
- Directly executing VM code to attain high speed
- CPU virtualization
 - VM monitor catches timer interrupts and switches VM if necessary
- I/O access virtualization
 - cause a trap to VM monitor, which processes appropriately
 extra overhead is not too bad
- Memory virtualization
 - a trap at each memory access is not a very good idea
 How?

 Memory Virtualization Under Direct Execution (protected page table) From the VM OS's view, the page table contains mapping from virtual to VM physical addresses For proper operation, the page table hooked up with MMU must map virtual to real machine addresses 		
 VM OS cannot directly access the page table each page table read is trapped by VM monitor, the physical address field is translated (from real machine address to VM physical address) each page table write is also trapped, for a reverse translation and for security checking 		
5/2/2007	CSC 256/456 - Spring 2007	8

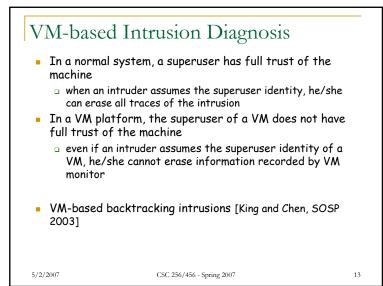
5/2/2007

7

Virtual Machine Transparency Full transparency (perfect virtualization): stock OS (without change) can run within VM VMware Less-than-full transparency (para-virtualization): modified OS runs within VM Xen for performance (memory virtualization) batched page table accesses through explicit monitor calls for simplicity (I/O virtualization)

VMware Memory Management [Waldspurger OSDI 2002]

- Transparent VM memory need estimation
 Working set estimation through sampling
- Transparent VM memory size adjustment
 Ballooning
- Discover and share pages of the same content over multiple VMs.
 - $\hfill\square$ discover: compare hash coding of pages.
 - share: copy-on-write.
- How often do pages have the same content?


5/2/2007

11

Live Migration Migrating a VM from one physical machine to another minimal freeze time

Migration approaches

- $\hfill \square$ stop the VM; move the VM state to the new machine; start it
- stop the VM on the old machine; set up the skeleton on the new machine (all, or most, page table entries invalid) and then start it
- keep the VM running on the old machine; move state over on the background; then repeatedly move dirty state until it is small; stop the VM on the old machine; move the final dirty state; start it on the new machine [Clark et al. NSDI 2005]

.