
GraphBufferStack Cache

Towards Parsing Unscoped Episodic Logical
Forms with a Cache Transition Parser

Gene Kim
University of Rochester

What is ULF? System Outline

What Next? (Lots!)What is a Cache
Transition Parser?

Acknowledgements
The work was supported by a Sproull Graduate Fellowship
from the University of Rochester, DARPA CwC subcontract
W911NF-15-1-0542, NSF EAGER grant IIS-1543758, and
informed by the Fall 2018 Semantic Parsing Seminar by
Dan Gildea.

So how do we do?

● Closely matches surface form of language

● Grounded in Episodic Logic Types
 she.pro - entity
 cake.n - noun predicate
 to - action reifier

● Resolves predicate-argument structure
Brackets!

● Unresolved
1. Anaphora - she.pro, (the.d cake.n)
2. Operator scope - the.d, pres
3. Word sense - want.v, eat.v, cake.n

(she.pro ((pres want.v)
 (to (eat.v (the.d cake.n)))))

“She wants to eat the cake”

Underspecified (Episodic) Logical Forms

A transition system for parsing graphs using a
fixed-sized cache. It’s been used to parse
abstract meaning representations.

(1,B)
(1,A)

...

 1 2 3
C D E

 F G H ...

A B

C

D

E
F

Pop

Push

Arc

Shift G

Pop: pops the top element from stack to its
indexed position in cache
Shift: moves the front of the buffer by one and
adds a vertex to the graph for the front element
Push: moves the front of the buffer to the cache
and pushes the old cache value to the stack
Arc: forms an arc between a given index of the
cache and the rightmost element of the cache

“She wants to eat the cake”

she.pro pres want.v to eat.v the.d cake.n

1. Oracle Generator

(V0 / COMPLEX
 :INST (V2 / COMPLEX

 :INST (V3 / pres
 :ARG0 (V5 / want.v))

 :ARG0 (V6 / to
 :ARG0 (V8 / eat.v
 :ARG0 (V10 / the.d
 :ARG0 (V12 / cake.n)))))
 :ARG0 (V1 / she.pro))

2. Cache Transition Parser for AMR

Non-oracle version
● Alignments using string

similarity and POS
● Alignment count-based

generation

● Removed AMR specific
features

● Kept syntactic features
(POS, dependencies)

● LSTM encoder-decoder
for action selection

● Trained on oracle actions

3. Syntactic Rewriting

(she.pro ((pres want.v)
 (to (eat.v (the.d cake.n)))))

Best model: 0.738 EL-smatch score
cache size 2

Cache
Size

Dev
Action
Acc.

Dev
EL-smatch

Test
El-smatch

2 0.92 0.73 0.738

4 0.90 0.74 0.736

6 0.92 0.72 0.716

Cache
Size

Oracle
Success

Rate
2 0.01

4 0.73

6 0.82

Weird! Cache size 2
performs best even

though the oracle fails!

1. Evaluating performance with the
generator (step 1)

2. Fixing ULF Atom Ordering
The curious oracle failure is likely due to
poor atom ordering

3. Integrating the ULF Type System
The ULF type system restricts the
available interpretations and combinations

- New action for introducing type shifters
- Type-based composition constraints

4. Categorization
Foreign languages, dates, currency, etc.
are likely better handled procedurally.

● Gold generation (step 1 is known)
● 725/90/90 sentence train/dev/test split
● Tested on cache sizes 2, 4, and 6

Experimental Details

Ask me
for details!

