
Operating Systems 4/11/2007

CSC 256/456 - Spring 2007 1

4/11/2007 CSC 256/456 - Spring 2007 1

More on Server System
Management

CS 256/456

Dept. of Computer Science, University of Rochester

4/11/2007 CSC 256/456 - Spring 2007 2

Server System Management

Multi-processing vs. multi-threading
overhead vs. fault isolation

User threads
blocking problem for servers using user threads

Event-driven servers
all user-level management, no synchronization overhead

Overhead with high concurrency
more context switches?
memory (or buffer space) contention, additional management
overhead

Server overload
if requests have to be abandoned, abandon them ASAP

4/11/2007 CSC 256/456 - Spring 2007 3

Isolation in Server Systems

Isolation of request execution in
resource accounting
fault protection
resource provisioning
system configuration

Challenges
what is the existing OS principal for resource accounting and
fault isolation?
challenge #1: process/thread does not complete encapsulate a
request execution
challenge #2: lack of mechanisms for isolation in resource
provisioning, fault protection, and system configuration

4/11/2007 CSC 256/456 - Spring 2007 4

Request-granularity Resource Accounting

Problems:
request processing over
multiple thread/process
thread/process pooling
resource accounting for
interrupt handlers

Database server
thread

Request
arrival

Web server
thread

Request
completion

Time

Time

Arrival of
another request

Request execution
encapsulation in OS:

Resource containers
[Banga et al., OSDI 1999]
Magpie [Barham et al.,
OSDI 2004]
Request tracking using
message tagging

Operating Systems 4/11/2007

CSC 256/456 - Spring 2007 2

4/11/2007 CSC 256/456 - Spring 2007 5

Isolation Using Virtual Machines

Virtual machines (VMware, Xen) allow
strong fault isolation
isolation in resource provisioning
customized system configuration

Proportional CPU scheduling
virtual time-based
lottery scheduling [Waldspurger&Weihl, OSDI1994]

Issue
excessive overhead when there are many virtual machines

Coarse-grain isolation in service hosting centers
Light-weight virtual machines

Denali [Witaker et al., OSDI2002]

4/11/2007 CSC 256/456 - Spring 2007 6

Background for Data-intensive Servers

Performance of most CPU-bound workloads has exceeded
what is needed

throughput of a Web server when all data is in memory?

Server performance when the data size far exceeds the
available memory

caching is not very effective in this case.
throughput of a Web server when all data resides on disk?

4/11/2007 CSC 256/456 - Spring 2007 7

Problem Description

The problem:
frequent I/O switching (disk seeks) under concurrent requests

1 4 16 64 256 1024
0%

20%

40%

60%

80%

100%

Number of concurrent request handlers

Performance on default Linux 2.4.20

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

index searching
Apache web servers

4/11/2007 CSC 256/456 - Spring 2007 8

Improving the I/O Efficiency
Anticipatory scheduling [Iyer & Druschel, SOSP 2001]

when an I/O request completes, the scheduler will wait a bit
(despite there is other work to do), in anticipation that a
new request from the same process (typically with good
locality) will be issued.
there is a timeout associated with this wait, and the disk
scheduler would go ahead to schedule another request if no
such new request appears before timeout.

Anticipatory scheduling is ineffective when:
each individual process performs interleaving I/O.

there is a lack of process context [Jones et al., USENIX2006]

a stream

a stream

a run a run

a runa run

Operating Systems 4/11/2007

CSC 256/456 - Spring 2007 3

4/11/2007 CSC 256/456 - Spring 2007 9

Aggressive Prefetching
Aggressive prefetching: another way to reduce the
I/O switching frequency
Pitfalls of over-aggressive prefetching

kernel-level prefetching may retrieve unneeded data
magnified by aggressive prefetching

increasing memory contention
magnified by high server concurrency

Must balance I/O efficiency with these pitfalls

Linux 2.4 read-ahead for sequential access stream
3, 7, 13, 25, 32, 32, 32, 32 pages, … …

4/11/2007 CSC 256/456 - Spring 2007 10

Competitive Prefetching
The problem:

we do not know exactly how much data is needed by the
application ahead of time.
balance the efficiency of large-granularity I/O and the
overhead of retrieving unneeded data

Competitive prefetching [Li et al., EuroSys2007]
when the prefetching size is equal to the amount of data
that can be transferred within a single seek/rotation time,
the total disk consumption is at most twice that of the
optimal offline strategy
provides a worst-case performance bound
competitive prefetching size in practice

average seek time 6.3ms; average rotation delay 3ms; average
transfer rate 53.7MB/sec

4/11/2007 CSC 256/456 - Spring 2007 11

Increased Memory Contention
Prefetching-incurred page thrashing

aggressive prefetching creates higher memory contention
magnified by high execution concurrency in online servers
pathology: a prefetched page may be evicted before being
accessed

4/11/2007 CSC 256/456 - Spring 2007 12

Managing Prefetching Memory
Prefetch memory

memory pages that were prefetched but not yet accessed

Which page should we evict when there is memory
pressure?

access history/frequency-based policies (e.g., LRU or LFU)
make no sense since no pages in the pool have even been
accessed
LRU according to access history on prefetching streams
instead of on pages [Li&Shen, FAST2005]

1. Pages whose owner request handler has exited
2. Last page from the longest prefetch stream
3. Last page from the least recently accessed prefetch stream

