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Recap of Last Class
Concurrent access to shared data may result in data 
inconsistency – race condition.
The Critical-Section problem

Pure software solution
With help from the hardware

Problems with busy-waiting-based synchronization
Waste CPU, particularly when context switch occurs 
while a process is inside critical section

Solution
Avoid busy wait as much as possible (yield the processor 
instead).
If you can’t avoid busy wait, you must prevent context 
switch during critical section (disable interrupts while in 
the kernel)
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Semaphore
Synchronization tool that does 
not require busy waiting.

Semaphore S – integer variable 
which can only be accessed via 
two atomic operations

Semantics (roughly) of the two 
operations:
wait(S) or P(S):

wait until S>0;
S--;

signal(S) or V(S):

S++;

Solving the critical section 
problem:

Shared data:
semaphore mutex=1; 

Process Pi: 
wait(mutex);

critical section
signal(mutex);

remainder section
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Semaphore Implementation
Define a semaphore as a 
record
typedef struct {

int value;
proc_list *L;

} semaphore;

Assume two simple 
operations:

block suspends the 
process that invokes it.
wakeup(P) resumes the 
execution of a blocked 
process P.

Semaphore operations now defined 
as (both are atomic):
wait(S):

S.value--;

if (S.value < 0) { 

add this process to S.L;
block;

}

signal(S): 
S.value++;

if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

Does this completely solve the critical section problem?
How to make sure wait(S) and signal(S) are atomic?
So have we truly removed busy waiting?
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Mutex Lock (Binary Semaphore)
Mutex lock – a semaphore with only two state: locked/unlocked

Semantics of the two (atomic) operations:
lock(mutex):

wait until mutex==unlocked;
mutex=locked;

unlock(mutex):

mutex=unlocked;

Can you implement mutex lock using semaphore?

How about the opposite?
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Implement Semaphore Using Mutex Lock

Data structures:
mutex_lock L1, L2;

int C;  

Initialization:
L1 = unlocked;

L2 = locked;

C = initial value of semaphore;

wait operation:
lock(L1);
C --;
if (C < 0) {

unlock(L1);
lock(L2);

}
unlock(L1);

signal operation:
lock(L1);
C ++;
if (C <= 0)

unlock(L2);
else

unlock(L1);
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Classical Problems of Synchronization

Bounded-Buffer Problem

Dining-Philosophers Problem
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Bounded Buffer Problem
Shared data

buffer;

Producer process 

while (1) {

...

produce an item in nextp;

...

add nextp to buffer;

...

}

Consumer process 
while (1) {

...

remove an item from buffer to nextc;
...

consume nextc;

...

}

• Protecting the critical section for safe concurrent execution.
• Synchronizing producer and consumer when buffer is empty/full.
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Bounded Buffer Solution
Shared data

buffer;

semaphore full=0;

semaphore empty=n;

semaphore mutex=1;

Producer process 

while (1) {

...

produce an item in nextp;

...

wait(empty);

wait(mutex);

add nextp to buffer;

signal(mutex);

signal(full);

...

}

Consumer process 
while (1) {

...

wait(full);

wait(mutex);

remove an item from buffer to nextc;
signal(mutex);

signal(empty);

...

consume nextc;

...

}
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Dining-Philosophers Problem

Philosopher i (1 ≤ i ≤ 5):

while (1) {

...

eat;
...

think;
...

}

• eating needs both chopsticks (the left and the right one).
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Dining-Philosophers Solution 

Philosopher i:

while(1) {
...
wait(chopstick[i]);
wait(chopstick[(i+1) % 5]);
eat;
signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);
...
think;
...

};

Shared data: 

semaphore chopstick[5];

Initially all values are 1;

Deadlock?
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Monitors
High-level synchronization construct that allows the safe 
sharing of an abstract data type among concurrent processes.
Native support for mutual exclusion.

monitor monitor-name
{

shared variable declarations
procedure body P1 (...) {
. . .

}
procedure body Pn (...) {

. . .
} 
{
initialization code

}
}
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Condition Variables in Monitors
To allow a process to wait within the monitor, a 
condition variable must be declared, as

condition x, y;

Condition variable can only be used with the operations 
wait and signal.

The operation
x.wait();

means that the process invoking this operation is 
suspended until another process invokes

x.signal();

The x.signal operation resumes exactly one suspended 
process.  If no process is suspended, then the signal
operation has no effect.

Unlike semaphore, there is no counting in condition 
variables
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Two Semantics of Condition Variables
Hoare semantics: 

p0 executes signal while p1 is waiting ⇒ p0 immediately yields the 
monitor to p1 
The logical condition holds when P1 gets to run

if (resourceNotAvailable()) Condition.wait();

/* now available ... continue ... */

. . .

Brinch Hansen (“Mesa”) semantics:
p0 executes signal while p1 is waiting ⇒ p0 continues to execute, 
then when p0 exits the monitor p1 can receive the signal
The logical condition may not hold when P1 gets to run
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Dining Philosophers Example
monitor dp {

enum {thinking, eating} state[5];
condition cond[5];

void pickup(int i) {
while (state[(i+4)%5]==eating || state[(i+1)%5]==eating)

cond[i].wait();
state[i] = eating;

}

void putdown(int i) {
state[i] = thinking;
cond[(i+4)%5].signal();
cond[(i+1)%5].signal();

}

void init() {
for (int i=0; i<5; i++) 

state[i] = thinking;
}

}
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Synchronization in Practice

User program synchronization 
for threads
for processes

OS kernel synchronization
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User Program Synchronization for Threads
All threads share the same address space

When only need to protect a short critical section (busy 
waiting is OK)

software/hardware spin locks 
still has the risk of context switch in the middle of critical 
section

For complex synchronization (busy waiting is not OK)
semaphore, mutex lock, condition variable, …
may need kernel help

In pthreads
mutex lock and condition variable
condition variable must be used together with a mutex lock
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Synchronization Primitives in Pthreads
Mutex lock

pthread_mutex_init
pthread_mutex_destroy
pthread_mutex_lock
pthread_mutex_unlock

Condition variable (used in conjunction with a mutex lock)
pthread_cond_init
pthread_cond_destroy
pthread_cond_wait
pthread_cond_signal
pthread_cond_broadcast
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User Program Synchronization for Processes

Processes naturally do not share the same address space

Process synchronization:
semaphore
shared memory
pipes
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Spin or Block in Synchronization

Multi-processor synchronization.
A process is waiting for an event, triggered by 
another process.
Should it spin wait or yield the processor?
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Disclaimer

Parts of the lecture slides contain original work of 
Abraham Silberschatz, Peter B. Galvin, Greg Gagne, 
Andrew S. Tanenbaum, and Gary Nutt. The slides are 
intended for the sole purpose of instruction of operating 
systems at the University of Rochester. All copyrighted 
materials belong to their original owner(s). 


