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Examples of OS Kernel Synchronization

Two processes making system calls to 
read/write on the same file, leading to 
possible race condition on the file system 
data structures in OS. 

Interrupt handlers put I/O data into a 
buffer queue that might be retrieved by 
application-initiated I/O system calls.
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OS Kernel Structure for Synchronization
OS is divided into two parts:

upper part (serving application requests): system call, exception
lower part (serving hardware device requests): interrupt handling

Upper part runs in process/thread context
resource accounting to corresponding process/thread
running on a kernel stack usually associated with the 
corresponding process/thread control block

Lower part runs in a separate interrupt context
resource accounting to who?
running in a separate (often dedicated) kernel interrupt stack

Blocking behaviors:
Upper part may block (yield CPU), interleave with others.
Lower part does not block, must run atomically (one by one) –
interrupt handlers typically run with other interrupts disabled.
Why?

Preemption/priority:
A lower part interrupt handler may preempt an upper part 
system call processing, not vice versa.
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OS Kernel Synchronization
Available mechanisms:

disabling interrupts
spin_lock (busy waiting lock)
blocking synchronization (mutex lock, semaphore, …)

Synchronization between upper part kernel “threads”
typically blocking synchronization
spin_lock if critical section short (only useful on multiprocessor)

Synchronization between a upper part kernel “thread” and a 
lower part interrupt handler:

if blocking synchronization: block only at upper part, never lower 
part (possible in semaphore)
spin_lock may be used (only useful on multiprocessor)
the upper part should disable interrupt before entering critical
section
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A Little More on OS Kernel Structure

Lower part interrupt handlers do not block
interrupt handlers typically run with other interrupts disabled.

This can be a problem when interrupt handlers do more and 
more work

In modern OS, interrupt handlers typically defer some work 
to later (interruptible contexts)

software irqs in Linux
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The Deadlock Problem
Definition:

A set of blocked processes each holding some resources and 
waiting to acquire a resource held by another process in the 
set.
None of the processes can proceed or back-off (release 
resources it owns)

Examples: 
Dining philosopher problem
System has 2 memory pages (unit of memory allocation); P1
and P2 each hold one page and each needs another one.
Semaphores A and B, initialized to 1

P1 P2

wait (A); wait(B)
wait (B); wait(A)
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Deadlock Characterization
Deadlock can arise if four conditions hold simultaneously:

Mutual exclusion: only one process at a time can use a 
resource.
Hold and wait: a process holding at least one resource is 
waiting to acquire additional resources held by other 
processes.
No preemption: a resource can be released only voluntarily 
by the process holding it, after that process has completed 
its task.
Circular wait: there exists a set {P0, P1, …, Pn, P0} of waiting 
processes such that 

P0 is waiting for a resource that is held by P1, 
P1 is waiting for a resource that is held by P2, 
…, 
Pn–1 is waiting for a resource that is held by Pn, 
and Pn is waiting for a resource that is held by P0.
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Methods for Handling Deadlocks

Ignore the problem and pretend that deadlocks would 
never occur.

Ensure that the system will never enter a deadlock state.

Allow the system to enter a deadlock state and then 
detect/recover.
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The Ostrich Algorithm

Pretend there is no problem
unfortunately they can occur

Reasonable if 
deadlocks occur very rarely 
cost of prevention is high

Your typical OSes take this approach

It is a trade off between 
convenience
correctness
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Deadlock Prevention

Attacking the Mutual Exclusion Condition: 

Some devices (such as printer) can be spooled
only the printer daemon uses printer resource
thus deadlock for printer eliminated

Not all devices can be spooled

Restrain the ways requests can be made to break one 
of the four necessary conditions for deadlocks.
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Deadlock Prevention

Attacking the Hold and Wait Condition:
Require processes to request all resources before 
starting
Problems

may not know required resources at start of run
also ties up resources other processes could be using

Variation: 
before a process requests for a new resource, it must give 
up all resources and then request all resources needed
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Deadlock Prevention
Attacking the No Preemption Condition:

Preemption
when a process holding some resources and waiting for 
others, its resources may be preempted to be used by 
others

Problem
Many resources may not allow preemption; i.e., preemption 
will cause process to fail

Attacking the Circular Wait Condition:
impose a total order of all resource types; and require 
that all processes request resources in the same order
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Deadlock Avoidance
When a process requests an available resource, system must 
decide if immediate allocation leaves the system in a safe state.

System is in safe state if there exists a safe sequence of all 
processes. 

Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that 
Pi can still request can be satisfied by currently available 
resources + resources held by all the Pj, with j<i.

If Pi resource needs are not immediately available, then Pi can wait 
until all Pj have finished.
When Pj is finished, Pi can obtain needed resources, execute, return 
allocated resources, and terminate. 
When Pi terminates, Pi+1 can obtain its needed resources, and so on. 
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Deadlock Avoidance (cont.)

If a system is in safe state 
⇒ no deadlocks.

If a system is in unsafe 
state ⇒ possibility of 
deadlock.

Deadlock avoidance 
dynamically examines the 
resource-allocation state
ensure that a system will 
never enter an unsafe state. 
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Banker’s Algorithm
Each process must a priori claim the maximum set of 
resources that might be needed in its execution. 

Safety check
repeat

pick any process that can finish with existing available resources; 
finish it and release all its resources
until no such process exists

all finished → safe; otherwise → unsafe.

When a resource request is made, the process must wait if:
no enough available resource this request
granting of such request would result in a unsafe system state
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Example of Banker’s Algorithm
5 processes P0 through P4
3 resource types: A (10 instances), B (5 instances), 
and C (7 instances)
Snapshot at time T0:

Allocation MaxNeeds Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2  
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Is this a safe state?
Can request for (1,0,2) by P1 be granted?
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Methods for Handling Deadlocks

Ignore the problem and pretend that deadlocks would 
never occur.

Ensure that the system will never enter a deadlock state.

Allow the system to enter a deadlock state and then 
detect/recover.
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Single Instance of Each Resource Type
Maintain wait-for graph

Nodes are processes.
Pi → Pj if Pi is waiting for Pj.

Periodically search for a cycle in the graph.

Resource-Allocation Graph Corresponding wait-for graph
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Additional Issues

When there are several instances of a resource type
cycle detection in wait-for graph is not sufficient.

Deadlock detection is very similar to the safety check in 
the Banker’s algorithm

just replace the maximum needs with the current requests
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Recovery from Deadlock
Recovery through preemption

take a resource from some other process
depends on nature of the resource

Recovery through rollback
checkpoint a process state periodically
rollback a process to its checkpoint state if it is found 
deadlocked

Recovery through killing processes
kill one or more of the processes in the deadlock cycle
the other processes get its resources 

In which order should we choose process to kill?



Operating Systems 2/7/2007

CSC 256/456 - Spring 2007 6

2/7/2007 CSC 256/456 - Spring 2007 21

Disclaimer

Parts of the lecture slides contain original work of 
Abraham Silberschatz, Peter B. Galvin, Greg Gagne, 
Andrew S. Tanenbaum, and Gary Nutt. The slides are 
intended for the sole purpose of instruction of operating 
systems at the University of Rochester. All copyrighted 
materials belong to their original owner(s). 


