
Operating Systems 2/7/2007

CSC 256/456 - Spring 2007 1

2/7/2007 CSC 256/456 - Spring 2007 1

More on Synchronization
and Deadlock

CS 256/456

Dept. of Computer Science, University of Rochester

2/7/2007 CSC 256/456 - Spring 2007 2

Examples of OS Kernel Synchronization

Two processes making system calls to
read/write on the same file, leading to
possible race condition on the file system
data structures in OS.

Interrupt handlers put I/O data into a
buffer queue that might be retrieved by
application-initiated I/O system calls.

2/7/2007 CSC 256/456 - Spring 2007 3

OS Kernel Structure for Synchronization
OS is divided into two parts:

upper part (serving application requests): system call, exception
lower part (serving hardware device requests): interrupt handling

Upper part runs in process/thread context
resource accounting to corresponding process/thread
running on a kernel stack usually associated with the
corresponding process/thread control block

Lower part runs in a separate interrupt context
resource accounting to who?
running in a separate (often dedicated) kernel interrupt stack

Blocking behaviors:
Upper part may block (yield CPU), interleave with others.
Lower part does not block, must run atomically (one by one) –
interrupt handlers typically run with other interrupts disabled.
Why?

Preemption/priority:
A lower part interrupt handler may preempt an upper part
system call processing, not vice versa.

2/7/2007 CSC 256/456 - Spring 2007 4

OS Kernel Synchronization
Available mechanisms:

disabling interrupts
spin_lock (busy waiting lock)
blocking synchronization (mutex lock, semaphore, …)

Synchronization between upper part kernel “threads”
typically blocking synchronization
spin_lock if critical section short (only useful on multiprocessor)

Synchronization between a upper part kernel “thread” and a
lower part interrupt handler:

if blocking synchronization: block only at upper part, never lower
part (possible in semaphore)
spin_lock may be used (only useful on multiprocessor)
the upper part should disable interrupt before entering critical
section

Operating Systems 2/7/2007

CSC 256/456 - Spring 2007 2

2/7/2007 CSC 256/456 - Spring 2007 5

A Little More on OS Kernel Structure

Lower part interrupt handlers do not block
interrupt handlers typically run with other interrupts disabled.

This can be a problem when interrupt handlers do more and
more work

In modern OS, interrupt handlers typically defer some work
to later (interruptible contexts)

software irqs in Linux

2/7/2007 CSC 256/456 - Spring 2007 6

The Deadlock Problem
Definition:

A set of blocked processes each holding some resources and
waiting to acquire a resource held by another process in the
set.
None of the processes can proceed or back-off (release
resources it owns)

Examples:
Dining philosopher problem
System has 2 memory pages (unit of memory allocation); P1
and P2 each hold one page and each needs another one.
Semaphores A and B, initialized to 1

P1 P2

wait (A); wait(B)
wait (B); wait(A)

2/7/2007 CSC 256/456 - Spring 2007 7

Deadlock Characterization
Deadlock can arise if four conditions hold simultaneously:

Mutual exclusion: only one process at a time can use a
resource.
Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.
No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed
its task.
Circular wait: there exists a set {P0, P1, …, Pn, P0} of waiting
processes such that

P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by P2,
…,
Pn–1 is waiting for a resource that is held by Pn,
and Pn is waiting for a resource that is held by P0.

2/7/2007 CSC 256/456 - Spring 2007 8

Methods for Handling Deadlocks

Ignore the problem and pretend that deadlocks would
never occur.

Ensure that the system will never enter a deadlock state.

Allow the system to enter a deadlock state and then
detect/recover.

Operating Systems 2/7/2007

CSC 256/456 - Spring 2007 3

2/7/2007 CSC 256/456 - Spring 2007 9

The Ostrich Algorithm

Pretend there is no problem
unfortunately they can occur

Reasonable if
deadlocks occur very rarely
cost of prevention is high

Your typical OSes take this approach

It is a trade off between
convenience
correctness

2/7/2007 CSC 256/456 - Spring 2007 10

Deadlock Prevention

Attacking the Mutual Exclusion Condition:

Some devices (such as printer) can be spooled
only the printer daemon uses printer resource
thus deadlock for printer eliminated

Not all devices can be spooled

Restrain the ways requests can be made to break one
of the four necessary conditions for deadlocks.

2/7/2007 CSC 256/456 - Spring 2007 11

Deadlock Prevention

Attacking the Hold and Wait Condition:
Require processes to request all resources before
starting
Problems

may not know required resources at start of run
also ties up resources other processes could be using

Variation:
before a process requests for a new resource, it must give
up all resources and then request all resources needed

2/7/2007 CSC 256/456 - Spring 2007 12

Deadlock Prevention
Attacking the No Preemption Condition:

Preemption
when a process holding some resources and waiting for
others, its resources may be preempted to be used by
others

Problem
Many resources may not allow preemption; i.e., preemption
will cause process to fail

Attacking the Circular Wait Condition:
impose a total order of all resource types; and require
that all processes request resources in the same order

Operating Systems 2/7/2007

CSC 256/456 - Spring 2007 4

2/7/2007 CSC 256/456 - Spring 2007 13

Deadlock Avoidance
When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

System is in safe state if there exists a safe sequence of all
processes.

Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that
Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j<i.

If Pi resource needs are not immediately available, then Pi can wait
until all Pj have finished.
When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate.
When Pi terminates, Pi+1 can obtain its needed resources, and so on.

2/7/2007 CSC 256/456 - Spring 2007 14

Deadlock Avoidance (cont.)

If a system is in safe state
⇒ no deadlocks.

If a system is in unsafe
state ⇒ possibility of
deadlock.

Deadlock avoidance
dynamically examines the
resource-allocation state
ensure that a system will
never enter an unsafe state.

2/7/2007 CSC 256/456 - Spring 2007 15

Banker’s Algorithm
Each process must a priori claim the maximum set of
resources that might be needed in its execution.

Safety check
repeat

pick any process that can finish with existing available resources;
finish it and release all its resources
until no such process exists

all finished → safe; otherwise → unsafe.

When a resource request is made, the process must wait if:
no enough available resource this request
granting of such request would result in a unsafe system state

2/7/2007 CSC 256/456 - Spring 2007 16

Example of Banker’s Algorithm
5 processes P0 through P4
3 resource types: A (10 instances), B (5 instances),
and C (7 instances)
Snapshot at time T0:

Allocation MaxNeeds Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Is this a safe state?
Can request for (1,0,2) by P1 be granted?

Operating Systems 2/7/2007

CSC 256/456 - Spring 2007 5

2/7/2007 CSC 256/456 - Spring 2007 17

Methods for Handling Deadlocks

Ignore the problem and pretend that deadlocks would
never occur.

Ensure that the system will never enter a deadlock state.

Allow the system to enter a deadlock state and then
detect/recover.

2/7/2007 CSC 256/456 - Spring 2007 18

Single Instance of Each Resource Type
Maintain wait-for graph

Nodes are processes.
Pi → Pj if Pi is waiting for Pj.

Periodically search for a cycle in the graph.

Resource-Allocation Graph Corresponding wait-for graph

2/7/2007 CSC 256/456 - Spring 2007 19

Additional Issues

When there are several instances of a resource type
cycle detection in wait-for graph is not sufficient.

Deadlock detection is very similar to the safety check in
the Banker’s algorithm

just replace the maximum needs with the current requests

2/7/2007 CSC 256/456 - Spring 2007 20

Recovery from Deadlock
Recovery through preemption

take a resource from some other process
depends on nature of the resource

Recovery through rollback
checkpoint a process state periodically
rollback a process to its checkpoint state if it is found
deadlocked

Recovery through killing processes
kill one or more of the processes in the deadlock cycle
the other processes get its resources

In which order should we choose process to kill?

Operating Systems 2/7/2007

CSC 256/456 - Spring 2007 6

2/7/2007 CSC 256/456 - Spring 2007 21

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

