Concurrency Management

1

Kai Shen

Dept. of Computer Science, University of Rochester

= Compare multi-processing server

= Pooling can be used to reduce the

Multi-processing vs. Multi-threading

Multi-processing server external requests

= each request is served by a
process (Apache).

= Multi-threading server

= each request is served by a
thread.

with multi-threading server
= efficiency
= robustness/isolation

overhead on process/thread
creation and termination

1/22/2008 URCS 573 - Spring 2008 2

User-level Threads

= Kernel threads

= thread management/scheduling done by the OS kernel
= User threads

= thread management/scheduling done at user-level

= Benefits: (lightweight) less context switching overhead

= Problem of user threads
= oblivious fo kernel events, transparent to the kernel

= e.g., all threads in a process are put to wait when only one of them
blocks on I/0 (e.g., read())

= How to solve this problem?
= helper (kernel) threads
= asynchronous I/0

1/22/2008 URCS 573 - Spring 2008

Event-driven Servers

= Event-driven servers
= divide request processing into stages, each of which is non-blocking
= each stage is triggered by an event
= the whole event controller runs in a single user thread

read request read file read the send data to
from network headers actual file network

]] ! i

Event disbatcher (select sysfem call) ‘
= Flash Web server [Pai et al., USENIX1999]

1/22/2008 URCS 573 - Spring 2008 4

i Request Scheduling

= Scheduling or request execution
= normal multi-tasking (a task is a process/thread or a request)

= Staged resource-aware request scheduling
= Each request execution is partitioned into stages (like in event-
driven servers)
= Request scheduling according to
= which stage each request execution is at; and
= whether the primary required resource is scarce or not.

= SEDA [Welsh et al., SOSP 2001]
= Capriccio [von Behren et al., SOSP 2003]

1/22/2008 URCS 573 - Spring 2008

!-L Problem with High Concurrency

= With a multi-threaded server, what problem
do you first encounter when increasing the
concurrency?

= not enough stack space when there are too
many threads

= With compiler analysis, can we bound the
stack usage of each thread?
= yes if there is no recursion

= Linked stack management

= add checkpoint code to dynamically switch to
1223808 stack chunks URCS 573 - Spring 2008

i Overhead with High Concurrency

= Overhead of high concurrency
= more frequent context switches?
= Or what?

= scalability of the select() system call [Banga et al.,
USENIX1998]

CPU cost of select()

Open connections

1/22/2008 URCS 573 - Spring 2008

Overhead with High Load Network

i Server

= With gigabit Ethernet:
= 125,000,000 bytes per second for
1,500bytes/frame = 12us per frame
= if an interrupt handler consumes 3us CPU,
then 25% CPU processing on interrupt
handling

= Soft timers [Aron and Druschel, SOSP1999]

= NIC buffers frames; only interrupt after
multiple frames arrive

= CPU does a coarse-granularity polling
1/22/2008 URCS 573 - Spring 2008

Control the Concurrency

external requests

N

= How to control the
execution concurrency?

= employ a request buffer
queue

1/22/2008 URCS 573 - Spring 2008 9

Handle Server Overload

= Overhead of server
overload: success rate
= some requests have to be
abandoned
= when a request has to be
abandoned, resources already
consumed by this request is
wasted
= principle: when abandoning a
request, do so as early as
possible

good overload
management

bad overload
management

incoming request rate

= Managing overload?

= drop requests if the buffer
queue is already very long

1/22/2008 URCS 573 - Spring 2008 10

OS Overhead for Each Request

O Application processes
Application access:

Sockets
) TCP/UDP \
Software interrupt:
\ P |
E\‘ Interface queue
Hardware interrupt: Z |
\

Network interface

1/22/2008 URCS 573 - Spring 2008 11

Lazy Receiver Processing
[Druschel&Banga OSDI1996]

O Application processes
Application access:

‘]g\\L E Sockets

TCP/UDP \
\ P |
Per-socket \E' E‘
Interface queue '/\
|
Network interface

Hardware interrupt:

1/22/2008 URCS 573 - Spring 2008 12

