
	 1	

ITRG Mini-proposal
	

Extending Code Reuse Analysis Framework for Trusted
and Effective Defense with ARM Instruction Set

Jie Zhou

Department of Computer Science, University of Rochester

1 Project Summary

Computer security has always been an important issue for both professional computer
researchers and regular computer users. For computer security, memory safety is one
of the most significant areas. And for memory safety, code reuse attacks like return-
to-libc attacks [1], Return-oriented programming (ROP) [2], None-control data attacks
[3], etc. have shown their power in controlling the whole target operating system by
exploiting memory safety errors such as buffer overflow bugs in the past two decades.
To prevent code reuse attacks, a large number of methods have been proposed and
carried out for operating systems. Along with the development of defense policies,
however, are smarter attack techniques that circumvent the defense policies. Then
later new defense strategies come up to thwart the aforementioned “smarter” attacks.
The war seems eternal. Nowadays as the mobile devices (mainly smartphones and
tablets) play a more and more important role in people’s life, the security of them has
become a major issue. Most mobile devices today are running on Unix-based
operating systems like iOS and Android, which means they share the basic
mechanism and principles with systems (such as Linux and MacOS) of numerous
traditional desktop computers. It also means that code reuse attack techniques
working on desktop computing devices can be applied to mobile devices as well. That
is why security of mobile devices has been as concerning an issue as desktop devices.

As the “Eternal War in Memory” [4] goes on, although ingenious defense policies
against code reuse attack have been designed and applied one after another, they
are ad hoc. There had been no general and systematic approaches that could verify
the efficacy of any given defense policy against code reuse attacks until Code Reuse
Analysis Framework for Trusted and Effective Defense (CRAFTED) [5] was proposed.
Given a defense policy for code reuse attacks, a target program with potential
vulnerabilities, a malicious computation template, CRAFTED aims to do static analysis
to determine the efficacy of the policy. Thus, for any new defense strategy, CRAFTED
can determine if it is robust against a certain malicious computation model; otherwise
there is a chance that the strategy works fine based on its designer’s experiments but
are defeated by a cleverer attack scheme later. Currently, CRAFTED is still under
construction, and it can only analyze x86 target code. Today the mainstream
architectures used in mobile devices such as iOS and Android are from ARM family.
Therefore, the principal investigator proposes to extend CRAFTED infrastructure with

	 2	

support for ARM instruction set so that CRAFTED can analyze and evaluate the
efficacy of defense policies used for mobile devices.

2 Intellectual Merit

The proposed research intends to enhance CRAFTED with static analysis on
programs and defense policies for mobile devices with ARM processors. The ARM
instruction set will be explored in great details so that its security mechanism will be
further understood. It will also help code reuse attack researchers test and perfect their
design and implementation of defense policies for ARM devices.

3 Broader Impacts

The proposed work can facilitate the process of analysis and improvement of defense
policies against code reuse attacks on devices equipped with ARM chips. The benefit
for society is obvious: till March 2017 there were over 700 million iPhones in use [6],
and till May 2017 there were over 2 billion active Android devices [7]); thus, enhancing
the security for mobile devices indirectly by boosting the development of security
policies would be valuable to billions of people. Besides, CRAFTED is based on LLVM
compiler infrastructure [8]. The investigators will release the source code of the project
to the public under open-source licenses, which will not only help enrich the LLVM
community, but also help other security researchers better understand code reuse
attacks and devise superior defense tools.

4 Research Plan

The research will be conducted in three phases.

In the first phase, the investigators will learn and understand CRAFTED thoroughly,
because the proposed work is based on it. And at the same time the investigators will
also need to have a good grasp of ARM instruction set, which is also fundamental to
the work.

The second phase is to implement ARM version of all the tools based on x86 versions
in current CRAFTED: target program analysis, malicious computation template
analysis, defense policy efficacy verifier, etc. The algorithms and code styles should
be consistent with their corresponding x86 parts.

The last phase is to conduct extensive tests with real-world programs like popular
applications on iOS and Android phones. In addition to correctness, overheads of the
newly implemented work will also be taken into consideration.

	 3	

Reference

[1] Solar Designer. return-to-libc attack, August 1997. http://www.securityfocus.com/
archive/1/7480.
[2] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
oriented programming: Systems, languages, and applications. ACM Transactions on
Information Systems Security, 15(1):2:1– 2:34, March 2012.
[3] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer.
Non-control-data attacks are realistic threats. In 14th USENIX Security Symposium,
pages 177–192, August 2004.
[4] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in
memory. IEEE Symposium on Security and Privacy, 2013.
[5] Ethan Johnson, Tianqin Zhao, John Criswell. Poster: CRAFTED: Code Reuse
Analysis for Trusted and Effective Defense. IEEE Symposium on Security and
Privacy, 2017.
[6] Fortune Magazine. http://fortune.com/2017/03/06/apple-iphone-use-worldwide/
[7] androidcentral.com. https://www.androidcentral.com/there-are-over-2-billion-
active-android-devices-today
[8] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In Proceedings of the Conference on Code
Generation and Optimization, pages 75–88, San Jose, CA, USA, Mar 2004.

