Applications of Grammars

- Specifying syntax of programming languages
- Representing syntactic structures in natural languages
- Models of computation

Context-free grammars are the most commonly used kind of grammar in computer science.

Progression of Concepts

- Context-free grammar: Variables, terminals, rules, start symbol
- Derivation: How one string derives another
- Context-free language: Generated by a context-free grammar
- Derivation tree: Graphically representing a derivation

Context-Free Grammar

A context-free grammar (CFG) is a 4-tuple $G = (V, \Sigma, P, S)$ where

- V is an alphabet of variables (or nonterminals);
- Σ is an alphabet of terminals, disjoint from V;
- P is a finite subset of $V \times (V \cup \Sigma)^*$, called the set of **rules** (or **productions**); and
- $S \in V$ is the **start symbol.**

Example CFG

$$G_1 = (\{S, A, B\}, \{a, b\}, \{(S, aAbBa), (A, aS), (B, Ab), (B, SbB), (B, \lambda)\}, S)$$

Variables are capitalized. The start symbol is (almost) always S.

Rules are usually written

$$S \longrightarrow aAbBa$$

or

$$S \xrightarrow{G_1} aAbBa$$

to emphasize the grammar G_1 .

Example CFG Continued

 G_1 is compactly written:

$$S \longrightarrow aAbBa$$

$$A \longrightarrow aS$$

$$B \longrightarrow Ab$$

$$B \longrightarrow SbB$$

$$B \longrightarrow \lambda$$

One-Step Derivation

Want to define \Longrightarrow , a binary relation on $(V \cup \Sigma)^*$.

Let $G = (V, \Sigma, P, S)$ be a CFG. Suppose that $u, v \in (V \cup \Sigma)^*$, that $A \in V$, and that

$$A \xrightarrow{G} w$$

is a rule. Then the string uAv derives (in one step) the string uwv, written

$$uAv \implies uwv.$$

EXAMPLE.

$$\begin{array}{ccc}
BaAb & \Longrightarrow & SbBaAb \\
BaAb & \Longrightarrow & BaaSb
\end{array}$$

Derivation in Zero or More Steps

We give a recursive definition for $\stackrel{*}{\Longrightarrow}$, a binary relation on $(V \cup \Sigma)^*$.

- Basis: If $v \in (V \cup \Sigma)^*$, then $v \stackrel{*}{\Longrightarrow} v$. Also, $v \stackrel{0}{\Longrightarrow} v$, read v derives v in zero steps.
- Recursive step: If $u, v, w \in (V \cup \Sigma)^*$ $u \stackrel{*}{\Longrightarrow} v$, and $v \Longrightarrow w$, then $u \stackrel{*}{\Longrightarrow} w$. Also, if $u \stackrel{n}{\Longrightarrow} v$ and $v \Longrightarrow w$, then $u \stackrel{n+1}{\Longrightarrow} w$.

Derivation Example

Here is a derivation in G_1 :

$$BaAb \implies SbBaAb$$
 $\implies SbBaaSb$
 $\implies SbBaaaAbBab$
 $\implies SbaaaAbBab$
 $\implies SbaaaAbAbab$
 $\implies SbaaaAbAbab$

We can conclude, for example, that

$$BaAb \xrightarrow{4} SbaaaAbBab$$

and that

$$BaAb \xrightarrow{*} SbaaaaSbAbab.$$

Context-Free Language

Let $G = (V, \Sigma, P, S)$ be a context-free grammar.

- If $S \xrightarrow{*}_{G} w$, then w is a **sentential form** of G.
- If $S \stackrel{*}{\Longrightarrow} w$ and $w \in \Sigma^*$, then w is a sentence of G.
- The language generated by G, written L(G), is the set of all sentences of G:

$$L(G) = \left\{ w \in \Sigma^* \mid S \xrightarrow{*}_{G} w \right\}.$$

Any language generated by a CFG is a context-free language (CFL).

Continue Example of a CFL

So every

$$(B0)^{n}B$$

is a sentential form.

We note that B generates 1^+ and that $\lambda \in L(G_2)$.

We also have sentential forms

$$0(B0)^n B = (0B)^{n+1}.$$

Putting it all together, we find that

$$L(G_2) = \{w \in \{0,1\}^* \mid \text{each 0 in } w \text{ is} \}$$
 followed immediately by a 1}.