
Operating Systems 1/29/2007

CSC 256/456 - Spring 2007 1

1/29/2007 CSC 256/456 - Spring 2007 1

CPU Scheduling

CS 256/456

Dept. of Computer Science, University of Rochester

1/29/2007 CSC 256/456 - Spring 2007 2

User/Kernel Threads
User threads

Thread data structure is in user-mode memory
scheduling/switching done at user mode

Kernel threads
Thread data structure is in kernel memory
scheduling/switching done by the OS kernel

Benefits of user threads
lightweight – less context switching overhead
flexibility – allow application-controlled scheduling

Problems of user threads
can’t use more than one processor
oblivious to kernel events, e.g., all threads in a process are
put to wait when only one of them does I/O

1/29/2007 CSC 256/456 - Spring 2007 3

Mixed User/Kernel Threads

M user threads run on N kernel threads (M≥N)
N=1: pure user threads
M=N: pure kernel threads
M>N>1: mixed model

user threads

kernel threads

CPU CPU

1/29/2007 CSC 256/456 - Spring 2007 4

Solaris/Linux Threads
Solaris

supports mixed model

Linux
No standard user threads on Linux
Processes are treated similarly with threads (both called
tasks)
Processes are tasks with exclusive address space
Tasks can also share the address space, open files, …

Operating Systems 1/29/2007

CSC 256/456 - Spring 2007 2

1/29/2007 CSC 256/456 - Spring 2007 5

Pthreads
Different OS has its own thread package with different
Application Programming Interfaces ⇒ poor portability.

Pthreads
A POSIX standard API for thread management and
synchronization.
API specifies behavior of the thread library, not the
implementation.
Commonly supported in UNIX operating systems.

1/29/2007 CSC 256/456 - Spring 2007 6

CPU Scheduling
Selects from among the processes/threads that are ready
to execute, and allocates the CPU to it.

CPU scheduling may take place at:
1. Hardware interrupt/software exception.
2. System calls.

Nonpreemptive:
Scheduling only when the current process terminates or not
able to run further

Preemptive:
Scheduling can occur at any opportunity possible

1/29/2007 CSC 256/456 - Spring 2007 7

Scheduling Criteria
Minimize turnaround time – amount of time to execute
a particular process
Maximize throughput – # of processes that complete
their execution per time unit
Maximize CPU utilization – the proportion of the CPU
that is not idle
Minimize response time – amount of time it takes
from when a request was submitted until the first
response is produced (interactivity)
Fairness: avoid starvation

1/29/2007 CSC 256/456 - Spring 2007 8

First-Come, First-Served (FCFS) Scheduling

Process CPU Time
P1 24
P2 3
P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3
The schedule is:

Turnaround time for P1 = 24; P2 = 27; P3 = 30
Average turnaround time: (24 + 27 + 30)/3 = 27

P1 P2 P3

24 27 300

Operating Systems 1/29/2007

CSC 256/456 - Spring 2007 3

1/29/2007 CSC 256/456 - Spring 2007 9

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1 .
The schedule is:

Turnaround time for P1 = 30; P2 = 3; P3 = 6
Average turnaround time: (30 + 3 + 6)/3 = 13
Much better than previous case.
Short process delayed by long process: Convoy effect

P1P3P2

63 300

1/29/2007 CSC 256/456 - Spring 2007 10

Shortest-Job-First (SJR) Scheduling
Associate with each process the length of its CPU
time. Use these lengths to schedule the process with
the shortest CPU time.
Two variations:

nonpreemptive – once CPU given to the process it cannot be
taken away until it completes.
preemptive – if a new process arrives with CPU time less than
remaining time of current executing process, preempt.

Preemptive SJF is optimal – gives minimum average
turnaround time for a given set of processes.

Problem:
don’t know the process CPU time ahead of time.

1/29/2007 CSC 256/456 - Spring 2007 11

Example of Preemptive SJF

Process Arrival Time CPU Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

SJF (preemptive)

Average turnaround time = (16 + 5 + 1 +6)/4 = 7

P1 P3P2

42 110

P4

5 7

P2 P1

16

1/29/2007 CSC 256/456 - Spring 2007 12

Priority Scheduling
A priority number (integer) is associated with each process
The CPU is allocated to the process with the highest
priority.

Preemptive
nonpreemptive

SJF is a priority scheduling where priority is the predicted
CPU time.

Problem: Starvation – low priority processes may never
execute.
Solution: Aging – as time progresses increase the priority
of the process.

Operating Systems 1/29/2007

CSC 256/456 - Spring 2007 4

1/29/2007 CSC 256/456 - Spring 2007 13

Round Robin (RR)
Each process gets a fixed unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed,
the process is preempted and added to the end of the
ready queue.

If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

Performance
q small ⇒ fair, starvation-free, better interactivity
q large ⇒ FIFO
q must be large with respect to context switch cost,
otherwise overhead is too high.

1/29/2007 CSC 256/456 - Spring 2007 14

Cost of Context Switch

Direct overhead of context switch
saving old contexts, restoring new contexts, … …

Indirect overhead of context switch
caching, memory management overhead

1/29/2007 CSC 256/456 - Spring 2007 15

Example of RR with Quantum = 20

Process CPU Time
P1 53
P2 17
P3 68
P4 24

The schedule is:

Typically, higher average turnaround than SJF, but
better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

1/29/2007 CSC 256/456 - Spring 2007 16

Multilevel Scheduling
Ready tasks are partitioned into separate classes:
foreground (interactive)
background (batch)

Each class has its own scheduling algorithm,
foreground – RR
background – FCFS

Scheduling must be done between the classes.
Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.
Time slice – each class gets a certain amount of CPU time
which it can schedule amongst its processes; e.g.,

80% to foreground in RR
20% to background in FCFS

Operating Systems 1/29/2007

CSC 256/456 - Spring 2007 5

1/29/2007 CSC 256/456 - Spring 2007 17

Real-Time Scheduling
Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.
Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.

EDF – Earliest Deadline First Scheduling.

1/29/2007 CSC 256/456 - Spring 2007 18

Linux Task Scheduling
Linux uses two task-scheduling classes:

A time-sharing class for fair preemptive scheduling.
A real-time class that conforms to POSIX real-time standard.

For time-sharing tasks, Linux 2.4 uses a prioritized, credit
based algorithm.

Each task carries an static priority, a dynamic credit; initially a
task’s credit is its priority
Scheduling is epoch-based. At each epoch

scheduling is ordered on the initial credit
Credit of the running task decrements by one at every clock tick

Epoch ends when no runnable tasks have any credit – recrediting

This crediting system automatically prioritizes interactive or
I/O-bound tasks.

priority
2

credits credits +=

1/29/2007 CSC 256/456 - Spring 2007 19

CPU Scheduling on Multi-Processors
Cache affinity

keep a task on a particular processor as much as possible

Resource contention
prevent resource-conflicting tasks run simultaneously on
sibling processors

1/29/2007 CSC 256/456 - Spring 2007 20

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

