point), the point is returned (start of a point is the point itself).

CHAPTER 5. SPECIALISTS 105

(end-of episode) [function]
This function returns a concept which is the end of episode in the current subnet. If episode is not
an episode (i.e. it is a time point), the point is returned (end of a point is the point itself).

(date year month day hour minute second) [function]
This function returns a quoted expression of the form

(’time year month day hour minute second)
which is recognized by the temporal specialist as an absolute time.

(relation arg1 arg2) [function]
This function returns the most strict relation it can find between arg1 and arg2 in the current subnet.
Arg1 and arg2 may be episodes, timepoints, or absolute times.

(elapsed arg1 arg2) [function]
This function returns the best duration bounds it can find between arg1 and arg2 in the current
subnet. Arg1 and arg2 may be episodes or timepoints. The duration returned is a quoted expression
of the form

(minimum maximum)
Note - this used to be called duration .

(duration-of e1) [function]
This function returns the duration between the start of an event and its end. It may also be used
on assertion to set the duration bounds of an event. For example,

((duration-of e1 episode) less-than 4000)

5.7.1.3 Time Specialist Display and Controls

The following are display functions that can be called through the display command (all arguments are
optional):

(display ’time-info point subnet)
Displays information for the given time point, or for all time points if no point given. The node
name, its pseudo-time and absolute times are printed. If the ’-full parameter is specified, the lists
of ancestors and descendants (cross-chain and in-chain) are printed for each point.

(display ’meta-info chain subnet)
Displays information for the given chain, or for all chains if no chain given. If the ’-full parameter
is specified, the cross-chain link information is also printed; otherwise only the chain numbers, and
first nodes on the chain are printed.

(display ’episode-info event subnet)
Displays information for the given episode, or for all episodes if no episode given if ’-brief is used,

CHAPTER 5. SPECIALISTS 106

the episode start and end are listed only, if ’-full , the time point info for them is also displayed.

For each of the above, the subnet is the string indicating which subnet - for example, / indicates main
, /john is the subnet for john , /john/mary for the subnet for mary within john , etc. If no subnet is
specified, the main net / will be used.

Although the time specialist has no tweakable parameters of its own, the user can still control how
hard it works by tweaking the specialist interface parameters. An effort level (for either *specialist-
eval-effort* or *specialist-entry-effort*) of 0 means ”constant time only” checking, which means that
pseudo-time and absolute time comparisons can be done, but no metagraph searches will be. Anything
higher than 0 indicates that a full blown graph search may be done. On entry, the entry effort value
is used to do an internal search to find the existing relationship between points so that they may be
collapsed if necessary. For example, if we have (a before b) in the timegraph already and we now enter
(a after b) , these are not necessarily inconsistent and so will not be detected on input, but for the time
graph to remain consistent, it must collapse this into (a equal b) . If input is guaranteed to be consistent,
then *specialist-entry-effort* can be set to 0 without problems.

In addition, the parts of the time specialist that interact with the theorem prover can be controlled
by the *spec-enter* , *spec-evaluate* and *spec-compare-lits* flags. For minimal use of the time
specialist, the *spec-enter* and *spec-evaluate* flags should be on.

Trace values for the time specialist are:

time-entry - Traces input of temporal relations

time-point-entry - Traces input of point relations

time-eval - Traces evaluation of temporal relations

time-function-eval - Traces evaluation of temporal functions

time-point-eval - Traces evaluation of point relations

abs-time-entry - Traces entry of dates

abs-time-eval - Traces evaluation of date relationships

time-duration-entry - Traces entry of durations

time-duration-eval - Traces evaluation of durations

time-search - Traces metagraph searching

time-test - Traces comparisons of literals

time-all - Traces all time operations, including time-entry, time-eval,time-point-entry, time-point-eval,
abs-time-entry, abs-time-eval, time-duration-entry, time-duration-eval, time-search , and time-test
.

time - Traces interesting time stuff, including time-entry, time-eval, time-point-entry, time-point-eval,
abs-time-entry, abs-time-eval, time-duration-entry, time-duration-eval, and time-test .

time-min - Traces basic time stuff, including time-entry, time-eval, and time-test .

CHAPTER 5. SPECIALISTS 107

5.7.2 Details of the Time Specialist

The time specialist implemented here is based on the specialist designed by J. Taugher [in his MSc
thesis] and Len Schubert, with some enhancements to handle both strict and nonstrict relations, and
combinations of events, time points and absolute times in propositions.

The representation used is a partial order graph that has been partitioned into ”chains”. All the
points belonging to a chain are linearly ordered with respect to each other. There may be transitive arcs
between the points in a chain. Cross chain links define relations between points in one chain and points
in another.

For points within a chain, an arbitrary pseudo-time number is associated with each point. These
numbers show the ordering relationship between points in a chains. In addition, the minimum point and
the maximum point on the chain that a point can be equal to are stored with it - giving a range of points
that can possibly be equal. These are used to show whether the relationship given by the psuedo times
alone is strict or nonstrict (for example, < or <=). Determining the relationship between any two points
in the same chain can be done in constant time using these pseudo-times, while a graph search is required
if they are on different chains.

In addition to the time graph of time points, there is a metagraph of chains. The cross chain links
define arcs between chains in the metagraph. The metagraph is used to search for paths from one point
to another. This makes a graph search dependant on the number of cross chain links rather than the
total number of time points (a significant savings).

Figure T1 shows an example time graph and meta graph.

CHAPTER 5. SPECIALISTS 108

\s9

Chain 1
(circles)

circle4circle3circle1 circle2

Chain 3
(triangles)

Chain 2
(squares)

square3square2square1

triangle2triangle1

Metagraph (each node represents a chain)

Timegraph (each node represents a time point)

in-chain links
cross-chain links

T1 Example Timegraph and Metagraph

In the time graph, small circles represent points on chain 1, small squares are points on chain2, and
small triangles represent points on chain 3. So circle1 is before circle2, circle2 before circle3 and so on.
There are cross chain links from triangle1 to circle1 (i.e. triangle1 is before circle1), from triangle1 to
square1, from square2 to circle1, and one more from circle2 to square3.

In the metagraph, these cross chain links show up as links between meta-nodes. There is one meta
node for chain 1 (the big circle), one for chain 2 (the big square) and another for chain 3 (the big triangle).

CHAPTER 5. SPECIALISTS 109

The links within chains do not show up here, as within a chain they are not needed to determine relations.
Following the cross chain links, we can get that triangle1 is before square3, and square1 is before circle3,
but no information about triangle2 and square3.

Furthermore, an absolute time (date) minimum and maximum are stored with each time point. These
are a six-tuples of the form (year month day hour minute second) , where each element may be numeric
or symbolic (e.g. (1987 04 a 12 b c) represents some time at or after 12 a.m. and before 1 p.m. of some
day in April, 1987). Symbolic information may be filled in later by another assertion, or left unspecified
throughout the session. Absolute time maxima propagate back to points before the given point (in the
chain or on other chains), and minima propagate forward. This ensures that each point has the best
absolute time information possible. Absolute time comparisons can sometimes be used to get a relation
in constant time between two points on different chains, avoiding a metagraph search.

When an absolute time is not completely specified, the time specialist will ask for either the min-of or
the max-of the symbolic element, as appropriate. The specialist interface passes this evaluation request
along to a specialist that can evaluate it (currently the number specialist can), and uses any result it gets
back to more completely specify the absolute time. In addition, the symbolic element is noted as being
important to the time specialist, so this literal and the time specialist are added to the interested party
list for the concept.

Insertion time into the graph is constant in most cases, except for propagation of absolute times or
strictness values, and for consistency checking if the entry effort level is greater than 0. In the worst case,
propagation may require going to every point in the graph, although it is highly unlikely. Occasionally a
chain may have to be renumbered, which requires going to all the points in a single chain.

Duration minima and maxima (in seconds) are stored on the links between points. These may affect
the absolute times around them, which are then propagated. They are also used in calculating duration
between points where the path uses this link. Durations may be unspecified and are then treated similar
to unspecified abosolute times, generating an evaluation request and adding to the interested party list
of the concept. To determine the duration betweeen any two points, an exhaustive search must be done
between those points, calculating the duration along all paths to get the best one. This particular search
uses a traditional depth first search over the entire time graph, rather than using the metagraph. Both
duration information on arcs, and duration information implicit in absolute times are used.

Entry and evaluation of temporal literals only uses those literals with constant arguments. Compar-
isons between literals also allow variables.

To determine incompatibility (or compatibility) of literals, unification is done with every combination
of arguments. After unification, variables are treated exactly the same as constants. One literal is then
entered into the timegraph, and then the other is compared with the timegraph to see if it is consistent. If
not, the two literals are incompatible. This is repeated for each possible unification. If all the arguments
are constants, just one iteration is done, as there are no substitutions to be done. This aspect of the time
specialist can be ”turned off” by tweaking the parameter *spec-compare-lits* to nil.

When the belief specialist is active, and there are therefore multiple reasoning environments active
simultaneously, time graph information stored in the current agent-specific environment “shadows,” or
overrides, information about the same nodes in the shared knowledge environment. When non-shared
information is entered about a node that already exists in the shared knowledge environment, a copy of
the node’s entire is created in the non-shared environment, and then modified as necessary. Absolute
time information is propagated only within a single environment, not from a node in one environment
to a node in another. This is done to prevent non-shared information from leaking into the shared
knowledge environment. See (Kaplan 2000) for more details on how the time specialist has been adapted

CHAPTER 5. SPECIALISTS 110

to multiple-environment reasoning.

5.8 Number Specialist

The number specialist is used to accelerate question answering for questions about relations between
named number constants and numbers, and some arithmetic operations on them. When a proposition
is asserted or questioned in EPILOG which is in the domain of the number specialist, the specialist is
invoked. For example,

(n1 number lt= ’5)
would cause the number specialist to be invoked to save that relationship for future use.

5.8.1 Using the Number Specialist

To start up the number specialist, issue the following command:

(use-spec ’number-specialist)

The sorts associated with number entities are:

real - used for any real number

integer - used for any integer

number - also used for integers

The domain of the number specialist consists of literals with the following patterns:

Argument1 Predicate Argument2
Sort Sort
real equal real
integer lt integer

less-than
gt
greater-than
lt=

The number specialist maintains a graph representation of named number points. Arcs between points
indicate relationships, which may be strict (lt or <) or nonstrict (lt = or <=). If two points are equal,
they are collapsed into one, so there are no arcs for ”0” strictness.

5.8.1.1 Number Specialist Predicates

Following is a list of predicates that the number specialist knows about. Note that some of these precicates
(equal) are not necessarily only numeric in nature - the arguments used tell the specialist that they are.

CHAPTER 5. SPECIALISTS 111

Predicate Meaning (n1 number predicate n2 number)
equal n1 = n2
lt n1 < n2
less-than n1 < n2
gt n1 > n2
greater-than n1 > n2
lt= n1 ≥ n2
gt= n1 ≤ n2

5.8.1.2 Number Specialist Functions

In addition to predicates, some functions are recognized by the number specialist. Arguments to these
functions must all be constants, or functions with constant arguments. Each function returns a concept
or quoted expression which is the result of the function. This can then be used as the argument to a
predicate or another function.

Functions are evaluated with respect to the current subnet, which is the subnet in effect at the level
the function is being evaluated at. For example, (john believes ((max-of n1) < (min-of n2))) will have
the subnet for john used to determine the minimums and maximums points.

The functions are:

(min-of numbers) [function]
This function returns the minimum of its arguments numbers . If any are symbolic names, the
minimum on that node in the number graph is used in place of the name.

(max-of numbers) [function]
This function returns the maximum of its arguments numbers . If any are symbolic names, the
maximum on that node in the number graph is used in place of the name.

(value-of concept) [function]
This function returns a quoted expression consisting of a single value, if known for concept , or two
values in a quoted expression corresponding to the minimum and maximum of the number (minimum
maximum) .

(relation arg1 arg2) [function]
This function returns the most strict relation it can find between arg1 and arg2 in the current subnet.

(add numbers) [function]
This function returns the result of adding together all the arguments. If any are symbolic names, the
value associated with that number is obtained from the number graph and used. If no exact value is
known, the function will return nil.

CHAPTER 5. SPECIALISTS 112

5.8.1.3 Number Specialist Display and Control

The following are display functions that can be called through the display command (all arguments are
optional):

bexmp0.5in(display ’number-info point subnet) Displays information for the given number, or for
all numbers if no point given. This includes the minimum and maximum values of the points. If ’-full is
specified, descendants and ancestors of points are also printed.

For the above function, the subnet is the string indicating which subnet - for example, / indicates
main , /john is the subnet for john , /john/mary for the subnet for mary within john etc. If no
subnet is specified, the main net / will be used.

Although the number specialist has no tweakable parameters of its own, the user can still control how
hard it works by tweaking the specialist interface parameters. An effort level (for either *specialist-
eval-effort* or *specialist-entry-effort*) of 0 means ”constant time only” checking, which means
that comparisons between minimum and maximum values may be done, but no graph searches will be.
Anything higher than 0 indicates that a full blown graph search may be done.

In addition, the parts of the number specialist that interact with the theorem prover can be controlled
by the *spec-enter* , and *spec-evaluate* flags. For minimal use of the number specialist, these flags
should be on.

Trace values for the number specialist are:

number-entry - Traces entry of number relations

number-prop - Traces propagation of number relations

number-eval - Traces evaluation of number relations

number-function-eval - Traces evaluation of number functions

number-search - Traces searching through the number graph

number-test - Traces comparison of literals using the number specialist

number-all - Traces all number operations, including number-entry, number-eval, number-prop, number-
test , and number-search .

number-min - Traces basic number operations, including number-entry, number-test, and number-eval
.

5.8.2 Details of the Number Specialist

The number specialist implemented here uses a simple graph representation to represent and reason with
numeric relations. Nodes represent named number constants, and arcs between (which may be strict
< or nonstrict <=) represent the relation between the points. The type of number (integer or real),
a maximum, minimum and exact value (if known) are associated with each point. Maxima propagate
backward, minima forward, and values are either set explicitly by the predicate equal or when the
minimum and maximum are equal. When a named number is asserted less than (or less than or equal)
to a number constant, the maximum of the number is set according to whether it is real or integer, and
whether the constant is real or integer. For example,

CHAPTER 5. SPECIALISTS 113

(n1 integer lt 3.5)
sets the maximum of n1 to 3, and

(n2 real lt= 4)
sets the maximum of n2 to 4.0. Minima are handled similarly, by asserting that a number is greater than
some constant.

The maximum for a real number (and similarly, the minimum) is only a single number, with no
information about whether this ”endpoint” is included in the range of possible values for the number.
This can cause some confusion when testing at these boundaries - for example, asserting that a number
is less than or equal to 3.2 will result in ”yes” being answered when we ask if that number is less than 3.2
as well. In natural language understanding, which is what this system is intended for, this problem rarely
occurs. Integers are handled exactly, as the ”next lowest” or ”next highest” number is always known, so
the bounds mean the same for all of them.

To determine the relation between two points, or the validity of a given relation, the minima and
maxima of the numbers are first compared, and then an exhaustive graph search is done if necessary. For
the use of numbers in this system, this search will rarely have to be done, and if it is, only a few steps
will be required.

When determining incompatibility of literals the same methods are used that are used in the time
specialist, although there are fewer predicates to consider. As each literal has exactly two arguments,
there are only two possible unifications that can be tried for the resolving and factoring attempts: 1st of
literal1 with 1st of literal 2, 2nd with 2nd, and 1st of literal1 with 2nd of literal 2, 2nd of literal1 with
1st of literal2. For example, (n1 lt n2) vs (x gt y) could give resolving actions with unifications: x/n1,
y/n2, and x/n2, y/n1.

The number specialist has not yet been updated to accomodate multiple-environment reasoning, so
information on numerical relationships should not be entered into the shared knowledge environment
(there will be no ill effects, but the information will not be available for reasoning).

5.9 Color Specialist

The domain of the color specialist consists of literals which contain color predicates. The specialist
determines the relationships between simple color predicates, and those operated on by some predicate
operators (operators which ”hedge” the color - like sort-of).

5.9.1 Using the Color Specialist

To start up the color-specialist, issue the following command:

(use-spec ’color-specialist)

The current color predicates recognized are: white, black, blue, red, yellow, green, purple, orange,
brown, pink, grey, chartreuse, magenta, bluegreen, lead, salmon, beige, tan, crimson, aqua,
and rust

Of these, white, black, blue, red, yellow, green, purple, orange, brown, pink, and grey are ”basic”
colors. They completely partition the color space. These colors have the largest ranges. Any other colors
have smaller ranges, usually near or overlapping a border between basic colors.

To add more predicates to the color specialist, do the following:

CHAPTER 5. SPECIALISTS 114

Determine the region boundaries by deciding on ranges for the purity, dilution and hue. To add a new
color, choose numbers for purity, dilution and hue that keep the appropriate relative order between
this color and neigboring colors. For example, to add rust-red , choose numbers that make the
corresponding region overlap (and extend about 1/4 way into) the brown and red regions, not too
light and not too dark. The color definitions are located in the file color/colors for comparison.

Use the following function to add the color:

(make-color color purity-min purity-max dilution-min dilution-max hue-min hue-max)

This can be called interactively as color:make-color (if the color specialist is already active).
Alternatively, the call to make-color can be added to the file color/colors , and the color will be
added whenever the color specialist is invoked. No package names are needed on the color for either
call.

Note that the operator sort-of may act on a color predicate. The color specialist handles this as well.
A hedged color is assumed to have range boundaries twice their normal distance.

Note: there are some cases where the color specialist gets different answers depending on the order it
compared the predicates in, and sometimes it gets inferences that don’t seem ”natural”. Please note any
occurrences of these and report them to the authors.

5.9.1.1 Color Specialist Display and Controls

The following display function can be called through the display command (all arguments are optional):

(display ’color-info color)
Displays the ranges of purity, dilution and hue for color , if a color is given. Otherwise, if the flag
-brief is used, a list of the known color names will be displayed. If -full is used, the ranges of purity,
dilution and hue for all the known colors will be displayed.

The color specialist has two tweakable parameters:

color-margin which determines how different two range boundaries can be to be considered equal.
This is initially set to 0.01, but can be changed using the tweak command.

color-hedged-operators which indicates the operators on predicates that make them into ”hedged”
predicates. It is initially set to the single operator sort-of .

The other control available on this specialist is *spec-compare-preds* , which should not be turned
off except for specific testing cases.

Trace values for the color specialist are:

color-test - Traces comparison of predicates using the color specialist

color-details - Traces details of comparison of predicates using the color specialist

CHAPTER 5. SPECIALISTS 115

5.9.2 Details of the Color Specialist

The color specialist determines the relationships between color predicates. It uses a cylindrical color
model developed by Mary Angela Papalaskaris. This representation was arrived at by imagining that
any color is composed of some amount of a pure, monochromatic color, plus certain amounts of black
and white.

There are three dimensions to this object (from Accelerating Deductive Inference: Special Methods for
Taxonomies, Colours and Times , by Schubert, Papalaskaris and Taugher):

hue - this dimension runs through the continuum of ranbow hues, arranged in a circle and arbitrarily
scaled from 0 to 12

purity - the radial axis - parametrizes the amount of black present

purity = pure color / (pure color + black)
which decreases from 1 to 0 as black is added

dilution - axial dimension - parametrizes the amount of white present

dilution = white / (pure color + black + white)
which increases from 0 to 1 as white is added.

9

7
5

3

9

11

1

3

yellow

euh

w
o
l
l
e
y

n
w
o
r
b

n
w
o
r
b

k
n
i
p

d

e
r

n
o
i
t
u
l
i
d

purity

white

black

grey

orange
red

greenblue

purple

Color cylinder with the ”cool” shades lifted away.
Adapted from Accelerating Deductive Inference ... , p 42.

Both simple color predicates, and hedged color predicates (predicates which have an operator like
sort-of acting on them) can be compared by the specialist.

CHAPTER 5. SPECIALISTS 116

Note: there are some cases where the color specialist gets different answers depending on the order it
compared the predicates in, and sometimes it gets inferences that don’t seem ”natural”. Please note any
occurrences of these and report them to the authors.

5.10 Equality Specialist

The equality specialist is used to both to accelerate question answering for questions about equality,
and to maintain equivalence sets for use internally in EPILOG (which further accelerates things). The
specialist maintains equivalence sets of equal constants, which it transmits back to EPILOG, as well as
sets of ”non-equal” items. When an equality, or inequality, is detected, the equality specialist is invoked.
Note that this specialist also accepts negative information (unlike most of the others). For example,

(c1 equal chair1)
would cause the equality specialist to be invoked to save that relationship for future use by both the equal-
ity specialist and the EPILOG core.

(not c1 equal chair5)
would also be saved in the equality specialist.

The equality specialist is automatically started up when EPILOG starts up.

The domain of the equality specialist consists of literals with the following pattern:

Argument1 Predicate Argument2
Sort Sort

equal

In the above patterns, equal takes two arguments of any sort.

5.10.1 Equality Specialist Functions

A few functions are included, just so that equivalence information can be extracted by a function, if
desired.

Functions are evaluated with respect to the current subnet, which is the subnet in effect at the level
the function is being evaluated at. For example, (john believes (h1 equal h2)) would have the subnet for
john used to determine the contents and therefore the union of the two sets, friends and enemies.

The functions are:

(equivalence-members item) [function]
This function returns a record which is the set of known items equivalent to item (including item).

(non-equal-members item) [function]
This function returns a record which is the set of known items not equal to item .

CHAPTER 5. SPECIALISTS 117

5.10.2 Equality Specialist Display and Controls

The following are display functions that can be called through the display command (all arguments are
optional):

(display ’equality-info item subnet)
Displays equivalence and non-equal information for the given item, or lists all known sets of equivalent
items if no item is given. The subnet is the string indicating which subnet to display from - for example,
/ indicates main , /john-believe for John’s beliefs, etc) If no subnet is specified, the main net / will be
used. Equality-info can be abbreviated to equal-info .

The parts of the equality specialist that interact with the theorem prover can be controlled by the
spec-enter , *spec-evaluate* and *spec-compare-lits* flags. For minimal use of the equality
specialist, the *spec-enter* and *spec-evaluate* flags should be on.

The specialist has the option of assuming that all user given names (i.e. non-skolem constants) are
unique. This flag is called *unique-names-assumptions* and defaults to t . If t , two individual names
will be assumed to be not equal. If set to nil , they could be equal, and a question asking this would be
answered unknown .

Trace values for the equality specialist are:

equality-entry - Traces entry of equivalence and non-equal relationships

equality-eval - Traces evaluation of equivalence and non-equal relationships

equality-function-eval - Traces evaluation of equality functions

equality-test - Traces comparison of literals within the equality specialist.

equality-min - Traces interesting things in the equality specialist, including equality-eval, equality-
entry, equality-function-eval and equality-test .

equality-all - Traces everything about the equality specialist, including equality-eval, equality-entry,
equality-function-eval and equality-test .

5.10.3 Details of the Equality Specialist

The equality specialist uses the same low level set structures used by the set specialist. Positive equalities
are saved by maintaining equivalence sets, and transmitting these back to a special table in EPILOG
where it may accesss the information. Negative equalities are saved by maintaining a set of items not
equal to a given item. These are not transmitted to EPILOG.

When testing equality, the two arguments are first compared to see if they are identical. If not, the
equivalence sets are checked to see if one is a member of the other’s equivalence set. Then non-equal
sets are checked to see if the evaluation should terminate with NO. If none of these gives a result, the
sorts of the objects are checked to see if they are incompatible. As a last resort, the *unique-names-
assmuption* can be used to say that two non-equal user-named constants are not equal.

CHAPTER 5. SPECIALISTS 118

5.11 Set Specialist

The set specialist is used to accelerate question answering for questions about set membership. The
sets handled by this specialist are not sets according to the mathematical definition - they are more like
collections. When a proposition is asserted or questioned in et which is in the domain of the set specialist,
the specialist is activated. For example,

(apple1 member-of fruits set)
would cause the set specialist to be invoked to save that relationship for future use.

5.11.1 Using the Set Specialist

To start up the set specialist, issue the following command:

(use-spec ’set-specialist)

The sorts associated with set entities are:

set - used for a set

The domain of the set specialist consists of literals with the following pattern:

Argument1 Predicate Argument2
Sort Sort
set equal set

member-of set
member-of-0

set subset-of set
set has-cardinality integer
set (coll predicate)

((coll-of number) predicate)

In the above patterns, equal takes two arguments sort set (actually, only 1 is required to be of sort
set), while member-of and member-of-0 can take any argument sort for the first argument, but the
second must be a set. Subset-of takes two arguments, both of which must be of sort set. Note that
member-of-0 is accepted only for evaluation, as it is inherently ambiguous and requires assumptions to
enter. Has-cardinality takes a set argument and an integer argument. Cardinality may also be asserted
using the function cardinality-of (see below). The operators coll and coll-of trigger this specialist
regardless of the predicate operated on. The set specialist keeps track of named sets, their contents,
cardinality and member types. In the above list of predicates, member-of is used for the top level
contents of a set, whereas member-of-0 refers to the recursion involved in nested sets. For example, if
set s1 consists of members (apple1, orange1) and set s2 has members (s1 grape1) , then

(q ’(apple1 member-of s2))
could not be answered affirmatively, while

(q ’(apple1 member-of-0 s2))
would be.

The predicates will be described in more detail shortly.

Sets may be completely known (all members are known, and represented in the set specialists area),
or partially known (there may or may not be other members of the set which we don’t know about).

CHAPTER 5. SPECIALISTS 119

When setting up a set’s contents using a proposition like (s1 equal (set-of member1 member2)) , the set is
considered fully known, whereas setting contents using ((set-of member1 member2) subset-of s1) makes
the set partially known. When testing to see if something a a member of a set, if it is not, and the set is
fully known, the specialist can answer no , whereas if the set is only partially known, the specialist must
answer unknown as that entity might be as as yet unknown member of the set.

When a function acts on a set, or a incompatibility/compatibility test is attempted, only the currently
known contents of the set are used. For example, if a union function is done on two sets, the resulting
union is independent of the two sets - any further additions of members to them will not be reflected in
the union.

5.11.1.1 Set Specialist Predicates and Operators

Following is a list of predicates and operators that the set specialist knows about.

Predicate Meaning (a1 predicate a2)
equal a1 = a2
member-of a1 is a direct member of set a2 (top level)
member-of-0 a1 is an indirect member of set a2 (some level below)
subset-of set a1 ’s direct members are a subset of set a2 ’s direct members (top level)
has-cardinality a1 has exactly a2 top-level members.
(coll predicate) a1 is a set whose members are all predicate (no a2)
((coll-of number) predicate) a1 is a set whose members are all predicate,

and whose cardinality is number

For the last two entries in the list, in addition to saving the information, the specialist makes the
assertion (A x (x member-of a1) (x predicate)) .

5.11.1.2 Set Specialist Functions and Term-Forming Operators

In addition to predicates, some functions and term-forming operators are recognized by the set specialist.
Arguments to the functions must all be constants, or functions with constant arguments. Arguments to
the term-forming operators are somewhat less restrictive, but if variables are involved they will not be
evaluated. Each function returns a concept or quoted expression which is the result of the function. This
can then be used as the argument to a predicate or another function.

Functions are evaluated with respect to the current subnet, which is the subnet in effect at the level
the function is being evaluated at. For example, (john believes ((union-of friends enemies) equal ...))
have the subnet for john used to determine the contents and therefore the union of the two sets, friends
and enemies.

The functions are:

(union-of-members sets) [function]
This function returns the union of all current members of its arguments sets If any are symbolic
names, the contents of that set is obtained.

(union-of-members-0 sets) [function]

CHAPTER 5. SPECIALISTS 120

This function is identical to union-of except that the set contents are obtained recursively to give
all the lowest level members.

(intersect-members sets) [function]
This function returns the intersection of the current members of its arguments sets If any are symbolic
names, the contents of that set is obtained.

(intersect-members-0 sets) [function]
This function is identical to intersect except that the set contents are obtained recursively to give
all the lowest level members.

(set-diff-members set1 set2) [function]
This function returns the set difference between the current top level members of set1 and the current
top level members of set2 .

(set-diff-members-0 set1 set2) [function]
This function is identical to set-diff except that the set difference is taken between the current
indirect members of the sets by recursively retrieving all members of nexted sets.

(set-of members) [function]
This function builds a set with contents members and returns a quoted expression of the form ’(’set
members) which is recognized by the set specialist as a set.

(set-of-all predicate) [function]
This term-forming operator returns the unique name for a set whose members are all of the entities
of type predicate . An assertion is made of the form (A x ((x member-of name) <=> (x predicate)))
.

(union-of sets) [function]
This function returns the unique name for the set which is the union of sets . This linkage is
recorded in the set connection records and used during evaluation, and to ”propagate” information
where required.

(intersect set1 set2) [function]
This function returns the unique name for the set which is the intersection of set1 and set2 . This
linkage is recorded in the set connection records and used during evaluation, and to ”propagate”
information where required.

(set-diff set1 set2) [function]
This function returns the unique name for the set which is the difference between set1 and set2 .

CHAPTER 5. SPECIALISTS 121

This linkage is recorded in the set connection records and used during evaluation, and to ”propagate”
information where required.

(number-members set) [function]
This function returns the number of known direct members set contains.

(number-members-0 set) [function]
This function returns the number of known indirect members set contains by recursively counting
all members of nested sets within set .

(set-members set) [function]
This function returns the current known direct members of set in the form of a quoted expression
’(’set member1 member2 ..) .

(set-members-0 set) [function]
This function returns the current indirect members of set in the form of a quoted expression ’(’set
member1 member2 ..) by recursively getting all members of nested sets in set

(cardinality-of set) [function]
This function returns the cardinality of the given set. It can be used in assertion to set the cardinality
- for example

((cardinality-of s1 set) less-than 20)

5.11.1.3 Set Specialist Display and Controls

The following are display functions that can be called through the display command (all arguments are
optional):

(display ’set-info setname subnet) Displays information for the given set, or for all sets if no setname
is given. The subnet is the string indicating which subnet to display from - for example, / indicates
main , /john is the subnet for john , /john/mary for the subnet for mary within john , etc. If
no subnet is specified, the main net / will be used.

The parts of the set specialist that interact with the theorem prover can be controlled by the bf
spec-enter , *spec-evaluate* and *spec-compare-lits* flags. For minimal use of the set specialist,
the *spec-enter* and *spec-evaluate* flags should be on.

The set specialist makes assertions about members and their types to EPILOG. This can be turned
off by tweaking the *set-assert* flag to nil.

Trace values for the set specialist are:

set-entry - Traces entry of set membership and set equality relationships, and cardinality information.

CHAPTER 5. SPECIALISTS 122

set-eval - Traces evaluation of set membership and set equality relationships,and cardinality questions.

set-function-eval - Traces evaluation of set functions

set-test - Traces comparison of literals within the set specialist.

set-assert - Traces assertions made by the set specialist.

set-min - Traces interesting things in the set specialist, including set-eval, set-entry, set-assert and
set-test .

set-all - Traces everything about the set specialist, including set-eval, set-entry, set-assert and set-test
.

5.11.2 Details of the Set Specialist

The set specialist handles assertions and simple questions about set membership and set equality. The
sets handled by this specialist are not sets according to the mathematical definition - they are more like
collections. Membership relations, cardinality information, and equalities among sets are saved in the
specialist’s own representation for future use.

The set specialist implemented here keeps track of named sets, their contents, member type, and
their cardinality in a hash table. Equalities between sets are saved by making both entries of the hash
table refer to the same set description. Equalities between sets are true if both sets refer to the same set
description, or if they have identical members, member types, and the same number of members.

When determining membership, union of members, intersection of members, set members, set differ-
ence of members, and so on, a -0 ending indicates that the members should be determined recursively by
expanding any element that is itself a set. Only the lowest level elements (bottom of the tree of nested
sets) are used. Without this flag, only the top level - i.e. the actual contents associated with the set (so
the set name, instead of its contents) are used. When determining whether or not an item is a member
of a set, or a set is a subset of another set, the set member types are considered as well.

A flag is associated with each named set indicating whether or not it is fully known. When using
the contents of these sets, a + is appended to the list of members for partially known sets so that late
stages know that the set is not complete. This is for internal use only, but does show up in some trace
information.

Set intersection, union, set difference, and subset-of relations are handled by connecting the related
sets together with a link. When new information is added to one of the sets, it can be propagated (if
appropriate) to the other sets. For example, if s1 is the intersection of s2 and s3 , if a member is added
to s1 , it must also be a member of both s2 and s3 (by definition of intersection), so those sets are also
updated.

When determining incompatibility/compatibility of literals, if both predicates are membership pred-
icates (member-of or member-of-0), or both are subset predicates (subset-of), set-set literal
comparison is done. For membership, we try to unify the first argument of each literal. If they unify, the
second argument of each (which is a set) is combined in the appropriate way to give a set residue. For
example, when determining incompatibility of

(x member-of (set-of apple banana orange))
against

CHAPTER 5. SPECIALISTS 123

(y member-of (set-of apple orange grape))
x and y will unify (substituting y for x) . Then the intersection of those two sets is what we want for
the residue, so we would get (y member-of (quote (set apple orange))) as the residue. For compatibility
testing, the union of the two sets is used. If one is negated, we use the set difference of the two; if both
are negated, incompatibility uses the union, compatibility the intersection, and the residue is negated.

For subset tests, we can either unify the first two arguments and do a similar operation to the
membership tests, or we can unify the second two arguments, and then calculate the union of the sets
specified by the first arguments (unless there is a negation, and then we use set-difference or intersection).

There are still some unresolved problems in literal comparison with the membership and subset
predicates (there are more possibilities than this specialist actually handles).

5.12 String Specialist

The string specialist is used to accelerate question answering and verification during forward inference for
literals about relations between strings, and functions involving strings. When a proposition is questioned
or a formula involving a function is asserted in EPILOG which is in the domain of the string specialist,
the specialist is invoked.

5.12.1 Using the String Specialist

To start up the string specialist, issue the following command:

(use-spec ’string-specialist)

The sorts associated with string entities are:

string - used for any string

The domain of the string specialist consists of literals with the following patterns:

Argument1 Predicate Argument2
Sort Sort
string string= string

string-equal
string<
string>
string<=
string>=
string/=
string-lessp
string-greaterp
string-not-lessp
string-not-greaterp
string-not-equal
string-contain

CHAPTER 5. SPECIALISTS 124

5.13 3 ”String Specialist Predicates”

The ”predicates” string=, string-equal, string/=, string-not-equal, string<, string<=, string-lessp, string-
not-lessp, string>, string>=, string-greaterp, and string-not-greaterp are all Lisp functions. The string
specialist just calls the appropriate Lisp routine and interprets the answer as a YES or NO.

String-contain is not a Lisp function however. It returns YES if the second argument is contained in
the first argument. It is easy to add new ”predicates” to this specialist - just make sure to modify both
string/definition.lisp and add new code in string/eval.lisp .

5.13.0.1 String Specialist Functions

In addition to predicates, some functions are recognized by the string specialist. Arguments to these
functions must all be constants, or functions with constant arguments. Each function returns a string
result. This can then be used as the argument to a predicate or another function.

Many of the functions are just the Lisp string functions. These work exactly as described in the
Lisp manual, but all the arguments must be strings - lists or quoted structures cannot be handled now
(even though some of the Lisp functions themselves can handle them). The following Lisp functions
are recognized: string-trim, string-left-trim, string-right-trim, string-upcase, string-downcase, and string-
capitalize . In addition, there are some new functions. They are:

(string-field string integer) [function]
This function returns the portion of string which can be considered its first field. The default field
divider character is ”-”, but this may be changed or added to by tweaking *string-divider* .

(sub-string string start end) [function]
This function returns the substring of string consisting of the elements in string from position start
to position end , inclusive.

(string-concat string1 string2 ...) [function]
This function returns a string consisting of all the strings in its argument list concatenated together.
Optionally, a character may be added between each string, by tweaking *string-separator* .

(string-number string) [function]
This function returns the number corresponding to string if string is composed entirely of digits, nil
otherwise. (e.g. (string-number ”321”) returns 321).

It is easy to add new functions to the specialist - just update the file string/definition.lisp and add
the new function to the file string/functions.lisp , patterning it after one of the existing functions
there. (Note: any new functions or predicates should also be sent to the authors of the manual to
incorporate into the string specialist so that you don’t have to make the changes all over again when
the next version of the system comes.)

CHAPTER 5. SPECIALISTS 125

5.13.0.2 String Specialist Display and Control

Because the string specialist does not store any information, there is nothing to display in it.

It does however have two tweakable parameters:

string-separator
May be nil, or a single character. If a single character, this character is inserted between every pair
of strings when they are concatenated using the function string-concat . This is initially set to nil,
so any strings concatenated together will have no intervening blanks or other characters.

string-dividor
This is a list of characters which may be used to separate fields for the string-field command.
Initially it is set so that only the character ”-” can separate fields (i.e. set to ’(#–)), but it can
easily be changed to include spaces or other special characters as well.

In addition, the parts of the string specialist that interact with the theorem prover can be controlled
by the *spec-evaluate* flag. For minimal use of the string specialist, this flag should be on.

Trace values for the string specialist are:

string-eval - Traces evaluation of literals involving string relation

string-function-eval - Traces evaluation of functions involving strings predicates.

5.13.1 Details of the String Specialist

The string specialist is just a simple interface to the Lisp string functions, and a few new string functions.
The system has the capability to handle strings as arguments in formulas, and this specialist allows
the user to manipulate and test these strings. The specialist can only be used for literal and function
evaluation now - it does not store any specific discourse information. For example,

(“Hello there” string-contain “there”)
would be evaluated by the string specialist to YES, and

(item1 has-field-1 (string-field “abc-def” 1))
would be simplified to

(item1 has-field-1 “abc”)

5.14 Belief Specialist

The belief specialist stores and evaluates literals of the form (t1 believe t2), where t1 is a ground term
and t2 is either a that-term, i.e. a term of the form (that wff1) where wff1 is a wff, or a constant of sort
propos such that an assertion about that proposition’s content, e.g. ((lrrh girl) _ p1_propos), has
been previously been made.

Simulative inference is performed during both entry and evaluation of belief literals. Given a literal
(t1 believe t2), the system temporarily assumes as its own beliefs all beliefs previously attributed to
t1, and then calls the story function (if the literal is being entered) or the question function (if the

CHAPTER 5. SPECIALISTS 126

literal is being evaluated) on the content of t2. Any formulas derived by input-driven inference in the
simulation are thenceforth taken to be believed by t1.

5.14.1 Using the Belief Specialist

To start the belief specialist, issue the following command:

(use-spec ’belief-specialist)

The sorts used by the belief specialist are:

propos - the object of the verb “believe” should be of this sort.

The domain of the belief specialist consists of literals with the following pattern:

Argument1 Predicate Argument2
Sort Sort

believe propos

In the above pattern, the first argument may be of any sort.

5.14.1.1 Belief Specialist Display and Control

The belief specialist stores one environment for each agent about whose beliefs it has some information.
The environment associated with an agent can be retrieved using the function simulation-env. The
contents of a simulation environment can be examined using the same functions used for examining the
system’s own reasoning environment, by binding the variable *environment* to the environment in
question. For example,

(let ((*environment* (belief:simulation-env ’lrrh)))
(display ’wffs))

will display the wffs that the system believes LRRH believes.

In addition to the simulation environments, the belief specialist creates a shared environment that
is used both by the system itself, and by all simulations. This environment is stored in the variable
shared-kb.

The belief specialist has two tweakable parameters:

simulation-effort-level determines how much effort should be expended in trying to answer simu-
lative queries. The value of this parameter is passed to the question function as its effort level.
This is initially set to 3.

max-simulation-depth determines the maximum allowed depth of simulation nesting. Without this
parameter, there would be the possibility of the system running a simulation, and the simulation
running a simulation, and that simulation running another simulation, ad infinitum. This is initially
set to 3.

Trace values for the belief specialist are:

belief-enter - Traces entry of literals into the belief specialist

CHAPTER 5. SPECIALISTS 127

belief-evaluate - Traces evaluation of literals by the belief specialist

belief-details - Traces details of belief specialist operation.

belief-all - Equivalent to belief-enter, belief-evaluate, belief-details

5.14.2 Details of the Belief Specialist

Details on the theory and implementation of simulative reasoning can be found in Aaron Kaplan’s Ph.D.
thesis (University of Rochester Computer Science Department, 2000).

The code of the belief specialist itself is very simple. It temporarily binds the global variable *en-
vironment* to the reasoning environment associated with the agent being simulated, and introduces
a new scope for each of the global variables that EPILOG uses for storing inference state (so that a
simulative assertion or query will not disturb a “real,” i.e. top-level, assertion or query of which it is a
part), and then calls the question or story function as appropriate.

The complexity of the belief specialist is in the requirements it places on the rest of the system. If
you plan to add a new specialist to the system, and you want to be able to use both your specialist and
the belief specialist, then your specialist knowledge representations and inference methods will have to
satisfy these requirements. See Section 5.17 for instructions on creating new specialists.

5.15 Meta Specialist

The meta specialist is a specialist designed to enable some of the more complex, procedural testing
required when trying to make inferences with meaning postulates. Literals belonging to the domain of
this specialist are those involving ”meta” information - information about a predicate, or a formula,
rather than a specific individual. When a proposition is asserted or questioned in EPILOG which is in
the domain of the meta specialist, the specialist is invoked. For example, asserting

(kill %action-pred)
would have %action-pred added to kill’s property list.

((To (L x (L e1 ((x eat lrrh) ** e1)))) %action-type)
would be evaluated to YES.

Note that some of the functions and predicates handled by the meta-specialist all begin with % -
this is to differentiate them from regular object-level functions and predicates. The meta functions and
predicates beginning with should only be used in meta assertions, meaning postulates and simplification
schemas.

5.15.1 Using the Meta Specialist

The meta specialist is automatically activated when EPILOG starts up.

5.15.1.1 Meta Specialist Predicates

Predicates operating on one argument:

CHAPTER 5. SPECIALISTS 128

Predicate Meaning (a1 predicate)
action-type a1 is an action term
%formula a1 is a wff
%action-formula a1 is an action formula
%action-pred a1 is an action predicate
%type-predicate a1 is a type predicate
%numeral-term a1 is a numeral term (number)
%episodic-term a1 is an episodic term
%kind-of-episode a1 is a term of the form (Ke ...)
%kind-level a1 is a kind-level predicate
%object-level a1 is an object-level predicate
%stative a1 is stative
%telic a1 is telic
%nonvolitional a1 is nonvolitional
%unlocated a1 is unlocated
%*-or-** a1 is either * or **
%atemporal-formula a1 is an atemporal formula
%currently-I-cannot-infer-likely a1 cannot be proven in a

small inference attempt

Predicates which operate on more than one argument:

Formula Meaning
(wff %contains object) wff contains object in it somewhere

It is easy to add new meta routines - just update the file meta/definition.lisp , and add the new
routines following the pattern of those in meta/eval.lisp . Note however - all new ”meta” predicates
should also be classified under the topic tp.meta .

5.15.1.2 Meta Specialist Functions

(%subst new old wff) [function]
This function returns a new normalized formula which consists of wff with all instances of old replaced
by new .

5.15.2 Meta Specialist Display and Control

Trace values for the meta-specialist:

meta-eval - Traces evaluation of literals involving meta level objects

meta-function-eval - Traces evaluation of functions involving meta level objects

meta-entry - Traces entry of information into meta-specialist

meta-all - Traces all meta operations

The parts of the meta specialist that interact with the theorem prover can be controlled by the
spec-enter and *spec-evaluate* flags (just like most other specialists). For minimal use of the meta
specialist, these flags should be on.

CHAPTER 5. SPECIALISTS 129

5.15.2.1 Details of the Meta Specialist

If a literal involving one of the predicates recognized by the meta-specialist is asserted, has only one
argument, and that argument is a symbol, the predicate is stored as a property on the property list of
the argument - assertions involving non-symbolic arguments are not saved by the specialist.

During the evaluation phase, if the argument is a symbolic argument, the property list is checked first.
If there is a property with the name of the predicate, YES is returned. If this fails, or if the argument
is not a symbolic one, then the appropriate routine in the meta specialist (having the same name as
the predicate) is invoked and used to do the evaluation. There are no restrictions on how this routine
should work - it may be a completely procedural definition of the predicate, or it may check for certain
properties, or work in whatever manner is required to evaluate the literal given to it. The routines may
be recursive and may call on any routines in the rest of the system that they find useful. If there is no
such routine, a default routine will check the argument for the property - this allows lambda expressions
to be checked as well.

5.16 Other Specialist (Adding External Routines)

It may be desirable to be able to interface EPILOG with other Lisp programs and routines which do
various kinds of information storage. For example, one might have a database of some special kind and
want the assertions to EPILOG to be able to update this database, and want information from the
database also available to assist EPILOG in evaluating and simplifying literals. This is easy enough
to do if one sets up another specialist, but this may require more effort and a deeper understanding
of the system than is desirable for such a (seemingly) simple task. An interface specialist, called the
other-specialist has been set up which attempts to make this interface problem easier. The specialist just
takes the names of predicates and functions that the user give it, the package where they can be found,
and automatically calls these routines where appropriate in the system.

NOTE: if a modal embedding is involved, the routines made accessible through this specialist will
NOT be called, as no provision has been made for handling different subnets. If it is desirable to interface
extenal routines for modally embedded facts, a separate specialist will have to be set up. Negations are
also not sent to the external routines.

In the event that this interface does not have the desired effect, it can be used as a pattern by which
to build individual specialists which interface to the particular desired routines.

The commands needed to use this interface are as follows: Note: All routines which are called are
responsible for checking the arguments themselves, and should not bomb if a different number or kind
of argument is recieved than expected. Also note that the arguments are interned in the package epilog
, so take this into consideration when testing or saving information. The ”other” specialist ignores all
modal embedding and subnet information - so be careful to use it only for predicates, etc which either
will not be embedded in modal contexts, or for which the modal embedding does not matter. If it
is important to take the modal embedding context into consideration, the global variable *current-
netname* contains the current subnet name, and should be used for storing or extracting any modal
context sensitive information.

(other-function package &rest function-names) [function]

Purpose: Tells the system that an evaluation function exists for a function and where to find it.

CHAPTER 5. SPECIALISTS 130

Syntax: package is the name of the package that the evaluation functions live in. Each name in function-
name* is a function which the user can use in formulas, and which will be evaluated when appropriate
by an evaluation function in package by the same name.

Examples:

(other-function ’weather-pkg ’pressure-of ’temp-of)

would have pressure-of and temp-of created as functions in the system, and whenever they are used
in a wff, the corresponding functions in the package weather-pkg will be called to evaluate them. So
asking if ((pressure-of today) greater-than 50)would cause the function weather-pkg::pressure-of to
be called with argument today .

(other-predicate package &rest predicates) [function]

Purpose: Tells the system that an evaluation function exists for a predicate and where to find it.

Syntax: package is the name of the package that the evaluation functions live in. Each name in predicate*
is a function which the user can use in formulas, and which will be evaluated to yes, no, or unknown
when appropriate by an evaluation function in package by the same name.

Examples:

(other-predicate ’weather-pkg ’stormy ’calm ’tornado-watch)

would create stormy, calm , and tornado-watch as predicates in the system, and would call their
corresponding functions in the package weather-pkg to evaluate them (entry is also possible and
will be discussed shortly). So if we question (today stormy) the routine weather-pkg::stormy will be
called with argument today . This routine may use whatever method it likes to determine an answer.
The answer it returns should be yes, no or unknown (in the epilog package), but the system can
also operate with other output (non-nil is yes, nil can mean either unknown or nil, depending on the
routines - the user controls this). The user defined routine will only ever be asked to answer positive
predications - if the literal being evaluated is negated, the negation is stripped off, the positive literal
is evaluated by the user’s routine, and then the result is negated.

Note: if a routine returns a non-nil answer, it is considered true (unless it is unknown). If it returns nil, it
is open to interpretation - this may mean no or unknown . There is a tweakble parameter *interpret-nil-
as-no* which indicates which to use - if t , nil answers will be interpreted as no , otherwise as unknown .
This is initally set to interpret nil answers as unknown . Remember that input facts are evaluated before
entering, so one must be careful that the system doesn’t think the input fact is false.

(other-entry-rtn package predicate rtn) [function]

Purpose: Tells the system that if an assertion is made involving a particular predicate, a corresponding
entry routine exists to maintain that information elsewhere as well.

Syntax: package is the name of the package that the entry routine lives in. Predicate is a predicate which
requires that assertions involving it be saved in some other form, handled by the routine rtn . Note,
if rtn exists in package , that will be the routine used; if not, rtn is used as is.

Examples:

(other-entry-rtn ’weather-pkg ’calm ’set-calm-day)

CHAPTER 5. SPECIALISTS 131

If (yesterday calm) were asserted, the routine weather-pkg::set-calm-day would be called with argu-
ment yesterday .

5.17 Adding New Specialists

During propositional entry and question-answering, EPILOG can call specialists to assist it in several
ways: literal entry, literal evaluation, predicate comparison, literal comparison, and function evaluation .
This section describes the interface in more detail, and includes instructions on how new specialists can
be added. The main system has a number of facilities set up to make this easier, and they should be used
for consistency purposes as well. These include facilities for tracing, setting up tweakable parameters,
setting up user display functions, and checkpointing and retraction of information. Details of some of the
commands mentioned may be found in the ”Library Routines” manual.

5.17.1 Requirements for the New Specialists

Before attempting to add a specialist, its domain must be determined, including what predicates are
involved and what sorts of arguments it uses. Then the interactions it is to have with the main system
must be decided upon. There are two kinds of specialists -

(type1) ones that simply maintain the relationships between predicates, and

(type2) ones that maintain their own separate representation of the portion of the facts in the story
which fall into their domain.

The first kind can only be used to help compare predicates. This is the simplest and easiest kind of
specialist to add, since one need only create a compare-preds routine (described shortly). The other
kind has more possibilities for interaction, and at a minimum should have enter and evaluate interface
routines. Literal comparison routines (incompatible-lits, compatible-lits) are optional, as are any
functions usable in propositions. Note that for type2 specialists, the representation and methods chosen
must support checkpointing and retraction of information.

5.17.2 Steps to Adding a Specialist

This section gives the easiest order in which to do the necessary steps to add a specialist. Instructions and
details on the steps are described in other sections. Note: not all steps will be required for all specialists.

1) Determine the domain of the new specialist
Literal and function patterns must be decided on, and the exact effect they must have. Any sorts
required must be defined, as well as function and predicate symbols.

2) Devise a special representation or method to do the inference
Determine how this specialist will represent the information it handles, and how it will evaluate
literals and functions. If possible, test these lower levels before incorporating into the system. For
example, the type specialist uses a hierarchy with special numbering methods; the time and numbers
specialists use graphs. If you want to be able to have the belief specialist and your new specialist
active in the same system, then your representation will need to satisfy certain constraints, to be
discussed below.

CHAPTER 5. SPECIALISTS 132

3) Start incorporating the specialist into the system
Create a directory for the specialist, and add the specialist to the file ”specialists”. Create a
definition file (described below) for the specialist, and put it under this directory. Create the main
load file for the system which exports the interface routines (don’t export them yet). If there are
any functions for this specialist, implement them first if possible, as it is easy to test them by asking
a question

(q ’((new-function ...) junk))
while tracing function-eval to see what happens.

4) Write the entry interface (type2 specialists only)
Write the entry routine for the specialist to interface it with the system - the required definition will
be described shortly. Export the symbol enter so that the interface knows it is available. Write
some display routines so that you can see if it is entering things properly, and possibly a trace value
as well. Any assertion the specialist wants to make back to EPILOG should be put on the list
assertions .

5) Add the literal evaluation interface (type2 specialists only)
Add the interface and any traces desired to do literal evaluation. Export the symbol evaluate so
that the interface knows it is available. Test this out with the system. When satisfied that simple
literal entry and evaluation, and function evaluation are working, continue with the next step.

6) Add predicate comparison (type1 specialists only)
Export the symbol compare-preds . When called, this should return the relationship between
the predicates given. The relationship returned should be one of disjoint, subsumes, subsumed,
equivalent, unknown .

7) Add literal comparison (type2 specialists only)
Export the symbols incompatible-lits and compatible-lits . See the section of literal comparison
for some hints on how to do this. This is by far the most difficult, hardest to test, and least rewarding
of the possible specialist functions.

5.17.3 Details

This section contains details on setup and interfaces for specialists.

5.17.3.1 Definition and File Setup

Each specialist is assumed to live in its own directory which should be in the epi directory (although
for initial testing it may be elsewhere as long as the loadfile for define-specialist and defn-file for set-
specialist are set properly). In that directory, there should be a file containing the definition of the
specialist and any required initializations on start-up (this file is usually called definition for ease of
finding it, but may be set to anything using the set-specialist command.

In this definition file should be a command of the form:

(define-specialist specialist-name loadfile predicates operators sorts functions topic)

This function is not called until the definition file is loaded, which takes place only when use-spec is
called. This will define the specialist to the system, tell it where to load the specialist from, and note
any predicates and functions it uses. If loadfile exists, it is require d. Each predicate in predicates

CHAPTER 5. SPECIALISTS 133

has specialist associated with it on its property list, and is marked as a predicate. The same is done
for each function in functions except that the function is also marked as a function. Sorts is a list
of sorts that are allowable for the first term in a literal for this specialist. If topic is specified, it
will be used to topically classify formulas which involve predicates the specialist handles. They are
stored for later use.

In addition, any functions which are to be transformed into relational predicate during assertions
should be defined here using function-with-rel-pred . More on this in the section on functions ...

Each specialist must exist in a package of its own, named with the specialist name (eg. time-specialist
with nickname time). The specialists must reside in separate packages, because they will have conflicting
symbols (enter, evaluate, compare-preds, incompatible-lits, compatible-lits , plus possibly some functions
as well).

The file specialists (same level as EPILOG .lisp) must be updated with information about the new
specialist. Entries in this file are of the form:

(set-specialist specialist-name defn-file nicknames description)

Defn-file indicates the file that contains the definition for the specialist. The specialist is added
to the available-specialists list (*available-specialists*), but is not activated until a use-spec
command is issued.

In addition, the predicates involved in the specialist should be put into the same topic in the topic
hierarchy, so that propositions using them will be classified under the same topic. Otherwise the propo-
sitions will never be found to compare against. If all predicates are known in advance, this can be done
in the specialist definition. If not, the specialist itself can add the appropriate indicator topic to the
predicates as they are given to it (the color specialist and type specialist do this).

5.17.3.2 Requirements Imposed by the Belief Specialist

If you want it to be possible for your specialist and the belief specialist both to be active in the system,
then your specialist must satisfy certain additional requirements.

First, if your specialist can invoke other specialists via the immediate evaluation interface (see page 91,
then it must be reentrant: your specialist could call the belief specialist, which could run a simulation,
in which your specialist could be invoked again, nested within the original invocation. In particular, this
means that you should avoid storing inference state in global variables. The belief specialist introduces a
new scope, using let, for each of the existing system’s global variables that contains inference state, but
it doesn’t know about any new variables you may introduce. If you must store inference state in a global
variable, you will have to modify the belief specialist to handle it explicitly.

Second, if you are writing a type 2 specialist, i.e. one that has an enter function for storing informa-
tion in some special-purpose data structure, then this data structure should be stored in the environment.
That way, the system’s own beliefs in your specialist’s domain can differ from the beliefs the system at-
tributes to others in that domain. The specialist interface provides the retrieve-specialist-info function
to facilitate this:

(retrieve-specialist-info environment specialist &optional init-function)
specialist should be a symbol that names the specialist that’s calling the function. You will typi-
cally use the current environment *environment* for the environment argument. The first time
retrieve-specialist-info is called with a particular pair of values for environment and specialist,

CHAPTER 5. SPECIALISTS 134

the function init-function is called to create a new data structure of whatever type the special-
ist needs, and that object is stored in environment under the name specialist, and returned by
retrieve-specialist-info. On subsequent calls, when environment already has something non-nil
stored under the name specialist, that object is returned.

Third, to take full advantage of the facilities for simulative inference, the specialist should be able
to use information from multiple environments simultaneously. There will typically be a large amount
of world knowledge which the system believes, and which it also believes that everyone else believes.
Since it would be unreasonable to duplicate all of this information in each reasoning environment, the
belief specialist provides the belief:*shared-kb* environment and makes the information in it accessible
from all other environments. Therefore, all inference methods, both at the top-level and in simulations,
must be able to combine information from multiple environments. A specialist should never modify
any environment other than the current one (stored in the variable *environment*), but in answering
queries it should be able to use information from the current environment as well as any environments
accessible from it. The environments accessible from the current one are given by (environment-
use-environments *environment*). For a discussion of the difficulties of writing specialists that use
multiple reasoning environments, and some techniques for coping with these problems, see (Kaplan 2000).
Also see EPILOG’s set specialist, equality specialist, and time specialist as examples.

It might be that for your specialist domain, either all agents can be expected to have the same
beliefs about that domain, or on the contrary the number of shared beliefs about the domain can be
expected to be small compared to the number of non-shared beliefs. In these cases, it may not be
worthwhile to implement multiple-environment reasoning. In the first case, you may choose to have the
specialist use only the belief:*shared-kb* in both top-level reasoning and simulations, ignoring the
current environment *environment*. To avoid unexpected results, your specialist should modify the
belief:*shared-kb* only during top-level reasoning, not during simulations. To this end, the variable
belief:*at-top-level* is provided. Its value is t during top-level reasoning and nil during simulations. In
the latter case, when is is expected that there will be few shared beliefs in the specialist’s domain, you may
choose to have the specialist use only information stored in the current environment *environment*,
ignoring environments accessible from that one.

5.17.3.3 Entry/Assertion of Literals

The specialist interface will call the following routines in the specialist when an asserted literal looks like
it might be of interest to the specialist. Enter should be defined and exported. It is a good idea to have
some trace values set up to watch the action of the specialist as it enters the information given to it in
its own representation.

(enter netname lit negp pred arglist)
This routine will be called when the interface determines that this specialist may be interested in
a literal being asserted. Netname is a symbol of the form /concept1/concept2 ... indicating which
subnet this literal is for (main is / , John’s mental world is /john , etc). Lit is the literal within
netname to be entered. Negp indicates whether or not it is negated. Pred is the basic predicate
(operators are stripped off) of the literal, and arglist the arguments.

Enter is responsible for checking the arguments given to it to make sure they are of the correct
sort, and are constants if that is a requirement of this specialist. If something was actually entered,
it should return t, otherwise nil.

CHAPTER 5. SPECIALISTS 135

Once a literal has been asserted to all applicable specialists, each term is checked to see if it has an
interested party list (see under Specialist Communication in Chapter 5). If so, all the literals on that list
are also reasserted to the specialists that were interested in them.

A specialist may need additional information when it is entering a literal which may be supplied
by other specialists. There are two types of information that may be requested - the evaluation of a
functional term, or the evaluation of a literal. The specialists involved so far in this system only required
the former. The specialist interface command eval-fn may be used to get the desired information. For
example, the time specialist might be given literal (e1 has-duration d) , and want to know the bounds
on d , so it would request (eval-fn (list ’max-of d)) , and (eval-fn (list ’min-of d)) . These may or may
not return an answer (depending on whether that information has been obtained yet). In addition, the
current literal and specialist should be added to the interested party list for any such concept that it
tries to get information for, For the time specialist in the above example, bounds on d may be asserted
at a later time, and the time specialist would then be invoked with that same literal again. This time it
would get different results for the function evaluations. Add-interested-party should be used to add
to a concept’s interested party list.

During the entry of a literal, information may change for a constant which was not in this literal (via
propagation for example). This may lead to additional inferences in other specialists. A specialist may
indicate to the specialist interface that it has changed something (using the command spec-changed-
concept). All the concepts indicated in this manner are put onto a list, and after the current literal has
been asserted to all the interested specialists, and the related interested party lists have been re-asserted,
the interested party lists for each of these concepts is also reasserted (Note - there is a possibility for
infinite looping here if a specialist puts the concepts in the current literal on this list, or if it puts concepts
on that have not actually changed).

A specialist may be able to make input-driven inferences based on the literals given to it. If these
inferences are placed on the special list *assertions* , EPILOG will find and assert them (as long
as *spec-assert* is t), after all the specialists have entered the current literal, and before any other
input-driven inference is attempted. These assertions must be in unnormalized, list form.

5.17.3.4 Evaluation of Literals

The specialist interface will call the following routine in the specialist when a literal being evaluated looks
like it might be answered by the specialist. Evaluate should be defined and exported. It is a good idea
to have some trace values set up to watch the action of the specialist as it evaluates the literal given to
it.

(evaluate netname lit negp pred arglist effort)
This routine will be called when the interface determines that this specialist may be able to evaluate
a literal. Netname is a symbol of the form /concept1/concept2 ... indicating which subnet this literal
is for. Lit is the literal within netname to be evaluated. Negp indicates whether or not it is negated.
Pred is the basic predicate (operators are stripped off) of the literal, and arglist the arguments.
Evaluate is responsible for checking the arguments given to it to make sure they are of the correct
sort, and are constants if that is a requirement of this specialist. The answer returned should be
YES, NO or UNKNOWN.

As in the entry of literals, sometimes the specialist may not have all the information it needs, and
may want to request the evaluation of a functional term or literal. Eval-fn can again be used here. The

CHAPTER 5. SPECIALISTS 136

interested party lists are of no use here, since evaluations are fleeting and later information will be too
late to help this evaluation.

5.17.3.5 Comparison of Predicates

The following routine is called when the specialist interface decides that the specialist could be used to
determine the relationship between two predicates. Compare-preds should be defined and exported.
Note, for a type1 specialist, this is (usually) the only interaction between the specialist and the main
theorem prover.

(compare-preds pred-1 pred-2)
Pred-1 and pred-2 are the predicates to be compared, including operators. The specialist is respon-
sible for examining any top level operators to make the final decision about whether the predicates
are in its domain. Most specialists will either ignore the operators or discard predicates with oper-
ators, except for the color specialist, which takes into account several operators, including sort-of
and almost .

5.17.3.6 Comparison of Literals

There are two comparison routines that may be set up in a specialist for interfacing with the main system.
These are incompatible-lits and compatible-lits , which should be defined and exported (note that
these routines are optional). The specialist interface will call them when it has two literals to be tested
for incompatibility/compatibility which both trigger this specialist.

(incompatible-lits netname lit-1 lit-2 neg-p1 pred1 arglist1 neg-p2 pred2 arglist2 effort)
This routine is called when the interface determines that the specialist might be able to tell if lit-1
and lit-2 are incompatible. Both literals are from the same subnet, indicated by netname Neg-p1
indicates whether \m lit-1 is negated. Pred1 is the basic predicate (operators are removed) for lit-1
and arglist1 its arguments. Similarly, neg-p2 pred2 and arglist2 apply to lit-2 The specialist must
unify the argument lists and return a list of ”agenda items” with the appropriate substitutions and
residues. This process and the order of unification depends on the predicates involved and whether
or not the literals are negated. There may be more than one possible action which results.

(compatible-lits netname lit-1 lit-2 neg-p1 pred1 arglist1 neg-p2 pred2 arglist2 effort)
This routine is exactly like incompatible-lits except that it determines whether the literals are
compatible.

Note that eval-fn may be used to request information as in the entry and evaluation interfaces.

These are by far the hardest functions to ask the specialist to do. For some specialists, this testing can
be done in the following manner:

a. Decide what order to unify the arguments in

b. For each unification (use unify-lists or compare-arglists):

i. Make the substitutions in the two literals
- use substitute-prop

CHAPTER 5. SPECIALISTS 137

ii. Simplify the arguments in the two literals
- use getargs to get the simplified arguments, and arg-sub-list to determine those substitu-
tions so that they may be added to the substitution lists

iii. Evaluate both literals
- use the evaluation routine developed for this specialist. Use the routine incompatible-with-
eval to determine if this is enough - if it returns a non-nil answer this attempt is finished.
Otherwise continue ...

iv. Checkpoint
- to ensure that you don’t make any permanent changes here

v. Enter one literal into the specialists representation

vi. Evaluate the other literal
You can either use the evaluation to determine compatibility/incompatibility, or use it to
determine the conditions necessary to make the literals incompatible/compatible. In the later
case, the condition must be returned as a residue - a proposition.

vii. Retract changes made from last checkpoint

5.17.3.7 Functions

In addition, any number of functions may be defined for use in propositions. These functions should all
be defined with an argument list of &rest args (for an example, see the end of this section), and should
NOT abend if the number of arguments is incorrect. If the arguments are inappropriate, an answer of nil
should be returned; otherwise a concept or quoted expression with the result of the function application
should be returned. To remain consistent, they should also test to see if function-eval is being traced,
and if so, print the result of the function before returning.

Note - it may be desirable to have some functions able to set information on assertion (normally the
functions are evaluated only). For example, the time specialist has a function duration-of which can be
used to set an event’s duration, and similarly, the set specialist has a function cardinality-of which can
be used to assert the cardinality of a set. To do this, the specialist interface determines the relational
predicate which can be used to achieve this, and creates a new unique constant of the sort that the
function normally produces, and produces several assertions to be made to the specialists (this does not
go back to the main system!). For example:

((duration-of e1 episode) less-than (duration-of e2 episode))
would be transformed into the following:

(d1 number less-than d2 number)

(e1 episode has-duration d1 number)

(e2 episode has-duration d2 number)
To accomplish this, a predicate must first be set up which uses the same information, and actually sets
the desired fields. This predicate is then tied to the function using the command

(function-with-rel-pred function-name predicate-name sort)
where sort is optional and is the sort of result that the function produces (when evaluated). This com-
mand should be placed in the definition file for the sepcialist after the define-specialist command.
(If desired, this command may be used simply to add a sort to the function by invoking it with a null
predicate-name).

CHAPTER 5. SPECIALISTS 138

5.17.3.8 Notes

For any of the interface functions (including the functions usable in propositions), when passing the
names of concepts (the predicate or arguments) around, be aware that their package names will be epilog
, so any comparisons must have epilog:: in front. Alternatively, the equivalent symbol in the specialist’s
package may be found and used inside the specialist.

Any changes made to the specialists representation by these routines should be added to the check-
point stack using checkpoint . When changing properties, hash table entries, array entries, etc, use the
function change-property , change-field , change-hash and change-array to do the changes - this
automatically sets up the retraction list so that if a retract is called for, everything is returned to its
previous state. It is possible to set up your own retraction routines, if there is a better way to do this
than by saving atomic changes. See the ”Library Routines” manual for details.

For ease of implementation and consistency, note the following. For parameters which may be set
that are specific to this specialist, use tweakable . To allow the user to display information contained
in the specialist, use set-display-function . Use prinlis for printing display information and error
messages. To allow the user to trace certain aspects of the specialists execution, use traceable to set up
new trace values, and traced-p to determine if a symbol is being traced. These routines are described
in the ”Library Routines” manual. Note: all trace output should be prefixed by 4 spaces and the name
of the specialist. For example, ” Time Specialist: Evaluating ... ”

5.17.3.9 Documentation

All new specialists should be documented in this manual. For consistency, user information (information
on how to use the specialist - what predicates and arguments it takes, tweak and display functions, etc)
should be placed in Chapter 5 (Specialists) in a subsection for the new specialist. Information should be
added in the following order (note that not all of these will be needed for every specialist): introduction,
sorts used/defined for this specialist, predicates/operators involved, functions defined, display functions
and controls, and details. The ”Quick Reference Guide” and ”Programmer’s Guide” should also be
updated.

5.17.4 Example Specialist

The following example shows how the temporal specialist package is set up:

(provide ’time-specialist)
(in-package ’time-specialist :nicknames ’(time) :use ’(lisp user epilog))
(export ’(

;; These are optional but must be exported to be used
enter evaluate incompatible-lits compatible-lits

;; any functions which may be used in propositions
start-of end-of date relation duration elapsed

;; Note that display, tweak, rewind and unifiable functions are not
;; required to be exported, as their internal names are passed directly
;; to the net.

))

CHAPTER 5. SPECIALISTS 139

(traceable ’epilog::time-entry "Traces input of temporal relations")

(defun enter (netname lit negp pred arglist)
; enter in specialized time graph
t

...)
(defun evaluate (netname lit negp pred arglist effort)

; look in specialized time graph
(cond (true-literal ’YES)

(false-literal ’NO)
(t ’UNKNOWN))

...)

(defun unifiable (arg1 arg2)
; see if worth trying any comparisons with these

...)

(defun incompatible-lits (netname lit-1 lit-2 neg-p1 pred1 arglist1
neg-p2 pred2 arglist2 effort)

...
; determine order(s) of unification
; for each order:
(unify-lists arglist1 arglist2 ...)
(list

(make-comparison-info :residue1 ... :subs1 ... :residue2 ... :subs2 ...))
; return as many different incompatible results in this list as
; are found with the different substitutions

...)

(defun compatible-lits (netname lit-1 lit-2 neg-p1 pred1 arglist1
neg-p2 pred2 arglist2 effort)

...
; determine order(s) of unification
; for each order:
(unify-lists arglist1 arglist2 ...)
(list

(make-comparison-info :residue1 ... :subs1 ... :residue2 ... :subs2 ...))
; return as many different compatible results in this list as
; are found with the different substitutions

...)

(defun start-of (\&rest args)
(unless (null (car args))

find and return concept for start
))

... other functions

Chapter 6

Response Generation

EPILOG has a natural language generation facility which can give a more helpful and fuller answer to
a question than just a simple yes or no, or can be use to ”say” input facts or groups of facts. This can be
useful to help detect errors in input, as the English response will try to capture the meaning of the input.
These response functions are automatically turned on, but may be turned off if so desired. Translation
and lexical information may be given to the system to make it say things in a more natural manner - this
information is described in Chapter 4.

The response generator tries to build a language fragment, or set of fragments for each wff given
to it (using the translation information given to it), and then combines those fragments using some
heuristics. More heuristics and some knowledge base lookup are used to fill in any ”gaps” in the resulting
sentence fragment(s) to get a complete and meaningful sentence. The response generator also tries to use
pronouns where applicable, and shortened descriptions of referring noun phrases. Currently the generator
can handle most of the allowable syntax fairly well, but sometimes gets confused with complex formulas,
and combinations of formulas.

6.1 Using the Response Generator

Optionally, the system will automatically generate English output for answers to questions (if flag *say-
answer* is set), input knowlege (*say-knowledge*), story information (*say-story*) and input-
driven inferences (*say-infer*), meaning-postulates (*say-mp*) and meta information (*say-meta*
). The English generated for meaning postulates and meta information is not particularly good and the
system is easily confused, so these are set off by default. In addition, there are some commands (
do-say, say-it, say-them) which can be used to ”say” things on demand.

This section describes how to input lexical and translation information, the commands for invoking
the response generator, and the various controls for the response generator.

6.1.1 Response Generator Commands

In addition to the commands below, there are two other commands: add-word for adding translation
information, and add-lex for adding lexical information. These are described in the sections Translation
Information and Lexical Information , respectively.

140

CHAPTER 6. RESPONSE GENERATION 141

(do-say arguments) [function]

Purpose: To repeat an answer (optionally in more detail), or to say information known about a specific
concept and topic.

Syntax: The first element of arguments is a flag which may be one of:

answer or ans
the answer to the last question is repeated.

more-details or more or details
the answer to the last question is repeated in more detail, by using the parents of the original wffs
in the answer. This may be repeated until the wffs have no parents, and then just a Yes or No will
be returned.

less-details or less
just the reverse of the above process. This will just repeat the answer unless a do-say ’more has
been done, in which case it will repeat the previous version of the answer.

retrieve or ret
The rest of arguments is used as the arguments to the retrieve command, and the results of the
retrieval are then said.

a list of formuals
The *prompt-if-too-complex* flag is temporarily set to t and the list of formulas is passed to
say-it .

Examples:

(do-say ’ans)

(do-say ’more)

(do-say ’ret ’lrrh)

(do-say ’ret ’wolf ’tp.coloring)

Remarks: Note that do-say re-filters each time it is asked to print the answer. If desired, the filter
threshold (*filter-threshold) can be changed and a question answer ”resaid” this way without
having to go through the question answering mechanism again.

(say-it list-of-wff) [function]

Purpose: To say an arbitrary group of wffs as a sentence.

Examples:

(say-it ’(wff1 wff10 wff34))

Remarks: Be careful about what groups of wffs you decide to say - some do not combine nicely and the
system is not good at detecting this (for example, combining LRRH smaller than bed and LRRH
not smaller than basket can give incomplete and strange sounding sentences.

(say-them list-of-lists) [function]

Purpose: To say a set of sentences, each made up of a group of wffs, as a coherent whole.

CHAPTER 6. RESPONSE GENERATION 142

Examples:

(say-them ’((wff1 wff10 wff34) (wff2 wff3) (wff5)))

Remarks: Pronouns are used across sentences to give coherence. The same comment goes for these groups
of wffs as for the wffs in say-it - be careful what you decide should be said together.

6.1.2 Response Generator Display and Controls

The following are display functions that can be called through the display command (all arguments are
optional):

(display ’pred-info preds)
For each predicate in preds , the predicate’s type and translation as used for response generation
are displayed.

(display ’lex-info words)
For each word in words , the word type and lexical information as used for response generation are
displayed.

The following tweakable parameters may be used to control the actions of the response generator:

say-answer
which determines whether or not the answer obtained using the question answering mechanism
should be said in English. This is initially set to t but may be changed using the tweak command.

say-knowledge
which determines whether or not to try to ”say” input knowledge (rules). This is initially set to t
but may be changed using the tweak command.

say-story
which determines whether or not to try to ”say” story knowledge. This is initially set to t but may
be changed using the tweak command.

say-infer
which determines whether or not to try to ”say” inferred (input-driven) facts. This is initially set
to t but may be changed using the tweak command.

say-mp
which determines whether or not to try to ”say” input meaning postulates. This is initially set to
nil but may be changed using the tweak command. The system doesn’t say meaning postulates
very well.

say-meta
which determines whether or not to try to ”say” input meta information. This is initially set to nil
but may be changed using the tweak command. The system doesn’t say meaning postulates very
well.

say-question
which determines whether or not to try to ”say” the question before trying to answer it. Currently
the question is ”said” as a statement - a future enhancement will be to ask it as a question. This
is initially set to nil but may be changed using the tweak command.

CHAPTER 6. RESPONSE GENERATION 143

say-immediate
which determines whether or not to try to ”say” each partial piece of knowledge (inferred, story or
rules) as they are entered. If an input fact may be split into several wffs, they are usually gathered
together and said as one. With this flag, however, the pieces are said individually, as they are
entered. The flag is initially set to nil but may be changed using the tweak command, although
this should be done only for testing - the other methods give more natural sounding English.

default-lex
If this flag is set, instead of prompting the user for lexical information, the system uses its default
rules to figure it out for itself. This flag is initally set to t , but may be changed using the tweak
command.

default-trans
If this flag is set, instead of prompting the user for translation information, the system uses its
default rules to figure it out for itself. This flag is initally set to t , but may be changed using the
tweak command. If the system uses a default, the user will be warned.

filter-threshold
When filtering, all set-of-support clauses are automatically filtered out. Then all clauses with a

likelihood greater than the filter-threshold are filtered out (unless there is only one clause left). The
filtration threshold is initially set to 50, but may be modified to any number between 0 and 100
using the tweak command. At 100, nothing except set-of-support clauses are filtered out; at 0, only
the clause with the lowest likelihood of being known will be used.

max-response-complexity
This may be either nil, which indicates that all formulas should be attempted by the response
generator, regardless of complexity, or a number which is the maximum complexity to attempt to
say. The default is 40.

prompt-if-too-complex
If this flag is t, when a formula is detected which is too complex to say (using *max-response-
complexity* , the user will be prompted to see if he wants the system to attempt it anyway. If
nil (the default), the formula will just be ignored.

response-warn
This flag indicates whether or not to print response generation warnings. It is initially set to t, so
that warnings about possible strange sounding output will be printed.

active-topics
This parameter is used by the response generator to help determine how to say certain predicates
when no translation information is available for them. For a predicate with only one argument,
it is considered a noun is the predicate is a type predicate, a verb if one of the indicators for the
predicate is on the *active-topics* list (or is beneath in the topic hierarchy), and an adjective
otherwise.

Trace values for the response generator are:

filtration - Shows which formulas were filtered out and why.

filtration-details - Shows the estimation of the likelihood of a clause being known.

CHAPTER 6. RESPONSE GENERATION 144

response - Displays the wffs being input to the response generator (after filtration).

verbalization - shows the set of wffs used for each sentence, and the sentence fragments resulting from
that set.

fragment - shows the creation of fragments for clauses and literals.

combine - shows how the fragments are combined.

combine-details - shows more detailed information on all combining attempts.

retrieval - shows any wffs taken from the knowledge base to be used in filling in a fragment.

trans-details - shows the details of translating into fragments (for debugging)

response-all - shows everything about response generation (except trans-details)

response-int - shows interesting things about response generation (including filtration, organization,
verbalization, response, fragment, and retrieval).

response-min - shows minimum things about response generation (including filtration, verbalization,
response, and retrieval).

6.1.3 Translation Information

All predicates are assumed to represent one of the following English forms: singular noun, verb infini-
tive, adjective, or preposition. To enter translation information about a predicate (for use in creating
fragments), the command add-word is used. The format of the command is as follows:

(add-word pred translation-list) [function]

Purpose: To describe a specific bit of grammar for use in translating formulas with that particular
predicate.

Syntax: pred is the predicate to be defined. translation-list is a list of the form

({fragment-type} {number} {property*})
where either fragment-type or number must be specified.

property -> (property-name item+)

item -> translation-list | symbol | number | (special-routine args)
The grammar used by the system is shown in the Details chapter, and this ”bit” of grammar should be
consistent with it. Fragment-type must be one of S, NP, VP, PP, AP, ADVP, ADVS . Property-name is
either a fragment type (to describe a fragment within a fragment, like the NP for an S), a group fragment
type (parts or objects), or a simple property name (number, tense, aspect, noun, adj, adv, particles, pre
,conj, name, required). The best way to set up translation information for a new predicate is to examine
the translation information for similar predicates. The particular properties used in translation-list differ
for each possible ”type” of predicate.

Examples:

verb-like predicates: use properties verb aspect tense objects adv particles

CHAPTER 6. RESPONSE GENERATION 145

(add-word ’sleep-in ’(S (NP 1) (VP (verb sleep) (objects (PP (prep in) (NP 2))))))
makes a prepositional phrase after sleep for the object being slept in (Little Red Riding Hood
slept in a bed).

(add-word ’blow-up ’(S (NP 1) (VP (verb blow) (particles up))))
shows the use of particles (A bomb blew up).

(add-word ’eat ’(S (NP 1) (VP (verb eat) (objects (NP 2 (required nil))))))
makes the object of eat a noun phrase, which may be omitted if there is no information about
it. It is ok to say ”John eats” but not ok to say ”John lives in”. (The wolf ate Little Red
Riding Hood , Only living things eat).

(add-word ’say ’(S (name 1) (VP (verb say) (objects 2))))
lets the object of say be whatever the particular term works out to be (an S, NP, etc) - John
said that Mary loved Bill .

(add-word ’like-to-eat ’(S (name 1) (VP (verb like) (objects (VP (verb eat) (aspect infinitive)
(objects (NP 2 (required nil))))))))
E.g. Wolves like to eat creatures . Note that constructions like this can also be handled by
using lambda abstractions in the logic (e.g. (wolf1 like (To (L x (x eat ...))))).

noun-like predicates: use properties noun number PP AP S

(add-word ’living-thing ’(NP (name 1) (noun thing) (AP (adj living))))
describes this compound predicate as a combination of a noun and an adjective (Only living
things eat).

(add-word ’body-of ’(NP (name 1) (noun body) (PP (prep of) (NP 2))))
describes this compound predicate as a combination of a noun and a prepositional phrase (
C1 is a body of Little Red Riding Hood - usually transformed into Little Red Riding Hood has
a body).

preposition-like predicates: use properties NP S prep pre

(add-word ’before ’(S (name 1) (ADVP (prep before) (S 2))))
makes a before predication into an adverbial phrase modifying a sentence (The wolf ate Grand-
mother before it ate Little Red Riding Hood).

(add-word ’greater-than ’(PP (name 1) (pre more) (prep than) (NP 2)))
The cardinality of the set of wolves is more than 1 .

adjective-like predicates: use properties adj adv

(add-word ’pretty ’(AP (name 1) (adj pretty)))
Little Red Riding Hood is pretty .

modifying operators/functions: use any of the properties
If the operator produces another operator, the arguments will be in the order of innermost operator
to outermost (see coll-of).

(add-word ’very ’(1 (adv very)))
Very is an intensifier which acts on an adjective. E.g. Little Red Riding Hood is very pretty .

CHAPTER 6. RESPONSE GENERATION 146

(add-word ’coll ’(NP (noun group) (number singular) (PP (prep of) (NP 1 (name removed) (num-
ber plural)))))
Coll creates a noun phrase from a predicate. E.g. There is a collection of wolves .

(add-word ’coll-of ’(NP (noun group) (number singular) (PP (prep of) (NP 2 (number plural)
(determiner 1)))))
Coll creates a noun phrase from a predicate. E.g. There is a collection of wolves .

(add-word ’ly ’(VP 2 (adv (make-adverb 1))))
Ly makes an adverb from a predicate by adding ly to the end. E.g. Little Red Riding Hood
quickly walked . The make-adverb is a user-defined routine for making an adverb out of
whatever argument is sent to it. The mechanism for adding these is in place but is not
completely defined or tested - instructions on using it will be available at a later time.

(add-word ’to ’(VP 1 (aspect infinitive)))
To makes a term out of a predicate. E.g. The wolf wanted to eat Little Red Riding Hood .

(add-word ’start-of ’(NP (determiner ”the”) (noun start) (PP (prep of) (NP 1))))
Start-of is a function. Since there can be only one start for an episode, the determiner ”the”
has been added (don’t worry about using strings in some places and atoms elsewhere - the
system can handle both). E.g. The start of E1 is before E3.

Remarks: Note that all functions MUST have the property function on their property list. Specialists
automatically add this property to their functions when activated, but user defined functions must
have it added manually. Otherwise the system will not be able to normalize or classify the wff
properly, or say it in a natural sounding way.

6.1.3.1 Translation Defaults

If no explicit translation exists for a predicate, the system will try to guess in some cases. If the flag
default-trans is off, it will prompt the user for the information; otherwise it defaults as follows:

A literal with only one argument - the predicate will be assumed to be a noun if the predicate is on a
type hierarchy; a verb if one of its topic indicators is on the *active-topics* list; otherwise it is
assumed to be an adj ective. (translations (NP (name 1) (noun predicate)) , (S (NP 1) (VP (verb
predicate))) , and (AP (name 1) (adj predicate)) respectively).

If there is more than one argument, the predicate is assumed to be a verb , with arguments as simple
numbers - as many as there are arguments after the subject. (e.g. (S (NP 1) (VP (verb predicate)
(objects 2 3))))

The defaults (both translation and lexical) are designed to avoid having to make up huge files of
translation and lexical information, and to allow tests with new predicates with a minimum of frustration.
Using the lexical defaults all the time is recommended, as the worst that can happen is one word will
come out with an incorrect form. The translation defaults are (unfortunatly) usually wrong however,
since they have very little information to work with, and the sentences will come out very strange if new
words are used (especially if they are prepositions). The advantage of using the defaults is that it is easier
to add new predicates without having to worry how they should be said. Translation defaults are saved
on the predicate or operator they were calculated for to save time in future responses. Lexical defaults
are not saved.

CHAPTER 6. RESPONSE GENERATION 147

6.1.4 Lexical Information

To enter lexical information, the command add-word lex is used. Note – lexical entries are strings and
should be entered in quotes. Note that not all information needs to be entered - if the *default-lex*
flag is true, the system can sometimes figure out what the form should be.

(add-lex word type key-entries) [function]

Purpose: To add lexical information.

Syntax: word is the word to be entered into the lexicon. type is one of: verb noun adj name other
key-entries is a set of keyword parameters and depends on type . These are described below. Note
that both word and type are required. To make it easier to add lexical inforamtion, add-lex accepts
a number of keyword parameters - some for each type of word.

verb: :present :past :negative-present :negative-past :passive :pres-part
All verbs must be entered as their infinitive (so word is the verb infinitive without ”to”). Pres-part
and passive represent the present participle and passive forms. If passive is ’no-passive , it means
that the verb cannot be passivized, so it will not try to default the passive form. present is a list of
two forms - 3rd person present singular, and 3rd person present plural. Similarly, past is also a list
of two past forms - one for singular, the other for plural. The negative-present and negative-past are
the corresponding negated forms. For example, the verb do has the following lexical information

(add-lex ’do ’VERB :present ’(”does” ”do”) :past ’(”did” ”did”)

:negative-present ’(”does not” ”do not”)

:negative-past ’(”did not” ”did not”)

:passive ’no-passive)
Note that the pres-part key was not filled in - in that respect the verb is regular, and we can use
the system default for it (”doing”).

noun: :plural :props
The singular form of the noun is the string form of word . plural is the plural form, and (properties) is
optional and consists of a list of properties of that noun that might be useful (recognized properties
are on the list *lexical-properties* - which consists of mass, feminine, masculine, group, and
member) Note that a plural form is not necessary for mass nouns. For example, the lexical entry
for honey would be

(add-lex ’honey ’NOUN :props ’(mass))
while wolf would be

(add-lex ’wolf ’NOUN :plural ”wolves”)
The entry for woman is

(add-lex ’woman ’NOUN :plural ”women” :props ’(feminine))
Note that the system can default on the plural form of the noun so it need not be entered if it is
regular.

Currently the system looks for a property of mass when deciding on number and determiners.
Feminine and masculine are used to determine pronouns to use when referring to a noun phrase
that has been said already. The group and member properties are used to help the system determine

CHAPTER 6. RESPONSE GENERATION 148

when not to say prepositional phrases with of . For example, all members of the group of wolves
ate the steak would be said as the group of wolves ate the steak (member property - initially one ,
and member have this property). And The office was full of a group of computers would be said as
The office was full of computers (the group property - initially group, set and collection have this
property).

name: :trans :subject-pronoun :object-pronoun :props
where trans is the string version of the name, the pronouns are optional, and props is exactly like
the properties for noun s. For example, the lexical entry for LRRH is

(add-lex ’lrrh ’NAME :trans ”Little Red Riding Hood”

:subject-pronoun ”she” :object-pronoun ”her”)
and for John ,

(add-lex ’john ’NAME :trans ”John” :props ’(masculine))

adj: :trans
where trans is the string form of the adjective. This defaults to the string form of word , with -
removed. For example, pale-skinned could have lexical entry

(add-lex ’pale-skinned :trans ”pale skinned”)
although the default would be that anyway.

other: :trans
where :trans is the string form of the preposition, article, etc (treated the same as adjectives).

If any lexical information about nouns or verbs is missing, the system will ask for the particular form
it needs (singular/plural, past/present, etc). Note that these should always be entered in double quotes
(” ”). Adjectives, articles, etc, will default to the string form of their name.

6.1.4.1 Lexical Defaults

If the *default-lex* parameter is turned on, instead of prompting the user for a missing lexical entry,
the system will just ”build” it. These are the rules it uses:

Verbs:

3rd person present singular: adds ”s” to the verb infinitive (e.g. he eats). If the verb infinitive
ends in ”s”, ”x”, ”h”, or ”z”, ”es” is added instead (e.g. he fixes); if it ends in ”y” and does
not have a vowel before the ”y”, the ”y” is changed to ”i” and ”es” is added (e.g. he says, he
tries).

3rd person present plural: uses verb infinitive (e.g. they have).

3rd person past singular and plural: adds ”ed” to the verb infinitive (e.g. it killed). If the verb
ends in ”y” (and there isn’t a vowel immediately before the ”y”), the ”y” is changed to an ”i”
before the ending is added (e.g. he tried, they played). If the verb ends in ”e”, only ”d” is
added (e.g. he loved).

Present participle: adds ”ing” to the verb infinitive (e.g. doing). If the verb ends in ”e”, the ”e”
is removed (e.g. loving).

CHAPTER 6. RESPONSE GENERATION 149

Passive: adds ”ed” to the verb infinitive - special rules as for past forms (e.g. he was killed, it was
tried).

Negative forms: the appropriate form of ”do” is chosen and used with ”not” and the verb infinitive.
(e.g. ”does not eat” ”did not say”)

Nouns:

Plural: adds ”s” to the singular form (e.g. tables). If the noun ends in ”s”, ”x”, ”h” or ”z”, ”es”
is added (e.g. foxes). If the noun ends in ”y” and there isn’t a vowel immediately before the
”y”, the ”y” is changed to an ”i” and ”es” is added (e.g. boys, babies).

There are many more rules that could be incorporated here, but it is easier to enter nouns and verbs
requiring those rules as exceptions (using add-lex). These rules are just intended to be a quick and
easy way to cut down on the number of entries required in the lexicon.

6.2 Details of English Response Generation

The system has a natural language generation facility which can give a more helpful and fuller answer to
a question than just a simple yes or no, or can be used to ”say” input facts or groups of facts.

The response generator takes a list of wff names, and tries to combine the information in them in a way
that gives natural sounding English output. Each wff is used to create one or more fragments which
are then combined and filled in with determiners, etc. If necessary, information is retrieved from the
knowledge base to complete a sentence. This section describes some of the heuristic rules and assumptions
used in generating English.

6.2.1 The Grammar

The English generated conforms to the mini-grammar specified in Figure xxx.

[] indicates optionality, * indicates 0 or more occurrences, | indicates alternatives

S -> | [ADVS] NP VP [ADVP]* |
| [pre] S, S, ... conj S |

NP -> | [determiner] [AP] noun [PP]* [Relclause]* |
| pronoun |
| Proper-Noun |
| [pre] NP, NP, ... conj NP |
| "that" S |

Relclause -> \{"who","that"\} VP
AP -> | [adv]* [adjectives]* |

| [pre] AP, AP, ... conj AP |
PP -> [pre]* prep NP

CHAPTER 6. RESPONSE GENERATION 150

VP -> | [adv]* | verb [particle]* [object]* |
| be [adv]* [object]* |
| [pre] VP, VP, ... conj VP |

object -> | NP |
| PP |
| AP |
| VP | (with aspect infinitive, passive or prespart)

ADVP -> | [adv]* prep S |
| [pre] ADVP, ADVP, ... conj ADVP |

ADVS -> | [adv]* |
| [pre] prep NP |

conj -> and | or | but | ...
pre -> both | either | if | ...
adv -> usually | only | ...

Response Generator Mini-Grammar

6.2.2 Stages Involved in Response Generation

There are several stages in the generation of English from logical form:

1) Filtration – removal of known or obvious clauses

2) Organization – organizes clauses

3) Verbalization – say the logical forms in English

a. Create and combine fragments for literals
using predicate translation information

b. Move negations to most natural place, copy tense, passivize if necessary.

c. Fill in gaps in sentence fragments (determiners, etc)

d. Determine correct lexical entries for fragment contents using information from the lexicon

e. Postprocess & Print – change ”a” to ”an”, combine words, print

Note that the old response generator (for ECoNet) also had an assembly stage to change the
clause form back into logical form - this is no longer necessary as the normalization EPILOG does is
minimal. The following sections elaborate on the actions and heuristics involved in each stage of response
generation.

6.2.2.1 Filtration

When responding to a question, we don’t necessarily want every detail that was used in answering the
question to be printed. Obvious facts should be left out, unless specifically requested by the user. The

CHAPTER 6. RESPONSE GENERATION 151

system attaches a numerical value to each wff called its ”likelihood of being known”, and uses this to help
sort out what information to include in an answer and what to leave out. Wffs with a high likelihood of
being known can be left out of the answer - those with a low likelihood should be left in. Note that for
input knowledge and story facts, we do not filter out this obvious information - it hasn’t become obvious
until it is said at least once!

Set-of-support clauses are automatically filtered out. Also, wffs whose complexity is greater than a
threshold (*max-response-complexity*) are filtered out (because they are too costly to say). If
desired, the user may be prompted for each of these to say whether it should be included or not (if
prompt-if-too-complex is t - the default is nil - to just ignore those formulas). After those, the
likelihood of each clause being known is compared against a threshold (*filter-threshold*). If the
likelihood is higher that that threshold, and the clause is not the only clause left, it is removed.

The following heuristics are used to determine the likelihood of a clause being known:

Simple type predications (eg [LRRH girl]) involving constants, and specialist evaluations have the
highest likelihood of being known (90) as they are the most obvious. ”Sort” predications (like (e1 episode)
) have an even higher likelihood (101).

Next, clauses involving only variables (i.e. general information in the form of rules) have likelihood
of being known (80).

Clauses involving mixed constants and variables (i.e. ”rules” about specific individuals, or quantifi-
cation over members of a known set) have the next highest likelihood of being known (50).

And finally, clauses involving all constants (i.e. story facts other than type preciations) have likelihood
of being known (40).

A future enhancement will be to also take the subjective and objective probabilities of wffs into account
in calculation of likelihood.

6.2.2.2 Organization

This stage orders the wffs so that facts come first and are all in the same sentence (if possible), and each
conditional is in a separate sentence after. While doing this, the organization stage tries to preserve the
order given by filtration - in order of likelihood of being known, with negations kept together at the end.
Episodic predications of types, and other uses of those episodes are removed here - they are not said
nicely, and if necessary, the type itself can be extracted later.

6.2.2.3 Verbalization

This phase actually prepares and ”says” the English response. As this is the most complex stage of the
process, it has been broken down into several sub-phases. This section briefly describes what happens
during each and the heuristics and assumptions involved.

6.2.2.3.1 Fragment Creation and Combination

First, a fragment representing what each wff contains is created, recursively using translation infor-
mation stored with the predicate, and any operators involved in either the predicate or arguments. This

CHAPTER 6. RESPONSE GENERATION 152

translation information is in the form of a specific ”bit of grammar” to use when saying the particular
construction. Numbers in this translation information represent arguments to the predicate or operator.
How to set up this translation information is discussed in Chapter 3. Missing translation information
may either be prompted for, or defaulted (controlled by the flag *default-trans*).

For example, literal

[cape1 red]
contains adjective information,

AP cape1

adjectives: RED
while literal

[LRRH wear cape1]
contains verb information.

NP cape1wear

VPNP lrrh

S

The resulting fragments are combined in various ways depending on the wff they were involved in (condi-
tionals, episodics, disjunctions, etc are all handled slightly differently). This puts noun-like information
about subjects together with verb-like information about them, etc. This is done for each wff in the list,
and then the fragments resulting from all of them are combined (if possible). For example, the above two
wffs would be combined into a fragment for the sentence

adjectives: RED
AP cape1

NP cape1wear

VPNP

S

LRRH wear red cape1

(after filling) => Little Red Riding Hood wears a red cape

The fragments left at this stage each respresent a sentence to be output.

6.2.2.3.1.1 Episodic Wffs

CHAPTER 6. RESPONSE GENERATION 153

All verbs are third person only, and only simple tenses are handled. The default verb tense is present.
Episodic constructions yield sentence fragments, and if the episode is a constant, tense information as
well - a constant episodic argument is assumed to indicate past tense. For example,

((c1 office) ** episode-c2)
would become a sentence fragment for

episode-c2

(noun OFFICE)

NP c1be

VP (past tense)NP c1

S

c1 was office

and would be used as a sentence, even though it contains only noun information. The name of the
sentence is kept with it (the episode) so that temporal and causal adverbials can be combined with the
sentence information. For example, the above wff with the following wffs,

(episode-c2 before episode-c3), ((c4 explode) ** episode-c3)

explode

VP (past tense)NP c4

S episode-c3

S episode-c3before

ADVP

S episode-c2

would combine into a fragment for the sentence

S episode-c2

NP c1

VP (past tense)

ADVP

before
S episode-c3

(noun OFFICE)

NP c1be

explode

VP (past tense)NP c4

c1 was office before c4 exploded .

(after filling) => A room was an office before a bomb exploded .

CHAPTER 6. RESPONSE GENERATION 154

6.2.2.3.1.2 Modal Wffs

Wffs of the form ((...) p1) are usually paired with other wffs like ((John say p1) * ep1) . The
propositional constants (or variables) generate an NP fragment. In the first wff, the NP will have
information below it (usually an S, which gets printed as ”that S”), and in the second, the NP is the
object of the verb say . When combined, we get a fragment for John say that For example,

((E episode-u ((Sue kiss Ron) ** episode-u)) propos-c1)

((Ron say propos-c1) * episode-c4)

(past tense)

NP propos-c1say

VPNP Ron

S episode-c4

NP Ron kiss

VPNP Sue

S episode-u

NP propos-c1

which when combined, yield

NP Ronkiss

VPNP Sue

S episode-u

NP propos-c1say

VP (past tense)NP Ron

S episode-c4

Ron said that Sue kiss Ron

(after filling) => Ron said that Sue kissed him

Note that the fragments will not actually be printed (for brevity) in the next sections - those sections
just describe how the fragments are combined.

6.2.2.3.1.3 Disjunctions/Conjunctions

If all literals represent the same kind of fragment (NP, VP, AP or S), a conjunction of those fragments
will be created, using the appropriate conjunction (and , or). Examples:

CHAPTER 6. RESPONSE GENERATION 155

John is a man or a boy (NP)

Human teeth are white but not sharp, big, or pointy (AP)

John ate some cake and walked to the store (VP)

John ate some cake or the wolf ate it (S)

John ate some cake and Mary ate a cookie (S)

If they are all different fragment types, the lowest common ”head” type will be used (and NP for AP,
PP, and NP, S otherwise). For example,

Mary is pretty or not a girl (from an AP and an NP).

6.2.2.3.1.4 Conditionals

In general, the preconditions describe the subject (NP) and the post conditions describe what happens
to it (VP). (e.g. Wolves are fierce, Everyone likes to eat people food). This can change however, to make
more natural sounding responses.

If the right hand side is a type predication, it is made the subject (if possible), and adverb ”only”
added in front of it. (e.g. Only living things eat, Only living things are killed) . If the type predication
is negated, the ”only” is not added, and ”no” is used as the determiner (e.g. No girls or women kill
anything).

If the left hand side (preconditions) has a verb associated with it, the verb is made into a relative
clause. (e.g. Anything that eats is alive) .

Complicated implications (with more than one literal after combining the right hand side) are handled
by saying ”if preconditions, postconditions” (e.g. If John eats something, he is hungry or it is yummy) .

The objective probability and quantifiers are used to give an adverb or quantifier for the sentence
(e.g. Most wolves are grey , If a bomb blows up near a location while a physical object is in the location,
the object is usually destroyed).

6.2.2.3.1.5 Lambda Expressions

A lambda expression is converted into a VP fragment, using translation information (as if it were
a quantified wff). Then the subject of the VP fragment (a lambda variable) is replaced by the first
argument in the wff that had the lambda expression in it. For example:

((E x (x creature) (E y ((x want (To (L u (L v (E z ((v eat z) ** u)))))) ** y)))

0.9 (E w (w cause-of y) ((x hungry) * w)))
is said as:

Creatures that want to eat are usually hungry .

There is a problem with saying the lambda expressions if there is a reference to the lambda variable
other than as the subject of the main formula within the lambda expression - the system isn’t smart
enough (yet) to figure out what to use in place of that lambda variable.

CHAPTER 6. RESPONSE GENERATION 156

6.2.2.3.2 Rearranging for Negation and Passive

Negations are moved to the most natural place in the sentence. For example, the negation is moved
from a verb object to the verb, and then to the subject to get

No fat things are thin
instead of

All fat things are not thin .
The negation is moved from and adverbial to the verb phrase to get

The wolf did not eat Little Red Riding Hood before it ate Grandmother
instead of

The wolf ate Little Red Riding Hood not before it ate Grandmother .

If a verb is already negated when we move a negation there, both negations are removed, and the
adverb ”only” inserted so that we get

All humans only like to eat people food
instead of

All humans do not like to eat not people food .

Tense is copied among fragments as well - if any of the sentence fragments involved have past tense,
this is copied to related sentences as well. (Thus in the example shown earlier, we have Ron said that
Sue kissed him even though there was no tense information on the Sue kissed him fragment). Also, if
two sentences are in a conjunction or adverbial, and the object of one is the subject of the other, it is
passivized.

Nothing is alive after it is killed
instead of

Nothing is alive after something kills it .
Also

All creatures that wear apparel are covered by it
instead of

If creatures wear apparel, the apparel covers them
Passivizing is done by creating a new fragment where the object is now the subject, the verb is now a
combination of the appropriate form of the verb be and the passive form of the original verb, and a new
verb object has been added which is a PP by the original subject. The verb be , and verbs with passive
form ’no-passive cannot be passivized. If the original subject has no information on it and is not a
”required” fragment, it may be left out of the final sentence (as it was in one example above).

In some cases, we may passivize a verb phrase or have a passive form from the original translation,
and it may be more natural to say that in its active form. It is fairly easy to do the transformation the
other way, but this will remain as a future enhancement for now.

6.2.2.3.3 Filling Gaps and Building Descriptions

Now any gaps in the fragments in the final list of fragments are filled in, including number and
determiner for noun phrases, and descriptions for entities if necessary. These steps have some complicated
heuristics and so are discussed in separate sections shortly. In addition, there are a few other ”rules of

CHAPTER 6. RESPONSE GENERATION 157

thumb” used.

To ”say” a quoted expression, a specialized routine associated with the sort of the quoted expression
is used (so far sets, times and numbers are handled). Sets are expressed as a complex noun phrase using
and or or (e.g. Grandmother, Little Red Riding Hood, and the man ...) , absolute times are said as a
time on a date (e.g. 12:00 on March 10, 1988; some time on some unspecified day in June, 1987) , and
numbers are just printed as themselves (e.g. 35) .

If no verb information is present for a sentence, the fragment itself is split into a subject and object,
and either the verb have (for part-of relations – for example, a noun phrase representing tail of wolf would
become wolf has a tail), or be (all other cases – for example, LRRH girl would become Little Red Riding
Hood is a girl) is used. Agreement of subject and object number for ”be” verbs is done here as well.

If a noun phrase for a variable has noun member and a PP of with an NPconj beneath it, it usually
indicates that every one of the members of that set did something, so only the set members need be
mentioned (Grandmother, Little Red Riding Hood, and the man talked rather than Every member of
Grandmother, Little Red Riding Hood and the man talked).

6.2.2.3.3.1 Retrieval of Information

If an entity has been referenced in one of the fragments, but so far no noun-like or sentence-like
information describing the entity has been found, the system will look in the knowledge base to find the
missing information. This will be made into a fragment and combined with the other fragments to say. For
episodes, it looks under (item episode-specialist) , for propositional arguments under (item object) , and
for physical objects, under (item type-specialist) (for the type). These new wffs are made into fragments
just as described earlier, and attached to the fragment in question. In the lrrh wear cape1 example
earlier, the type of cape1 was looked up this way (also for c1 and c4 in the episodic example). Saying
single wffs like (episode-c1 before episode-c2) would cause (episode-c1 episode-specialist) and (episode-c2
episodie-specialist) to be looked up. Saying ((john say p1) * episode-c1) would cause (p1 object) to be
looked up.

6.2.2.3.3.2 Selection of Number

Selection of number is only necessary for variables (constants are singular for now unless an operator
indicates otherwise). If the noun is ”person” or ”thing”, singular is used wherever it makes sense (
everything sounds better than all things). Otherwise plural is used for the first variable. (e.g. All wolves
like to eat creatures). For variables after the first, the same number as the first variable is used (e.g.
Everyone loves something) . If a negation is involved, the other number is used (plural instead of singular
and vice versa) (e.g. Nobody makes inanimate natural objects, The wolf is not smaller than any basket) .

6.2.2.3.3.3 Selection of Determiner

For constants, a skolem constant gets ”a”, a non-skolem one gets ”the” in subject position, ”a” in
object position. A mass noun gets determiner ”some”. (e.g. Little Red Riding Hood wore a red cape, The
wolf is a wolf, Some honey was in the basket) .

For variables, negated items get determiner ”no” (e.g. No fat things are thin). If a negation was
used earlier in the sentence, and the current item occurs in a positive context, ”all” or ”every” will be

CHAPTER 6. RESPONSE GENERATION 158

used (plural and singular, respectively). (e.g. Nobody likes everyone) . If the item occurs in a negative
context, the determiners are ”any” (plural or for nouns thing or person), or ”a” (singular). (e.g. The
wolf is not smaller than any baskets, No human has a tail) Otherwise, the first variable in a sentence
gets a determiner based on the context it occurs in and quantifier information, and whether or not the
noun is a mass noun. For example, for quantifier A , the generator uses ”all” (plural or mass noun) or
”every” (singular). (e.g. Every wolf has a tail, Most wolves are grey, Little Red Riding Hood likes to eat
all cakes). Otherwise, plurals and mass nouns get no determiner (e.g. All wolves like to eat creatures) ,
while singular objects get determiner ”a”, unless they have noun ”person” or ”thing” in which case they
get determiner ”some”. (e.g. Everyone likes something) For singular nouns which have a relative clause
attached, ”any” is used instead of ”every”. (e.g. Anything that lives in something is smaller than it).

If there are more than one identical noun phrases, the second one will get ”another” as its determiner
(or ”other” if it is plural), and will be referred to as ”the other” (subject) or ”that” (object) for referring
noun phrases. If there is a third, it gets the determiner ”yet another” or ”even more” (plural) and is
referred to as ”the last” (subject) or ”that last” (object) (”those last” for plural). e.g. Anyone that is
told something by another person usually believes it.

If a noun phrase has a PP of below it, and the noun is not part , an attempt is made to make the
noun phrase into the possessive noun2’s noun instead of noun of noun2 , with noun’s being added as the
determiner of noun2 , and the PP removed. This was used in the cardinality of example earlier. Also in
There is a woman that is Little Red Riding Hood’s mother .

6.2.2.3.3.4 Referring Noun Phrases

If an entity has been used already in the current sentence (or a previous sentence in the group of
sentences being printed), a pronoun or shorter phrase is attempted instead of the whole description.
Pronouns are selected based on the number of the entity, the noun used in the original description,
and whether the current entity is in subject or object position. Names may have pronouns associated
with them as lexical information (for example, lrrh has ”she” for a subject pronoun, ”her” for an object
pronoun). Plural entities and entities whose noun have with property group (i.e. group, set, collection)
use pronouns ”they” or ”them”. Nouns with property masculine (i.e. person, man, boy, human, father
and terrorist) indicate ”he” or ”him”. Nouns with property feminine (i.e. woman and girl) indicate
”she” or ”her”. Everything else will use pronoun ”it”.

Some examples:

John said that Sue kissed him.

Ron believed it.

Anyone that says something usually believes it .

Little Red Riding Hood met a wolf.

It was near her.

She saw it.

If the use of a pronoun is ambiguous (i.e. there are other entities that would generate the same
pronoun), a short phrase is used, which consists of the noun of the original fragment, and adjectives as
well if the noun alone is ambiguous, and determiner ”the”.

CHAPTER 6. RESPONSE GENERATION 159

If a bomb blows up outside a location while a physical object is in the location, the object is usually destroyed.

If there are several entities with identical descriptions, and the system has added ”another” or ”other”
as a determiner for one, any referring phrase for those entities will use ”the other” or ”that”.

If an event is another event’s cause, the other event is after it.

Anyone that kisses another person usually loves that person.

Possessive pronouns are handled when a noun phrase noun of noun2 is converted to noun2’s noun
(as described earlier). If noun2 is an entity which has been mentioned before, the appropriate pronoun
is decided for it, and then the possessive form determined (”his”, ”her”, ”its”, ”their”).

When either children’s fathers or their mothers live in buildings, the children usually live in the buildings.

The system also attempts to use reflexive pronouns where appropriate. So far the only rule it uses is
that if the direct object of a verb is the same as the subject, a reflexive should be used. Thus we can get

The wolf likes to eat itself .
However, there are other cases where reflexives should be used that the response generator cannot handle
yet. For example,

Creatures that want to eat food for them are usually hungry
should use themselves instead of them .

6.2.2.3.4 Determination of Lexical Items

The major work has now been done, and the next step is to go through each fragment and determine
the lexical item to use for each part. It looks this up in the lexicon, which contains the different forms
of verbs and nouns, and the strings corresponding to adjectives and other items. Input to the lexicon is
described in Chapter 3. If lexical information is missing, the system will either prompt the user for it, or
build the item using its default rules (controlled by the flag *default-lex*).

6.2.2.3.5 Postprocess for Word Combinations and Print

A postprocessor then goes through the output comparing all consecutive pairs of words,
changes ”a” to ”an” before a vowel, and combines words that make up a compound into
one word. The combinations are:

every thing/person => everything/everyone

no thing/person => nothing/nobody

any thing/person => anything/anyone

some thing/person => something/someone

Human is treated exactly the same as person during the combination.

Then the sentence(s) is(are) printed. If this is an answer to a question, the first sentence contains the
answer followed by a comma (Yes, ... or No, ...).

CHAPTER 6. RESPONSE GENERATION 160

6.2.3 Problems

The latest version of the response generator uses a somewhat more general approach than its predecessor,
but it is still rather ad-hoc, using a few heuristics which are good enough most of the time, but may
easily prove inadequate with additional test data. Please keep this in mind and if you notice ”strange”
sounding output, report it to the authors so that the next version can be improved.

Currently objective probabilities of rules are taken into account (using quantifiers like most or adverbs
like usually), but subjective probabilities are not. This may or may not be desirable, but should be
investigated anyway.

Although the system can now handle various operators and complex syntax now, it is still quite a
trickly process to determine the exact translation to give it, and there are some problems with combina-
tions.

For question answers, the current filtering mechanism does not take the question itself into account.
There are some instances where more clauses should be filtered out (e.g. in answer to the question Is
every rock a human? , the answer is No, there is a rock). In such cases, we really need to filter out the
presuppositions of the question.

CHAPTER 6. RESPONSE GENERATION 161

Glossary of Terms 1

axiom schema - a higher level rule which creates an axiom for each component which matches the
schema - this is like quantifying over predicates, variables, operators, formulas, etc. (as used in
EPILOG)

backchaining - the recursive process of using rules in their reverse direction to create new
subgoals in an attempt to prove a formula.

conditional - a rule; that is, a formula which has an antecedent, which when matched,
results in a consequent being generated.

contrapositive - rules state that when this antecedent is satisfied, the consequent follows,
but in contrapositive reasoning, the rule is applied differently, saying that if the con-
sequent is false, the antecedent is too (otherwise we could infer the consequent, which
we already know to be false).

episodic logic - a first order logic with extensions to specifically handly episodic construc-
tions (those formulas which need events associated with them for temporal and causal
connections).

forward inference - the recursive process of matching antecendents of rules, and generating
their consequents, which may also match antecedents ...

generalized resolution - a more general resolution inference rule where strict incompati-
bility is not required, and the predicates and arguments do not have to be identical
(for example, (t1 before t2) and (t2 strictly-before t1) are resolvable using generalized
resolving, but not by traditional resolving).

goal-driven inference - the recursive process of applying rules to a goal or subgaol in
an attempt to solve it, and generating subgoals from this which may then lead to a
solution. This is usually done in the backward direction (backchaining), but may also
be done in the forwad direction (contrapositive inference).

goal reduction - another name for goal-driven inference - reducing a goal to smaller subgoals

input-driven inference - the recursive process of applying rules to input or inferred facts,
and generating consequents from these. While this is most commonly done in the
forward direction (forward inference), it may also be done in the reverse direction
(contrapositive reasoning).

input chaining - another term for input-driven inference.

meaning postulate - usually a rule which is required to divulge the meaning of a word
(such as maim -> wound). In EPILOG the term is used often to speak of axiom schemas for
classes of words.

natural deduction - an inference mechanism based on a number of inference rules, which apply to
specific connectives. There are typically two rules of inference for each connective - one that
introduces it into expressions and one that eliminates it.

1 With a little help from: Avron Barr and Edward Feigenbaum, The Handbook of Artificial Intelligence , Volume
1, William Kaufmann, Inc, 1981

CHAPTER 6. RESPONSE GENERATION 162

nominalization - making a noun or noun phrase out of a verb or sentence.

presupposition - assumed to be true when a statement or question is uttered. For example, the
question ”Has Joe stopped beating his wife?” has that ”Joe beats his wife” as a presupposition.

resolution - an inference mechanism based on a single inference rule which looks for incompatibility of
literals between a questioned formula and known facts and rules.

skolemize - replacing an existentially quantified variable in an assertion with a new constant - the
constant is called a skolem constant.

semantic net - a representation mechanism consisting of nodes (for objects, events, concepts) and links
between the nodes specifying their relationships.

wff - well formed formula - that is, a syntactically correct logical formula.

CHAPTER 6. RESPONSE GENERATION 163

References and Further Reading

Episodic Logic:

Hwang, C.H., A Logical Approach to Narrative Understanding , PhD Thesis, University of
Alberta, 1992.

Schubert, L.K., and Hwang, C.H., A Logical Approach to Goal-Based and Causal Inference in Nar-
rative Understanding , BCS-G2010-72, The Boeing Company, 1988

Schubert, L.K., and Hwang, C.H., Linguistic and World Knowledge in Story Understanding: A
Logical Approach , prepared for Boeing under purchase contract W-278258, 1988.

Schubert, L.K., and Hwang, C.H., An Episodic Knowledge Representation for Narrative Texts ,
Proceedings of the First International Conference on Principles of Knowledge
Representation and Reasoning (KR’89) , 1989, pp. 444-458

Schubert, L.K., and Hwang, C.H., An Episodic Knowledge Representation for Narrative Texts , TR
345, University of Rochester, Rochester, N.Y., May 1990.

Specialists and ECoNet:

Schubert, L.K., Papalaskaris, M.A., Taugher, J., Accelerating Deductive Inference: Special Methods
for Taxonomies, Colours, and Times , The Knowledge Frontier , N.Cercone and G.
.CCalla (ed), 1987

deHaan, J., Miller, S., and Schubert, L.K., The User’s Guide to ECoNet , prepared for Boeing under
purchase contract W-278258, 1988.

Miller, Stephanie, and Schubert, Lenhart K., Using Specialists to Accelerate General Reasoning ,
AAAI-88 , St.Paul, Minnesota, 1988, pp. 161-165

Miller, Stephanie, and Schubert, Lenhart K., Time Revisited , Computational Intelligence , Vol.
6, No. 2, May 1990, pp. 108-118

Kaplan, Aaron, A Computational Model of Belief , PhD Thesis, University of Rochester 2000.

Index

* operator, 24, 27
** operator, 24, 27
%subst, 128

operator, 24, 27

add, 111
add-function, 31
add-hier, 36
add-indicate, 39
add-interest, 59
add-lex, 147
add-operator, 32
add-operator-type, 32
add-part-hier, 37
add-predicate, 31
add-quantifier, 33
add-sort, 33
add-topic, 38
add-word, 144
agenda, 73, 76, 78

access action, 73, 76, 77
iterations, 71, 73
ranking, 77
subgoal action, 73, 77, 78

arithmetic specialist, see specialists,
number
assertion, 40, 41, 90, 91

cardinality-of, 121
checkpoint, 18
checkpointing, 17, 18
classification, 46, 49–51

modal propositions, 46, 49
part-of and role relationships, 46,

49, 50
subnets, 46, 49

color specialist parameters
color-hedged-operators, 114
color-margin, 114

commands

add-color, 114
add-hier, 36
add-indicate, 39
add-interest, 59
add-lex, 147
add-part-hier, 37
add-topic, 38
add-word, 144
checkpoint, 18
display, 14
disproof-q, 70
do-say, 140
dq, 70
get-everything, 69
gkn, 40
goal-kn, 40
goal-knowledge, 40
help, 9
kn, 40
knowledge, 40
meaning-postulate, 41
meta, 41
mp, 41
other-entry-rtn, 130
other-function, 129
other-predicate, 130
pq, 70
proof-q, 70
q, 69
question, 69
read-perm-memory, 19
reassert, 41
retract, 18
retrieve, 69
rpm, 19
say-it, 141
say-them, 141
set-hier-type, 37
simp-schema, 41
simplifcation-schema, 41

164

INDEX 165

ss, 41
story, 40
trace, 16
trace-all, 16
trace-item, 16
traceable, 16
tweak, 17
untrace, 16
untrace-all, 16
untrace-item, 16
use-spec, 87
wpm, 19
write-perm-memory, 19

communication, 91
delayed, 91
immediate, 91

complexity, 46, 51
conjunction, 24
connectives, 24

<=>, 24
and, 24
implies, 24
or, 24

constants
names, 29

date, 105
disjunction, 24
display, 14

hier, 37
pred, 39

disproof attempt, 73
do-say, 140
duration-of, 105

ECoNet, 8, 28, 36, 73, 76, 77
effort level, 90
elapsed, 105
end-of, 104
English generation, see response gen-
eration
episodic operators, see operators, episodic
equality specialist parameters

unique-names-assumption, 117
equivalence, 24
equivalence-members, 116
esh, 10
evaluation, 90

forward inference, see inference, input-
driven

get-everything, 69
goal-knowledge, 40

help, 8, 9
hierarchies

exclusion, 36, 37
overlap, 36, 37
parts, 35
topic, 35, 38
type, 35, 36

hierarchy
predicate, 96
type, 93

inference
goal-directed, 48, 71, 73–78, 82
input-driven, 41, 56–59, 63
wh-questions, 71, 78
yes/no questions, 71, 73–78

inference merging, 63
interested party, 88, 91
interestingness, 59
intersect, 120
intersect-members, 120
intersect-members-0, 120

knowledge, 40

lambda abstracts, 26
logical syntax, 23–25, 27, 29
lookup, see retrieval

max-of, 111
meaning postulate, 54
meaning-postulate, 41
memory, 18
mental attitude, 46, 49
mental world, 46, 49
meta, 41
min-of, 111

naming conventions, 28, 29
negation, 25
nominaliation operators, see opera-
tors, nominalization
non-equal-members, 116
number-members, 121

INDEX 166

number-members-0, 121

operators
episodic, 24, 25
negation, 25
nominalization, 29
propositional, 24, 25
wff, 25

other-entry-rtn, 130
other-function, 129
other-predicate, 130

part specialist parameters
familiar-parts, 99
part-assert, 97

probability
answer, 73
storage and use, 33
subjective, 56

problems
goal-directed inference, 77, 78
inference merging, 63
input-driven inference, 58
response generation, 160

proof attempt, 73
proof by contradiction, 76–78
propositional operators, see operators,
propositional

quantification, 23, 24
quantifiers

A, 23, 24
E, 23, 24
few, 24
many, 24
most, 24
no, 24
none, 24
some, 24
the, 24
WH, 24

question, 69
question answering, see inference, goal-
directed

read-perm-memory, 19
reasoning, see inference
reassert, 41
relation, 105, 111

response generation, 140–144, 146–
152, 154–160

conditionals, 155
conjunctions, 154
determiner, 157, 158
disjunctions, 154
episodic, 152
filtration, 150, 151
fragments, 151–156
grammar, 149
lambda abstracts, 155
lexicon, 147–149, 159
likelihood of being known, 151
modal, 154
negation, 156
number, 157
organization, 151
passive, 156
possessive, 158
possessive pronouns, 159
problems, 160
pronouns, 158, 159
referring, 158, 159
reflexive pronouns, 159
translation, 144, 146, 151
verbalization, 151–159

response parameters
active-topics, 143
default-lex, 143, 147, 159
default-trans, 143, 146, 152
filter-threshold, 143, 151
max-response-complexity, 143
plural-nouns, 158
prompt-if-too-complex, 143
response-warn, 143
say-answer, 140, 142
say-immediate, 142
say-infer, 140, 142
say-knowledge, 140, 142
say-meta, 142
say-mp, 142
say-question, 142
say-story, 140, 142

retract, 18
retraction, 17, 18
retrieval, 67, 69
retrieve, 69

INDEX 167

say-it, 141
say-them, 141
schematic rules, 54
set specialist parameters

set-assert, 121
set-diff, 120
set-diff-members, 120
set-diff-members-0, 120
set-hier-type, 37
set-members, 121
set-members-0, 121
set-of, 120
set-of-all, 120
simplification-schema, 41
simulative inference, 125
skolemizing, 25
sorts, 27
specialist parameters

fwd-spec-compare, 88
spec-assert, 88
spec-compare-lits, 88, 106
spec-compare-preds, 88, 92, 95,

114
spec-enter, 88, 106, 112, 125
spec-evaluate, 88, 106, 112, 125
specialist-entry-effort, 106, 112
specialist-eval-effort, 106, 112

specialists, 86, 87, 131
addition of, 131
belief, 125
color, 113–115
episode, 100
equality, 116, 117
interface, 87–92
meta, 127, 128
number, 110–113
part, 96, 97
predicate hierarchy, 95
set, 117–119, 121, 122
string, 123–125
time, 100–107, 109
type, 92, 93

start-of, 104
starting, 8
story, 40
string specialist parameters

string-divider, 124
string-separator, 124

string-concat, 124
string-field, 124
string-number, 124
sub-string, 124
subnets, see classification, subnets
syntax, see logical syntax
system parameters, 17, 71, 79, 80, 82

arg-component, 60
assume-difficulty, 81
back-up-interest, 60
check-inherit, 60
conditional-difficulty, 81
consistency-action, 53
consistency-effort, 53
constant-complexity, 46, 51
contra-weight, 80
current-netname, 129
deep-thought, 60
difficulty-importance, 75, 81
favor-interest, 82
favor-position, 82
forward-effort, 61
forward-full, 57, 60
function-complexity, 46, 51
goal-forward, 82
inherit-amount, 60
initial-charge, 60
initial-prob, 81
input-array-expansion-size, 51
interest-importance, 75, 81
interest-threshold, 41, 57, 61
interpret-nil-as-no, 130
key-threshold, 46, 51, 57, 61
literal-complexity, 46, 51
max-class, 76, 82
max-wffs, 76, 82
max-wh-difference, 80
maximum-interest, 59
memory-load-specs, 19
minimum-interest, 60
modal-topics, 49, 51
mp-weight, 81
operator-component, 60
prob-importance, 75, 80
qa-access-weight, 75, 80
qa-depth, 80
qa-inherit-amount, 81
qa-iterations, 8, 73, 79

INDEX 168

quantified-difficulty, 81
question-effort, 72, 80
question-threshold, 73, 80
rank-importance, 75, 80
residue-penalty, 81
result-difficulty, 79
result-forward, 79
rule-forward, 58, 61, 78
salience, 61
save-results, 79
spec-compare-lits, 91, 109
spec-compare-preds, 91
spec-enter, 91
spec-evaluate, 91
specialist-entry-effort, 90, 92,

95
specialist-eval-effort, 90, 93, 95
split-difficulty, 81
split-episodic, 43
story-forward, 58, 61
subnet-topics, 49, 51
unify-sorts, 61
unique-names-assumption, 117
use-inherit, 81
useful-nonepisodic-topics, 51
variable-complexity, 46, 51
wff-component, 60

temporal specialist, see specialists, time
timeframe, 104
topic indicator links, 38
trace-all, 16
trace-item, 16
traceable, 16
tracing, 15, 16, 83
tweak, 17
tweaking, 17
type predicates, 35

union-of, 120
union-of-members, 119
union-of-members-0, 119
untrace-all, 16
untrace-item, 16
use, 8
use-spec, 87

value-of, 111
variables

existential, 25
names, 29

verification, 56, 57, 72, 77

write-perm-memory, 19

	Use of EPILOG
	Introduction
	Getting Started
	Help
	The EpiShell
	Starting up an EpiShell
	The EpiShell environment
	EpiShell built-in commands

	Display
	Tracing and System Actions
	Tweaking System Parameters
	Checkpointing and Retraction
	Permanent Memory

	EPILOG Representation
	Logical Syntax Summary
	Logical Syntax Details
	Formulas
	Predicates
	Terms
	Operators
	Meaning Postulate and Simplification Schema Syntax

	Adding New Syntactic Entities
	Adding New Predicates
	Adding New Functions
	Adding New Operators
	Adding New Sorts
	Adding New Quantifiers

	Probabilities

	Assertions and Other Input
	Types, Parts and Topics
	Hierarchies
	Topic Indicators

	The Assertion Process
	Asserting Formulas
	Re-asserting Formulas

	Normalization
	Controlling Normalization
	Controlling Simplification Schema Application

	Classification
	Key Selection
	Main Classification
	Topical Classification
	Modal Classification
	Part/Role Classification
	Meaning Postulate and Simplification Schema Classification
	Controlling Classification and Storage

	Consistency Testing and Simplification
	Combining Supporting or Contradictory Evidence
	Controlling Consistency Testing
	Meaning Postulate Inference
	Controlling Meaning Postulate Inference
	Input Driven Inference Machinery
	Inference Termination Criteria
	Controlling Input Driven Inference

	Input-driven Inference vs Goal-driven Inference
	Problems
	TroubleShooting
	What to do if a Desirable Inference is NOT made
	What to do if an Undesirable Inference IS made

	Questions and Queries
	Using Equality Information
	Queries
	Display
	Retrieval

	Asking Questions
	Subgoal Splitting
	Access Actions
	Subgoal Actions
	Answer Combinations
	Comments on Question Answering

	WH Questions
	Saving Question Results
	Controlling the Question Answerer
	TroubleShooting
	What to do if an Answerable Question is NOT Answered
	What to do if a Question is Answered Wrong

	Specialists
	Using Specialists
	Controlling the Specialist Interface

	Details of the Specialist Interface
	Specialist Entry and Evaluation
	Specialist Communication
	Specialist Subnets

	Type Specialist
	Using the Type Specialist
	Details of the Type Specialist

	Predicate Hierarchy Specialist
	Using the Predicate Hierarchy Specialist
	Details of the Predicate Hierarchy Specialist

	Part Specialist
	Using the Part Specialist
	Details of the Part Specialist

	Episode Specialist
	Using the Episode Specialist

	Time Specialist
	Using the Time Specialist
	Details of the Time Specialist

	Number Specialist
	Using the Number Specialist
	Details of the Number Specialist

	Color Specialist
	Using the Color Specialist
	Details of the Color Specialist

	Equality Specialist
	Equality Specialist Functions
	Equality Specialist Display and Controls
	Details of the Equality Specialist

	Set Specialist
	Using the Set Specialist
	Details of the Set Specialist

	String Specialist
	Using the String Specialist

	3 "String Specialist Predicates"
	Details of the String Specialist

	Belief Specialist
	Using the Belief Specialist
	Details of the Belief Specialist

	Meta Specialist
	Using the Meta Specialist
	Meta Specialist Display and Control

	Other Specialist (Adding External Routines)
	Adding New Specialists
	Requirements for the New Specialists
	Steps to Adding a Specialist
	Details
	Example Specialist

	Response Generation
	Using the Response Generator
	Response Generator Commands
	Response Generator Display and Controls
	Translation Information
	Lexical Information

	Details of English Response Generation
	The Grammar
	Stages Involved in Response Generation
	Problems

