
Kai Shen 4/29/2008

URCS 573 - Spring 2008 1

Operating System Operating System
Performance AnomaliesPerformance Anomalies

Kai Shen

Dept. of Computer Science, University of Rochester

4/29/2008 URCS 573 - Spring 2008 2

What is Performance Anomaly?

Performance falls below expectation
What is the right expectation?

Poor performance that cannot be explained by high-level
design features and intuitions
Often due to implementation deviations from high-level
design

unintentional deviations that are obviously wrong (bugs)
intentional deviations that address practical issues that
escaped high-level design

4/29/2008 URCS 573 - Spring 2008 3

Performance Anomaly Identification

How do you identify a performance anomaly?
Given two executions A and R: If A delivers much worse performance
than R (against “expectation”), then you call A an anomaly in relation
to R the reference.

A concrete example:
Anomaly – Linux 2.6.23
Reference – Linux 2.6.10

2.6.3 2.6.10 2.6.19 2.6.23
0

0.5

1

1.5

Linux kernel versions

N
or

m
al

iz
ed

 I/
O

 th
ro

ug
hp

ut

System version evolution

4/29/2008 URCS 573 - Spring 2008 4

Expectation

Unsaid expectation:
A newer system version should not significantly degrade the

performance.
Learning the expectation:

Constructing the probability distribution on the performance change
due to Linux version upgrade.

-1.0 0.0 1.0
0

0.05

0.1

0.15

0.2

Change: (new-old)/max

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

Throughput change distribution

Kai Shen 4/29/2008

URCS 573 - Spring 2008 2

4/29/2008 URCS 573 - Spring 2008 5

Reference-Driven Performance Expectation

Help identify an anomaly by observing an “unexpected”
performance degradation from a reference.
Single-parameter relative model:

provide expected performance difference between two
executions that only differ on one condition parameter.
preceding example – a relative model on OS version.

A complex system has many exec. condition parameters:
configurable parameters and workload properties

system configuration:
I/O scheduling policy

system configuration:
memory caching policy

workload property:
data access pattern

4/29/2008 URCS 573 - Spring 2008 6

Case Study: Linux I/O Subsystem

System configurations:
File system prefetching depth
I/O scheduler: noop, deadline, anticipatory

Workload parameters:
I/O concurrency
Access pattern: e.g., sequential/random
inter-I/O compute time

4/29/2008 URCS 573 - Spring 2008 7

Anomaly Cause #1

In Linux 2.6.10 and earlier:
anomaly: high-concurrency I/O sometimes delivers extremely
low performance
disk is marked as “congested” when the device queue has 113
requests or more
when the disk queue is “congested”, prefetching is cancelled
however, prefetching sometimes include synchronously
requested data, which is resubmitted as single-page I/O

In Linux 2.6.11 and above:
only cancel asynchronous prefetching when disk is
“congested”
anomaly: medium-concurrency I/O sometimes delivers much
worse performance than high-concurrency I/O

4/29/2008 URCS 573 - Spring 2008 8

Anomaly Cause #2

Anticipatory I/O scheduler

/* max time we may wait to anticipate a read (default around 6ms) */
#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)

/* Kai Shen: the above is problematic given that HZ defaults to 250
for 2.6.23 kernel */

Kai Shen 4/29/2008

URCS 573 - Spring 2008 3

4/29/2008 URCS 573 - Spring 2008 9

Anomaly Cause #3

Anticipatory I/O scheduler

Sometimes anticipatory scheduler allows multiple
outstanding device-level I/O requests

splitting of large I/O requests
asynchronous prefetching and synchronous I/O from one
process

anticipation timer is started after the first disk request
returns

incorrect because there are still outstanding requests

