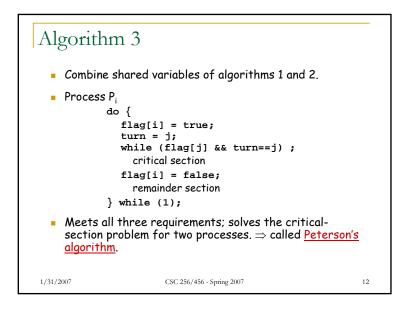
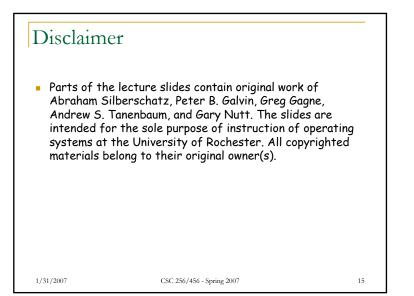


<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>



Eliminating Concurrency First idea: eliminating the chance of context switch when a process runs in the critical section. effective as a complete solution only on a single-processor machine only for short critical sections How to eliminate context switch? software exceptions hardware interrupts system calls Disabling interrupts? not feasible for user programs since they shouldn't be able to disable interrupts feasible for OS kernel programs 1/31/2007 CSC 256/456 - Spring 2007 8



Algorithm	n 2	
'		l section
wh fl	<pre>ag[i] = true; ile (flag[j]) ; critical section ag[i] = false; remainder section ile (1);</pre>	
 Satisfies mu 	utual exclusion, but not progress r	equirement.
1/31/2007	CSC 256/456 - Spring 2007	11

Synchronizatio	on Using Special Instruction:
TSL (test-and-	-set)
entry_section:	
TSL R1, LOCK	copy lock to R1 and set lock to 1
CMP R1, #0	was lock zero?
JNE entry_section	if it wasn't zero, lock was set, so loop
RET	return; critical section entered
exit_section:	
MOV LOCK, #0	store 0 into lock
RET	return; out of critical section
 Does it work for n 	synchronization problem? nultiple (>2) processes?
 What if you have a register and a mer 	special instruction swp (swap the value of a nory word)?
1/31/2007	CSC 256/456 - Spring 2007 13

Solving Cr	titical Section Problem with	
Busy Wait		
 In all our s entry is gro 	olutions, a process enters a loop until the anted \Rightarrow busy waiting.	г
 Waste of If a proce other may ev Solution Avoid bus instead). 	ess is switched out of CPU during critical section processes may have to waste a whole CPU quantu ven deadlock with strictly prioritized scheduling sy wait as much as possible (yield the processo n't avoid busy wait, you must prevent context iring critical section (disable interrupts while i	ım or
1/31/2007	CSC 256/456 - Spring 2007	14

