
Operating Systems 1/23/2007

CSC 256/456 - Spring 2007 1

1/23/2007 CSC 256/456 - Spring 2007 1

Processes & Threads

CS 256/456

Dept. of Computer Science, University of Rochester

1/23/2007 CSC 256/456 - Spring 2007 2

Recap of the Last Class
Hardware protection

kernel and user mode

System components
process management, memory management, I/O system,
file and storage, networking, …

Operating system architectures
monolithic architecture, microkernel
… …

1/23/2007 CSC 256/456 - Spring 2007 3

Microkernel System Architecture
Microkernel architecture:

Moves as much from the kernel into “user” space
(still protected from normal users).
Communication takes place between user modules
using message passing.

Benefits:
More reliable (less code is running in kernel mode)
More secure (less code is running in kernel mode)

Disadvantage:
More overhead in inter-domain communications

1/23/2007 CSC 256/456 - Spring 2007 4

Layered Structure
Layered structure

The operating system is divided into a number of layers (levels),
each built on top of lower layers.
The bottom layer (layer 0), is the hardware.
The highest (layer N) is the user interface.
Decreased privileges for higher layers.

Benefits:
more reliable
more secure

Disadvantage:
Weak integration results in performance penalty (similar to the
microkernel structure).

Operating Systems 1/23/2007

CSC 256/456 - Spring 2007 2

1/23/2007 CSC 256/456 - Spring 2007 5

Outline
Process

Process concept
A process’s image in a computer
Operations on processes

Thread
Thread concept
Multithreading models
Types of threads

1/23/2007 CSC 256/456 - Spring 2007 6

Process and Its Image
An operating system executes a variety of programs:

A program that browses the Web
A program that serves Web requests

Process – a program in execution.

A process’s state/image in a computer includes:
User-mode address space
Kernel data structure
Registers (including program counter and stack pointer)

Address space and memory protection
Physical memory is divided into user memory and kernel memory
Kernel memory can only be accessed when in the kernel mode
Each process has its own exclusive address space in the user-
mode memory space (sort-of)

1/23/2007 CSC 256/456 - Spring 2007 7

User-mode Address Space

User-mode address space for
a process:
Text: program code, instructions
Data: initialized global and static
variables (those data whose size
is known before the execution)
BSS (block started by symbol):
uninitialized global and static
variables
Heap: dynamic memory (those
being malloc-ed)
Stack: local variables and other
stuff for function invocations Text

Data

Heap

Stack

0

0xffffffff

BSS

1/23/2007 CSC 256/456 - Spring 2007 8

Process Control Block (PCB)

OS data structure (in kernel
memory) maintaining
information associated with
each process.
Process state
Program counter
CPU registers
CPU scheduling information
Memory-management
information
Accounting information
Information about open files
maybe kernel stack?

Operating Systems 1/23/2007

CSC 256/456 - Spring 2007 3

1/23/2007 CSC 256/456 - Spring 2007 9

Process State
As a process executes, it changes state

new: The process is being created.
ready: The process is waiting to be assigned to a process.
running: Instructions are being executed.
waiting: The process is waiting for some event to occur.
terminated: The process has finished execution.

1/23/2007 CSC 256/456 - Spring 2007 10

Process Creation
When a process (parent) creates a new process (child)

Execution sequence?
Address space sharing?
Open files inheritance?
… …

UNIX examples
fork system call creates new process with a duplicated copy
of everything.
exec system call used after a fork to replace the process’
memory space with a new program.
child and parent compete CPU like two normal processes.

Copy-on-write

1/23/2007 CSC 256/456 - Spring 2007 11

Process Tree on a Linux System
Parent process creates children processes, which, in turn
create other processes, forming a tree of processes.

init
(pid=1)

System
daemon x

System
daemon z

System
daemon y

KDE-init
user 1

sshd
user 2

shell 1a shell 1b shell 2c

… … … … … …

1/23/2007 CSC 256/456 - Spring 2007 12

CPU Switch From Process to Process

When can the
OS switch the
CPU from one
process to
another?

Which one to
switch to? -
scheduling

Operating Systems 1/23/2007

CSC 256/456 - Spring 2007 4

1/23/2007 CSC 256/456 - Spring 2007 13

Queues for PCBs

Ready queue –
set of all
processes
ready for
execution.
Device queues
– set of
processes
waiting for an
I/O device.
Process
migration
between the
various queues.

1/23/2007 CSC 256/456 - Spring 2007 14

Process Termination
Process executes last statement and gives the
control to the OS (exit).

Notify parent if it is wait-ing.
Deallocate process’ resources.

The OS may forcefully terminate a process.
Software exceptions
Receiving certain signals

1/23/2007 CSC 256/456 - Spring 2007 15

Processes and Threads
Thread – a program in execution; without a dedicated
address space.
OS memory protection is only applied to processes.

1/23/2007 CSC 256/456 - Spring 2007 16

Why Use Threads?

Multithreading is used for parallelism/concurrency. But
why not multiple processes?

Memory sharing.

Efficient synchronization between threads

Less context switch overhead

Operating Systems 1/23/2007

CSC 256/456 - Spring 2007 5

1/23/2007 CSC 256/456 - Spring 2007 17

User/Kernel Threads
What is really happening when the execution of one thread
switches to another?

save the registers (including the SP) of the old thread;
restore the registers of the new thread;
set the new PC appropriately for the new thread;

Does this need help from the OS kernel?
Can you do it in C/Java?
Does process switching need help from the OS kernel?

User threads
Thread data structure is in user-mode memory
scheduling/switching done at user mode

Kernel threads
Thread data structure is in kernel memory
scheduling/switching done by the OS kernel

1/23/2007 CSC 256/456 - Spring 2007 18

User/Kernel Threads (cont.)
Benefits of user threads

lightweight – less context switching overhead
more efficient synchronization??
flexibility – allow application-controlled scheduling

Problems of user threads
can’t use more than one processor
oblivious to kernel events, e.g., all threads in a process are
put to wait when only one of them does I/O

1/23/2007 CSC 256/456 - Spring 2007 19

Mixed User/Kernel Threads

M user threads run on N kernel threads (M≥N)
N=1: pure user threads
M=N: pure kernel threads
M>N>1: mixed model

user threads

kernel threads

CPU CPU

1/23/2007 CSC 256/456 - Spring 2007 20

Solaris/Linux Threads
Solaris

supports mixed model

Linux
No standard user threads on Linux
Processes are treated similarly with threads (both called
tasks)
Processes are tasks with exclusive address space
Tasks can also share the address space, open files, …

Operating Systems 1/23/2007

CSC 256/456 - Spring 2007 6

1/23/2007 CSC 256/456 - Spring 2007 21

Pthreads
Different OS has its own thread package with different
Application Programming Interfaces ⇒ poor portability.

Pthreads
A POSIX standard API for thread management and
synchronization.
API specifies behavior of the thread library, not the
implementation.
Commonly supported in UNIX operating systems.

1/23/2007 CSC 256/456 - Spring 2007 22

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

