
Operating Systems 1/31/2007

CSC 256/456 - Spring 2007 1

1/31/2007 CSC 256/456 - Spring 2007 1

Synchronization Principles

CS 256/456

Dept. of Computer Science, University of Rochester

1/31/2007 CSC 256/456 - Spring 2007 2

Recap of Last Class: CPU Scheduling
CPU scheduling may take place at:

Hardware interrupt/software exception, system calls.

Objectives:
Minimize completion time; maximize throughput
Minimize response time
Maintain fairness

Policies:
FCFS, SJB, Priority
Round-Robin
Earliest Deadline First

Multiple scheduling policies in system
Linux 2.4 task scheduling

1/31/2007 CSC 256/456 - Spring 2007 3

Synchronization Principles
Background

Concurrent access to shared data may result in data
inconsistency.
Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

The Critical-Section Problem
Pure software solution
With help from the hardware

Synchronization without busy waiting (with the support
of process/thread scheduler)

Semaphore
Mutex lock
Condition variables

1/31/2007 CSC 256/456 - Spring 2007 4

Bounded Buffer
Shared data

typedef struct { ... } item;

item buffer[BUFFER_SIZE];

int in = 0, out = 0;

int counter = 0;

Producer process

item nextProduced;

while (1) {

while (counter==BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in+1) % BUFFER_SIZE;

counter++;

}

Consumer process
item nextConsumed;

while (1) {

while (counter==0)

; /* do nothing */

nextConsumed = buffer[out];

out = (out+1) % BUFFER_SIZE;

counter--;

}

out in

counter

Operating Systems 1/31/2007

CSC 256/456 - Spring 2007 2

1/31/2007 CSC 256/456 - Spring 2007 5

Bounded Buffer
The following statements must be performed atomically:
counter++;
counter--;

Atomic operation means an operation that completes in its
entirety without interruption.

The statement “counter++” may be compiled into the following
instruction sequence:
register1 = counter;

register1 = register1 + 1;
counter = register1;

The statement “counter--” may be compiled into:
register2 = counter;
register2 = register2 - 1;
counter = register2;

1/31/2007 CSC 256/456 - Spring 2007 6

Race Condition

Race condition:
The situation where several processes access and manipulate
shared data concurrently.
The final value of the shared data and/or effects on the
participating processes depends upon the order of process
execution – nondeterminism.

To prevent race conditions, concurrent processes must be
synchronized.

1/31/2007 CSC 256/456 - Spring 2007 7

The Critical-Section Problem
Problem context:

n processes all competing to use some shared data
Each process has a code segment, called critical
section, in which the shared data is accessed.

Find a solution that satisfies the following:
1. Mutual Exclusion. No two processes simultaneously in the critical

section.
2. Progress. No process running outside its critical section may

block other processes.
3. Bounded Waiting/Fairness. Given the set of concurrent

processes, a bound must exist on the number of times that other
processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and
before that request is granted.

1/31/2007 CSC 256/456 - Spring 2007 8

Eliminating Concurrency
First idea: eliminating the chance of context switch
when a process runs in the critical section.

effective as a complete solution only on a single-processor
machine
only for short critical sections

How to eliminate context switch?
software exceptions
hardware interrupts
system calls

Disabling interrupts?
not feasible for user programs since they shouldn’t be able
to disable interrupts
feasible for OS kernel programs

Operating Systems 1/31/2007

CSC 256/456 - Spring 2007 3

1/31/2007 CSC 256/456 - Spring 2007 9

Critical Section for Two Processes

Only 2 processes, P0 and P1
General structure of process Pi (other process Pj)

do {
entry section

critical section
exit section

remainder section
} while (1);

Processes may share some common variables to synchronize
their actions.

Assumption: instructions are atomic and no re-ordering of
instructions.

1/31/2007 CSC 256/456 - Spring 2007 10

Algorithm 1
Shared variables:

int turn;
initially turn = 0;
turn==i⇒ Pi can enter its critical section

Process Pi
do {

while (turn != i) ;
critical section

turn = j;
remainder section

} while (1);

Satisfies mutual exclusion, but not progress

1/31/2007 CSC 256/456 - Spring 2007 11

Algorithm 2
Shared variables:

boolean flag[2];
initially flag[0] = flag[1] = false;
flag[i]==true⇒ Pi ready to enter its critical section

Process Pi
do {

flag[i] = true;
while (flag[j]) ;

critical section
flag[i] = false;

remainder section
} while (1);

Satisfies mutual exclusion, but not progress requirement.

1/31/2007 CSC 256/456 - Spring 2007 12

Algorithm 3
Combine shared variables of algorithms 1 and 2.

Process Pi
do {

flag[i] = true;
turn = j;
while (flag[j] && turn==j) ;

critical section
flag[i] = false;

remainder section
} while (1);

Meets all three requirements; solves the critical-
section problem for two processes. ⇒ called Peterson’s
algorithm.

Operating Systems 1/31/2007

CSC 256/456 - Spring 2007 4

1/31/2007 CSC 256/456 - Spring 2007 13

Synchronization Using Special Instruction:
TSL (test-and-set)
entry_section:

TSL R1, LOCK | copy lock to R1 and set lock to 1

CMP R1, #0 | was lock zero?

JNE entry_section | if it wasn’t zero, lock was set, so loop

RET | return; critical section entered

exit_section:

MOV LOCK, #0 | store 0 into lock

RET | return; out of critical section

Does it solve the synchronization problem?
Does it work for multiple (>2) processes?
What if you have special instruction SWP (swap the value of a
register and a memory word)?

1/31/2007 CSC 256/456 - Spring 2007 14

Solving Critical Section Problem with
Busy Waiting

In all our solutions, a process enters a loop until the
entry is granted ⇒ busy waiting.

Problems with busy waiting:
Waste of CPU time
If a process is switched out of CPU during critical section

other processes may have to waste a whole CPU quantum
may even deadlock with strictly prioritized scheduling

Solution
Avoid busy wait as much as possible (yield the processor
instead).
If you can’t avoid busy wait, you must prevent context
switch during critical section (disable interrupts while in
the kernel)

1/31/2007 CSC 256/456 - Spring 2007 15

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

