
Operating Systems 4/9/2007

CSC 256/456 - Spring 2007 1

4/9/2007 CSC 256/456 - Spring 2007 1

Concurrent Online Servers

CS 256/456

Dept. of Computer Science, University of Rochester

4/9/2007 CSC 256/456 - Spring 2007 2

Concurrent Online Servers

Servers that
accept concurrent requests (potentially high concurrency)
serve online users (interactive responses)

Examples
Web server: online server that implements HTTP
More complex ones: search engines (Google), online auction sites
(eBay), discussion forums (slashdot), … …

We examine supporting concurrent online servers
application level issues (with a good understanding of the OS)
OS issues

4/9/2007 CSC 256/456 - Spring 2007 3

Issues of Concerns
Performance

potentially high concurrency
fluctuating load

Reliability

Isolation
performance isolation
fault isolation

Security
concerning network-oriented services

Manageability

4/9/2007 CSC 256/456 - Spring 2007 4

Multi-processing vs. Multi-threading
Multi-processing server

each request is served by a 
process (Apache).

Multi-threading server
each request is served by a 
thread.

Compare multi-processing 
server with multi-threading 
server

efficiency
robustness/isolation

Pooling can be used to reduce 
the overhead on process/thread 
creation and termination

external requests

listening 
thread/proc

worker threads/processes



Operating Systems 4/9/2007

CSC 256/456 - Spring 2007 2

4/9/2007 CSC 256/456 - Spring 2007 5

Controlling the Concurrency

Overhead of high 
concurrency

more frequent context 
switches?
or what?

e.g., scalability of the 
select() system call

How to control the 
execution concurrency?

dropping requests
employ a request buffer 
queue

external requests

listening thread
or process

worker threads/processes

request buffer 
queue

4/9/2007 CSC 256/456 - Spring 2007 6

User-level Threads
Kernel threads

thread management/scheduling done by the OS kernel
User threads

thread management/scheduling done at user-level
Benefits: (lightweight) less context switching overhead

Problem of user threads
oblivious to kernel events, transparent to the kernel
e.g., all threads in a process are put to wait when only one of 
them blocks on I/O (e.g., read())

How to solve this problem?

4/9/2007 CSC 256/456 - Spring 2007 7

How to solve the blocking problem for 
user threads?

For each potential blocking operation (e.g., read())
the server forwards it to a *helper* process (either spawned 
or pooled); the server then does something else … …
when the blocking operation in the helper process completes, 
the server is informed through IPC … …

OS support for asynchronous I/O
server doesn’t call blocking operations (e.g., read()) directly
instead, it calls asynchronous I/O operations (e.g., 
aio_read()), which doesn’t block
the server is notified by a signal (e.g., SIGIO) when the 
asynchronous I/O completes
an I/O handler is invoked at the receipt of the signal

4/9/2007 CSC 256/456 - Spring 2007 8

Event-driven Servers
Event-driven servers

divide request processing into stages, each of which is non-
blocking
each stage is triggered by an event
the whole event controller runs in a single user thread

Flash Web server [Pai et al, USENIX1999]

Event dispatcher (select system call)

read request 
from network

read file 
headers

read the 
actual file

send data to
network



Operating Systems 4/9/2007

CSC 256/456 - Spring 2007 3

4/9/2007 CSC 256/456 - Spring 2007 9

Resource Management

Scheduling or request execution
according to default CPU scheduling policy

Staged request scheduling
Each request execution is partitioned into stages (like in 
event-driven servers)
Request scheduling according to

which stage each request execution is at; and
whether the primary required resource is scarce or not.

SEDA [Welsh et al., SOSP 2001]
Capriccio [von Behren et al., SOSP 2003]

4/9/2007 CSC 256/456 - Spring 2007 10

Handle Server Overload
Overhead of server 
overload:

some requests have to be 
abandoned
when a request has to be 
abandoned, resources 
already consumed by this 
request is wasted
principle: when abandoning 
a request, do so as early as 
possible

Managing overload?
drop requests if the buffer 
queue is already very long

incoming request rate

success rate
good overload
management

bad overload
management

4/9/2007 CSC 256/456 - Spring 2007 11

OS Overhead for Each Request

Sockets

TCP/UDP

IP

Interface queue

Network interface

Application processes

Hardware interrupt:

Software interrupt:

Application access:

4/9/2007 CSC 256/456 - Spring 2007 12

Lazy Receiver Processing 
[Druschel&Banga OSDI1996]

Sockets

TCP/UDP

IP
Per-socket

Interface queue

Network interface

Application processes

Hardware interrupt:

Application access:


