496 6 Initial-Value Problems

A center is one of the borderline cases not marked on the main diagram of
Fig. 6.7. It lies on the axis above zero. Physically it corresponds to an undamped
spring that oscillates freely. That is a very special case, but in the applications it is
extremely important. It represents periodic motion, and it is always present when
AT = — A—since skew-symmetric matrices have pure imaginary eigenvalues, and
that is the requirement for a center.

Another marginal case lies on the parabola where the eigenvalues are equal. The
two possibilities are in the figure below and in the exercises. If 4 is a multiple of the
identity we have a star; otherwise it is an improper node.
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Fig. 6.10. Stability types at the region boundaries.

Stability for Nonlinear Systems

The equations in this section will not be linear; they will be linearized. They start
in the form v’ = F(u). We continue to work with two equations in two unknowns,

and a typical example is

uy = auy — buyu,

&)

Uy = ci Uy — du,.

That is an important equation in population dynamics, where u, represents the
population of the prey and u, is the population of the predator. Because of the
quadratic term u u,, which is bad for the prey and good for the predator, the
equation is nonlinear and an exact solution is not to be expected.

Our goal is not quantitative but qualitative—to get a clear idea of u(t). All
constants a,b,c,d are positive, and so are the initial conditions. Left alone, the prey
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6.2 Stability and the Phase Plane and Chaos

would increase (¥} = au,) and the predators would decrease (), = — du,). The

number of meetings between them is proportional to u,u,, and each meeting gives

the predator a chance to recoup. The model is similar to ' =au— bu® of

Section 6.1, which had only one population—competing with itself. Here we have

two populations, competing with each other according to «| = F, and u} = F,.
The approach to linearized stability is straightforward:

1. Look for critical points u* where F(u*)=0

OF,/du, 8F1/8L¢2:l .

. h i =
2. Compute the matrix A4 [6F2/6u1 oF, Jou,

3. Decide the stability or instability of A from its eigenvalues.

A critical point is also a stagnation point; since u' = F(u*) = 0 the solution does not
move. It rests at equilibrium. The constant u = u* satisfies the differential equation
and the orbit of that solution is a single point. The question is whether nearby
solutions come in toward u* (stability), circle around it (neutral stability), or leave it
(instability). Except for the neutral case, which is always more delicate, that can be
decided by linearizing the equation around u*. We are looking at the equation
locally, through a microscope that keeps the linear terms in u — u* and throws
away quadratic and higher terms. If u leaves u* we cannot tell where it goes.
The predator-prey example has two points where F(u*) = 0:

if au; =buyu, and cuyu,=du, then

. d a
either uy=u,=0 or wu;=-,u,= 5
c

The derivatives of the two components of F go into A:
A=[a—~bu2 ~bul]
cUy cuy—d

At the critical point 4 = u¥ = 0, this matrix is

a 0
A= .
[0 ~d}
The eigenvalues a and —d have opposite signs, so (0,0) is a saddle point. It is

unstable. From a small start the prey increases because a > 0; we leave the origin.
At the other point u} = d/c, u¥ = a/b, the matrix is

[0 —bde
A_[ca/b 0 :]
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The trace is zero and the determinant is ad. This critical point is a center. The
eigenvalues are +i,/ad and —i,/ad. If the problem had been genuinely linear, not
linearized, its solutions would oscillate with cos . /ad ¢ and sin . /ad t.

Remark  The oscillation is now around u*, not around the origin. The expansion
F(u)= F(u*)+ A(u — u*) + --- starts with F(u*) =0, so the equation can be written
(u—u*)y = A(u —u*)+ ---. Linearization throws away the three dots. You see why
only critical points are tested, since at other points the leading term is some
nonzero value F(u*) and the solution goes steadily along. It is like minimization;
we are not interested unless the derivative is zero.

The center point u} =d/c, uf = a/b is the key to the predator-prey equation.
Even though nonlinear, the problem has periodic solutions. There is a cycle in
which the prey grows, the predator takes over, and then they both drop back to
their starting values. The solution repeats, and in the next pages we show how to
draw this periodic orbit (Fig. 6.13a below) in the “phase plane.” First we summarize
the analysis of linearized stability:

This linearization extends to n equations and an n by n matrix A. But the phase
plane will be special to n =2, where curves have no room to escape. If one curve
spirals, so must all the curves inside it—and the analysis is much more complete.
Only the case of a center is not settled by linearization.

EXAMPLE The damped pendulum 6" + ¢ +sin 6 =0

The extra term cf’ removes energy. Of course nonlinearity comes from sin 8. Prior
to linearizing we write this equatior as a first-order system u' = F (u):

Reducing a second-order equation 0" = G(6,0) to a first-order system: Let
u; = 0 be the first unknown and introduce the “velocity” u, = 6’ as a second
unknown. Then the first equation is u} = u, and the second is u, = G(uy,uy).
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6.2 Stability and the Phase Plane and Chaos 499

For the equation of a damped pendulum, this produces

Uy =,
@

uy = —sin u; — cu,.

The right side is F(u). Its critical points and their stability come from the
linearization steps 1-3:

(1) We solve F(u*) = 0. In the first component u% =0. Then sin uf =0 and u*
can be any multiple of n. There is an infinite row of critical points u* = (0,0),( + 7,0),
(£2m,0), .... At even multiples of r the pendulum hangs down and at odd multiples
it is stationary at the top.

(2) The derivative matrix (the Jacobian matrix oF /0u) is

de OF /ou, OF,/du, _ 0 1
" | 0Fy/0u; OF,/ou, | —cosu, —c |

At uF =0 the cosine is 1. At uf = tmitis —1. The matrix has one form for even
multiples of # and another for odd multiples:

0 1 0 1
A_[~1 —c] or A~[1 _C]

(3) The trace of both matrices is —c. This is the diagonal sum, equal to the sum
Ay + A, of the eigenvalues. We are on the left side of the stability diagram in Fig. 6.7
if the damping constant c is positive.

The second matrix has determinant —1, giving a saddle point. All stationary
points with the pendulum at the top are unstable. The first matrix has determinant
+1, and the pendulum hanging down is stable. The exact type of stability depends
on (trace)® — 4(det), which is ¢? — 4:

c?>4: A stable node, below the parabola (overdamping)
c?=4: A stable improper node, on the parabola

¢* <4: A stable spiral, above the parabola (underdamping)
¢ =0: A neutrally stable center (no damping)

¢ =0 gives the equation 0" + sin # = 0 of the last section, with steady oscillations.
The energy was

10 + 1 —cos § = E = constant.

Now we want to draw this curve (which is closed) and the curves with damping
(which are not closed) in the plane of 6 and @'. That is the celebrated phase plane.
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The Phase Plane

In the phase plane we lose track of time. Like the orbit of a planet, the path is
drawn without recording the time when it passes each point. However we have
much more than just a path in space; it is a path in phase space, where the velocity is
another coordinate. For one planet in 3-dimensional space the phase space is
6-dimensional, for N planets it is 6N-dimensional, and for a 2 by 2 system it is'a
plane. Note that we could recover the time, if necessary, when the velocity is part of
the picture; for a more general u; — u, plane, time is really lost. Note also that the
equation ' = F(u) is autonomous; F does not depend directly on ¢ and the critical
points u* do not change with time. Those are the stagnation points at which
F(u*) =0, and linearization gives a local picture around each of them. The object of
the phase plane is to achieve a global picture of the motion.

The picture is easy when the energy is constant. For the undamped pendulum it
was E=1(0)?+1—cos0, and the paths in the phase plane are the curves
E = constant (Fig. 6.11). If the solution starts on a curve it stays on that curve. You
recognize the saddle points at odd multiples of n. Those are stationary but
unstable, at the top of the pendulum where u' =0 and cos § = — 1. The energy is
exactly E = 2. Smaller energies give the closed curves around the centers. Those are
the ordinary back and forth oscillations, around the neutral equilibrium at the
bottom. In the 6§ — & plane they are closed curves on which energy passes between
kinetic and potential. A closed curve is a periodic motion.

Fig. 6.11. The curves E = constant for 6" + sin § = 0: no damping,

For energies E > 2 the pendulum goes over the top. The curves continue on to
+2n and never return to 6 = 0. Those are the upper and lower curves in Fig. 6.11,
on which the velocity & is never zero. In that case the largest potential energy is 2
and some kinetic energy always remains. Note that where £ is positive, above the
horizontal axis, the arrows point to increasing 0.
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6.2 Stability and the Phase Plane and Chaos 501

Phase plane for the damped pendulum: 0" + c@’ + sin 6 = 0

If we multiply by 0"two terms can still be integrated but not the third:
d 17012 2
5[7(9) +1—cos 0] = —c(6)2 )

The energy is no longer constant. In fact the energy is decreasing since the right side
is negative. This changes the picture in the § — ' plane to curves that spiral in to
equilibrium.

Fig. 6.12. Spiral points and stable equilibria: damped pendulum.

The initial conditions pick out a point on this plane—a starting value of § and 6.
As t increases, the points 6(t), §'(t) trace out a curve in the figure. When the initial
condition is near equilibrium, the curve spirals immediately toward a focal point.
In the physical plane, the pendulum goes back and forth but with less and less
energy. That is the normal behavior. But if the initial velocity is large enough, then
even with damping the pendulum makes it over the top. It is on one of the upper
curves which reach 6 =2z or even 0= 4n before spiralling to equilibrium. The
lower curves do the same at a point = — 2n%, when their energy is exhausted.
There are no centers.

When the damping is greater, ¢? >4, the picture changes again and the
stationary points are nodes. Instead of going back and forth the pendulum swings
back no more than once (Exercise 6.2.10). The spirals disappear and the curves go
directly to equilibrium,

We want to discuss the “phase portraits” of three other problems. The first two
can be drawn, but not the last. It comes from one of the basic unsolved problems of
differential equations; please don’t miss it.
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Periods, Limit Cycles, and Strange Attractors
1. The predator-prey problem. The two equations were
Wy =au, —buu, and uy=cuyu, —du,.

The first step is to find a single equation in the u; —u, plane. Roughly speaking,
time is eliminated by using the chain rule:

dlﬁ duy dt duy/dt cuqut, — du, ©)

du,  dt du,  du,/dt  aug —bugu,

This equation tells where the unknowns go but not when. It describes the orbits in
the phase plane. At u; = d/c the numerator is zero, the slope is zero, and the curve is
horizontal. At u, = a/b the denominator is zero, the slope is infinite, and the curve
is vertical. In between we can solve equation (6) by separating u; from uy:

duy _ (cuy —djuy or du, <_‘f._b> =du, <C_.i>

;l;; "~ (a—buy)u, U, U,

Integration gives a log u, — bu, = cu; — d log uy + constant. That takes some effort
to plot carefully, but it is roughly an ellipse (Fig. 6.13a). The curve is closed and the
predator-prey populations are cyclic. The initial values give a point in the u; —u,
plane and the populations follow the curve from that point. In this model they
return to their initial values and start again—a phenomenon that is not easy to see

in experiment.

0/
Uy
1
Cyc . K\/(—)/ 9
U,
predator uy — prey u, convergence to limit cycle

Fig. 6.13. Phase planes for predator-prey and van der Pol (¢ =1).

2. van der Pol’s equation 0" + c(6* — 1)’ + 6 = 0. This describes dampe‘d oscill-
ations, but it is not certain that the damping is positive. That changes with the
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factor 6% — 1. For small 0 the damping is negative and the amplitude grows. For
large 6 the damping is positive and the solution decays. This may sound periodic
but itis not. When the solution leaves a very small or very large value, it has no way
to get back. Instead all orbits spiral toward a limit cycle which is the unique
periodic solution to van der Pol’s equation.

This illustrates how qualitative information comes from the phase plane:

If there is a region R without critical points and a solution whose orbit stays in
R, then either it is periodic or it spirals toward a closed curve (periodic
solution) in the phase plane.

That is the Poincaré-Bendixson theorem, only possible for a plane. Van der Pol’s
equation cannot be solved exactly for u = (0,0"), whether time is left in or removed:

Wy = u, du, c(l —ud)u, —u, o

0
Wy =c(l — ubu, —uy du, u,

However we can check that there are no critical points away from (0,0) and that
orbits stay in a ring R. Therefore they*approach a limit cycle.

3. Erratic oscillations from steady forcing. Suppose we combine two things that
have been studied separately: nonlinear- oscillations and a periodic force f(z).
Remember that linear oscillations had a natural frequency, and the force had a
driving frequency. Nonlinear oscillations are different. The natural frequency
depends on the amplitude, which is constantly changed by the force. For example:

(1) You push a nonlinear swing: 8" + sin 8 = 4 cos wt

(2) You bounce an elastic basketball by moving your hand up and down at a
fixed frequency (it doesn’t work too well)

(3) You send a small satellite into the periodic force field between twin stars.

In reality a satellite enters the solar system, but the N-body problem is unsolved
and twin stars are easier. We know that two bodies in the x-y plane oscillate
periodically around their center of mass. If they are the same size and a satellite
arrives on the z-axis, it will stay on that axis—acted on symmetrically (and
periodically) by gravity. Here is an amazing fact about its motion:

If you prescribe any sequence of years, there is'a satellite that crosses the x—y
plane in exactly those years.

If the sequence is finite, the satellite escapes afterwards to infinity. If the crossings
grow further apart, its oscillations are unbounded. If the years are equally spaced,
the satellite can be periodic. This is all true when the orbits of the stars are near
circles.

The nonlinear pendulum is similar; it can go over the top in any prescribed
sequence of periods. The basketball has a crazy motion, especially when the hand




