
Kai Shen 1/22/2008

URCS 573 - Spring 2008 1

Concurrency ManagementConcurrency Management

Kai Shen

Dept. of Computer Science, University of Rochester

1/22/2008 URCS 573 - Spring 2008 2

Multi-processing vs. Multi-threading

Multi-processing server
each request is served by a 
process (Apache).

Multi-threading server
each request is served by a 
thread.

Compare multi-processing server 
with multi-threading server

efficiency
robustness/isolation

Pooling can be used to reduce the 
overhead on process/thread 
creation and termination

external requests

listening 
thread/proc

worker threads/processes

1/22/2008 URCS 573 - Spring 2008 3

User-level Threads

Kernel threads
thread management/scheduling done by the OS kernel

User threads
thread management/scheduling done at user-level
Benefits: (lightweight) less context switching overhead

Problem of user threads
oblivious to kernel events, transparent to the kernel
e.g., all threads in a process are put to wait when only one of them 
blocks on I/O (e.g., read())

How to solve this problem?
helper (kernel) threads
asynchronous I/O

1/22/2008 URCS 573 - Spring 2008 4

Event-driven Servers

Event-driven servers
divide request processing into stages, each of which is non-blocking
each stage is triggered by an event
the whole event controller runs in a single user thread

Flash Web server [Pai et al., USENIX1999]

Event dispatcher (select system call)

read request 
from network

read file 
headers

read the 
actual file

send data to
network



Kai Shen 1/22/2008

URCS 573 - Spring 2008 2

1/22/2008 URCS 573 - Spring 2008 5

Request Scheduling

Scheduling or request execution
normal multi-tasking (a task is a process/thread or a request)

Staged resource-aware request scheduling 
Each request execution is partitioned into stages (like in event-
driven servers)
Request scheduling according to

which stage each request execution is at; and
whether the primary required resource is scarce or not.

SEDA [Welsh et al., SOSP 2001]
Capriccio [von Behren et al., SOSP 2003]

1/22/2008 URCS 573 - Spring 2008 6

Problem with High Concurrency

With a multi-threaded server, what problem 
do you first encounter when increasing the 
concurrency?

not enough stack space when there are too 
many threads

With compiler analysis, can we bound the 
stack usage of each thread?

yes if there is no recursion
Linked stack management

add checkpoint code to dynamically switch to 
new stack chunks

1/22/2008 URCS 573 - Spring 2008 7

Overhead with High Concurrency

Overhead of high concurrency
more frequent context switches?

Or what?
scalability of the select() system call [Banga et al., 
USENIX1998]

Open connections

CP
U

 c
os

t 
of

 s
el

ec
t(

)

1/22/2008 URCS 573 - Spring 2008 8

Overhead with High Load Network 
Server

With gigabit Ethernet:
125,000,000 bytes per second for 
1,500bytes/frame ⇒ 12us per frame
if an interrupt handler consumes 3us CPU, 
then 25% CPU processing on interrupt 
handling

Soft timers [Aron and Druschel, SOSP1999]
NIC buffers frames; only interrupt after 
multiple frames arrive
CPU does a coarse-granularity polling



Kai Shen 1/22/2008

URCS 573 - Spring 2008 3

1/22/2008 URCS 573 - Spring 2008 9

Control the Concurrency

How to control the 
execution concurrency?

employ a request buffer 
queue

external requests

listening thread
or process

worker threads/processes

request buffer 
queue

1/22/2008 URCS 573 - Spring 2008 10

Handle Server Overload

Overhead of server 
overload:

some requests have to be 
abandoned
when a request has to be 
abandoned, resources already 
consumed by this request is 
wasted
principle: when abandoning a 
request, do so as early as 
possible

Managing overload?
drop requests if the buffer 
queue is already very long

incoming request rate

success rate
good overload
management

bad overload
management

1/22/2008 URCS 573 - Spring 2008 11

OS Overhead for Each Request

Sockets

TCP/UDP

IP

Interface queue

Network interface

Application processes

Hardware interrupt:

Software interrupt:

Application access:

1/22/2008 URCS 573 - Spring 2008 12

Lazy Receiver Processing 
[Druschel&Banga OSDI1996]

Sockets

TCP/UDP

IP
Per-socket

Interface queue

Network interface

Application processes

Hardware interrupt:

Application access:


