
Operating Systems 4/16/2007

CSC 256/456 - Spring 2007 1

4/16/2007 CSC 256/456 - Spring 2007 1

Linux

CS 256/456

Dept. of Computer Science, University of Rochester

4/16/2007 CSC 256/456 - Spring 2007 2

History
Linux is a modern, open-source operating system that is
mostly POSIX-compliant.

First developed as a small but self-contained kernel in
1991 by Linus Torvalds, with the major design goal of
UNIX compatibility.

Collaboration by many users all around the world,
corresponding almost exclusively over the Internet.

4/16/2007 CSC 256/456 - Spring 2007 3

Linux Kernel/System/Distribution
Kernel

the OS code that runs on privileged mode
System

essential system components, but runs in user mode
compilers, system libraries

Linux distribution
extra system-installation and management utilities
precompiled and ready-to-install tools & packages
popular distributions: Redhat/Fedora, Debian, SuSE, Caldera, …

Linux kernel and loadable kernel modules

compilers and
system libraries

system management
programs

user
utilities

user-level application programs

4/16/2007 CSC 256/456 - Spring 2007 4

Processes and Threads
Linux uses the same internal representation for processes
and threads; a thread is simply a new process that happens
to share the same address space as its parent.

getpid() semantics?

A distinction is only made when a new thread is created by
the clone system call.

a process is a task with its own entirely new context
(including address space)
a thread is a task with its own identity, but not an dedicated
address space

The clone system call allows fine-grained control over
exactly what is shared between two threads.

open files, memory space, page tables

Operating Systems 4/16/2007

CSC 256/456 - Spring 2007 2

4/16/2007 CSC 256/456 - Spring 2007 5

Linux Task Scheduling
Linux uses two task-scheduling classes:

time-sharing and real-time

A prioritized, epoch-based algorithm for time-sharing
Each task has a static credit (default=20) and a dynamic
quantum
Scheduling is prioritized based on quantum at the beginning
of each epoch; each tasks runs its quantum length of time
The initial process quantum at its first epoch is credit.
An epoch ends when no runnable tasks have any quantum; new
quantum is calculated for new epoch

This quantum crediting system automatically prioritizes
interactive or I/O-bound tasks.

priority
2

quantum remaining epoch newin quantum initial +=

4/16/2007 CSC 256/456 - Spring 2007 6

Linux Task Scheduling: O(1) Scheduler
Linux O(1) scheduler

the scheduling overhead is constant, which is independent of the
number of processes in the system

Main operations in Linux scheduler
schedule(), epoch transition

Using two priority arrays
one for active array, one for those whole quantum has been used
up (called “expired”)
array index indicates the priority (multiple tasks with the
same priority chained in a link list pointed from the array
index

O(1) scheduling
fixed number of priorities (bit search instruction like BSFL to
speed up).

O(1) epoch transition
swap active and expired arrays.

4/16/2007 CSC 256/456 - Spring 2007 7

Interrupt Handling
Interrupt handling is usually atomic

new interrupts are disabled during the handling of an old
interrupt, why?

Linux’s kernel allows long interrupt service routines to run
without having interrupts disabled for too long.

Interrupt service routines are separated into a top half
(urgent) and a bottom half (not so urgent).

The top half runs with interrupts disabled.
The bottom half is run later, with interrupts enabled.
Bottom halves run one by one (they do not interrupt each
other).

4/16/2007 CSC 256/456 - Spring 2007 8

Interrupt Protection Levels

Each level may be interrupted by code
running at a higher level, but will never be
interrupted by code running at the same or a
lower level.

top-half interrupt handlers

bottom-half interrupt handlers

user-mode programs and system calls

Operating Systems 4/16/2007

CSC 256/456 - Spring 2007 3

4/16/2007 CSC 256/456 - Spring 2007 9

Managing Physical Memory
Keep track of free memory?
Linux page allocator can allocate ranges of physically-
contiguous pages on request.
The allocator uses a buddy-heap algorithm to keep track of
available physically-contiguous memory regions.

A free region list is maintained for each region size: 4KB, 8KB,
16KB, 32KB, … …
A large region can be split into multiple smaller regions if
necessary

4/16/2007 CSC 256/456 - Spring 2007 10

Memory Page Replacement

All memory pages are managed together
stack/heap/code, …
file system buffer cache

Memory pages are managed in two LRU lists: active list
and inactive list

each LRU list is managed using a CLOCK (second-chance)
LRU approximation
pages evicted from the active list go to the inactive list;
pages evicted from the inactive list are out of the system
pages in the inactive list may be promoted to the active list
under certain circumstance

4/16/2007 CSC 256/456 - Spring 2007 11

Ext2fs File System
Disks are divided into contiguous block groups

the hope is that there is not much seeking within each
block group
there is a section for inodes in each block group
the FS tries to keep inodes and corresponding file blocks
in the same block group

Ext2fs tries to place logically adjacent blocks of a file
into physically adjacent blocks on disk

with the help of the free block bitmap

Ext3fs supporting file system journaling

4/16/2007 CSC 256/456 - Spring 2007 12

The Linux /proc File System
The proc file system does not store data, rather, its
contents are computed on demand according to user file
I/O requests.

When data is read from one of these files, proc collects the
appropriate information, formats it into text form and places
it into the requesting process’s read buffer.

/proc is not a unique feature on Linux

Operating Systems 4/16/2007

CSC 256/456 - Spring 2007 4

4/16/2007 CSC 256/456 - Spring 2007 13

Prefetching and I/O Scheduling

File prefetching/read-ahead
prefetching sequentially when the I/O access is considered
as sequential
how to detect sequential pattern?

Disk I/O scheduling
an elevator-style seek-reduction scheduling
non-work conserving scheduling: anticipatory scheduling
deadline to prevent starvation

4/16/2007 CSC 256/456 - Spring 2007 14

Robustness and Dependability
Modern operating systems are complex and potentially
contain bugs

Linux is not an exception – including memory errors,
synchronization errors (races, deadlocks, …), etc.

A study [Chou et al. sosp2001] finds that:
device drives are 3-7 times more error-prone
average bugs live for 1.8 years
errors cluster significantly

4/16/2007 CSC 256/456 - Spring 2007 15

Disclaimer

Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

