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Abstract—Timing side channels have been used to extract
cryptographic keys and sensitive documents even from trusted
enclaves. Specifically, cache side channels created by reuse of
shared code or data in the memory hierarchy have been exploited
by several known attacks, e.g., evict+reload for recovering an
RSA key and Spectre variants for leaking speculatively loaded
data.

In this paper, we present TimeCache, a cache design that
incorporates knowledge of prior cache line access to eliminate
cache side channels due to reuse of shared software (code and
data). Our goal is to retain the benefits of a shared cache of
allowing each process access to the entire cache and of cache
occupancy by a single copy of shared software. We achieve our
goal by implementing per-process cache line visibility so that the
processes do not benefit from cached data brought in by another
process until they have incurred a corresponding miss penalty.
Our design achieves low overhead by using a novel combination
of timestamps and a hardware design to allow efficient parallel
comparisons of the timestamps. The solution works at all the
cache levels without the need to limit the number of security
domains, and defends against an attacker process running on
the same core, on a another hyperthread, or on another core.

Our implementation in the gem5 simulator demonstrates that
the system is able to defend against RSA key extraction. We
evaluate performance using SPEC2006 and PARSEC and observe
the overhead of TimeCache to be 1.13% on average. Delay due
to first access misses adds the majority of the overhead, with the
security context bookkeeping incurred at the time of a context
switch contributing 0.02% of the 1.13%.

I. INTRODUCTION

Shared memory resources expose timing side channels that
can reveal information even in the presence of security mea-
sures such as process isolation and enclave separation. Cache
side channels leveraging shared memory have been shown
capable of extracting cryptographic keys, sensitive documents,
and data even from cryptographically secured enclaves [6].
Several classes of cache side channel attacks and defenses
have been developed in the literature [24].

In this paper, we focus on cache side channels created by
the reuse of shared software (code and data) in the memory hi-
erarchy. Shared software is an essential component to keeping
system costs low. For instance, shared libraries (code) are an
important optimization in modern computing systems to help
keep the memory footprint low. Likewise, services providing
access to large data stores result in data being shared across un-
trusted client requests. Access to the shared code or data leaves

a footprint in the memory hierarchy, which has been exploited
by several known attacks [49] [11] [23] [46] [9] [6] [18].

A typical cache side channel attack when sharing software
involves evicting the shared data (e.g., code from a shared
library) from the cache hierarchy and re-accessing it after the
victim’s execution (using evict+reload or flush+reload [46]).
A fast re-access is indicative of an access to the shared
location by the victim. If the shared library access is indexed
by a secret data, the attacker can infer the victim’s secret.
This attack model is used in attacks to leak cryptographic
keys [46], in Spectre I, Spectre II [18], NetSpectre [33], in
cross-tenant attacks to leak data in clouds providing Platform-
as-a-service [49], and in discovering key strokes [38].

There is another class of cache side channel attacks that do
not require shared memory and is not the focus of this work.
These attacks are referred to as contention or conflict-based
side channel attacks. Contention attacks are mitigated using
randomizing caches as in CEASER [27], CEASER-S [28],
and ScatterCache [13], or using very efficient multiple hashing
techniques like RPCache [40]. However, these techniques are
unable to prevent reuse attacks in shared memory. TimeCache
can work in conjunction with these techniques to provide a
holistic defense.

Reuse attacks on shared memory are more precise and
a handy tool for constructing more sophisticated attacks.
They are less noisy and are a preferred covert channel for
leaking speculatively loaded data [5], [18], [37]. Preventing
reuse attacks on shared memory will not only make the
attacker’s work difficult but also allow system providers to
deploy deduplication or copy-on-write sharing (e.g., unix-
style process fork operations or Docker-style containers) for
increased performance and reduced space utilization. Dedupli-
cation evaluation in the literature shows that its use can reduce
memory needs by a factor of 2-4x [15], [34] and increase
performance by up to 40% [34].

Existing solutions for reuse attacks partition the cache [7],
[17], [26], [39], [40] or implement constant time algo-
rithms [20], [30], [31], both resulting in increased latency.
Partitioning has been seen to be associated with higher over-
heads due to both reduction in the effective cache size for
individual processes, and due to potential aliasing of the
shared memory in the cache, depending on the system design.



Partitioning techniques also might have restrictions on the
number of supported security domains [17], [40]. For instance,
DAWG [17] supports only 16 security domains at a time. Some
other solutions protect accesses only to the LLC [22], [44].

In this work, we design and evaluate a low-overhead
hardware-software solution to defend against reuse attacks.
Our goal is to retain the benefits of a shared cache of allowing
each process access to the entire cache and of cache occupancy
by a single copy of shared software. We protect every level
of cache without limiting the number of supported security
domains.

TimeCache creates a “per-process view” of cache occupancy
by delaying (treating as a miss) the first access by any process
to a resident (i.e., a cache hit) cache line. Delaying the first
access gives each process timing isolation from other processes
when sharing data by giving every process the impression
that data is brought into the cache by its own access. This
approach breaks the fundamental premise of a reuse attack
using shared software. The reduction in performance due to
the delay can be considered elemental to the design of a secure
cache while avoiding a potential O(n) space consumption
for n processes sharing data in a partitioned cache. Delay
is incurred only when data is evicted and reloaded, so that
the performance of steady-state in-cache sharing is unaffected.
As a consequence of this defense, systems can choose to
deploy memory deduplication techniques to reduce memory
footprint [1], [15] without the fear of creating an avenue for
cache side channels through a shared software stack.

We implement our defense using a novel combination of
timestamps and a hardware design to allow efficient parallel
comparisons of the timestamps, coupled with per-cache-line
access bits and software support at context switches. In
software, a process’s caching context is saved along with the
“context-switch” timestamp when it is context switched out.
Hardware-implemented bit-serial comparison logic allows fast
parallel timestamp comparisons for the context being restored
and is used to update the stale caching context being restored.

The security and performance of TimeCache on the gem5
simulator [4] demonstrates its effectiveness against attacks
using microbenchmarks and an RSA attack. Our defense
is able to prevent the classic RSA attack used to demon-
strate flush+reload attacks. Performance evaluation using
SPEC2006 and PARSEC shows an average overhead of 1.13%
and 0.8%, most of which is due to delayed accesses from
shared software. The overhead due to the security context
bookkeeping at context switches adds about 0.024%.

The key contributions made by the paper include:
• Preventing reuse attacks on shared software while al-

lowing access to the entire cache by each process and
maintaining a single cached copy of the shared software.

• Disallowing the first access by a process to a cache line
from experiencing a cache hit when the cache line has
been brought into the cache by a different process.

• Proposing a timestamp-based solution to creating a per-
process view of cache line occupancy across context
switches to prevent reuse attacks.

• Developing a fast bit-serial timestamp-parallel compar-
ison logic to compare timestamps for all cache lines
simultaneously.

• Using a simulation-based evaluation to demonstrate that
our proposed solution prevents real-world attacks and
analyzing the potential overheads of timing isolation.

II. BACKGROUND

A. Cache Side Channels

Information leaked as a result of shared cache utilization is
collectively referred to as cache side channels. Mechanisms
to exploit cache side channels were first exposed as early as
in 1992 [12], and different classes of attacks relying on cache
access timing have been developed since then.

Two types of information leak are possible depending on
whether or not there is shared software between the attacker
and the victim. With no shared software between the attacker
and the victim, the attacker can only learn the cache set
accessed by the victim using a “Prime+Probe” [25] style
of attack, commonly referred to as contention-based attack.
In the presence of shared software, an attacker can learn
the line accessed by the victim using an “evict+reload” or
“flush+reload” style attack [10], [46]. Figure 1 depicts both
the attacks. Defenses against “prime+probe” attacks such as
caches using randomized placement [27] [21] are not effective
against “evict+reload” or “flush+reload” style attacks. The
latter is a low-noise, high-bandwidth, and more efficient form
of attack. This work addresses this second style of attacks.

Fig. 1: Reuse and contention attacks
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B. Shared Software Attacks

Shared libraries have commonly used subroutines, which
can be mapped directly into a process’s user-level address
space. The same physical memory may be mapped into
different processes’ virtual address spaces. Shared libraries
help reduce memory footprint and improve memory hierar-
chy efficiency. However, they create the potential for leaked
memory access patterns through cache side channels, whether
due to access to the shared code or to shared data.

Side channels exist due to shared hardware and software,
and improve in precision in the presence of shared software.
Side channels using shared software were earlier assumed to
affect only cryptographic routines. The advent of more recent
attacks have shown that they are a handy gadget for more



sophisticated attacks like Spectre [18], [19], [33]. They are
also capable of leaking keystrokes from another process [38],
leaking passwords in cloud environments such as an Amazon
EC2 server, and leaking data across Virtual Machines [49].

C. Prior Solutions

There have been a number of defenses around cache side
channels but the strict performance requirement of caching
structures has remained a challenge. One class of defenses
mitigate only contention-based attacks (e.g., randomizing
caches [27], [28], [41], SHARP [44], RPCache [40]). Defenses
that include reuse attacks either resort to cache partitioning [7],
[17], [40] or implement constant time algorithms [20], [30],
[31]. Partitioning defends against both reuse and contention
attacks but reduces the effective cache available for each
process execution, effectively reducing performance. Constant
time algorithms, likewise, incur a significant performance
penalty [20], [30], [31]. Some defenses restrict the number of
possible security domains [17], [40]. Others work only for the
last-level cache [24], [29]. FTM [29] uses directory presence
bits at the last-level cache to detect first accesses, requiring un-
trusted processes to be spatially isolated on separate physical
cores.

In terms of detecting the presence of side channels, hard-
ware description languages that check for information flow in
the hardware specification [47] help to detect the existence of
side channels and help specify security labels in the proces-
sor for building side-channel-resistant processors. Likewise,
Checkmate uses relational model finding to detect the presence
of side channels in processor specification [36].

III. THREAT MODEL

The threat model under consideration has a separate attacker
and victim process sharing some software stack in addition
to sharing caches. They could be running simultaneously on
the same (hyperthreaded) or different cores, or interleaved in
time, and the attack can be conducted from any level of the
cache. Figure 2 shows a reuse attack when accessing the shared
software stack in a cache shared between attacker and victim.
The attack has the following sequence:

1) The attacker and victim share software and a hardware
cache. The access to the shared software is dependent
on or is indexed using the victim’s secret data.

Fig. 2: Reuse attack in cache

Shared HW Cache

Shared SW lib/Database

evict 
sh_data[x1,.,.,.xn]

access 
sh_data[secret]

read miss sh_data[x1]
read miss sh_data[x2]
read hit sh_data[x3]

secret = x3 !!

. 
. 

. 
. 

. 
.. 

. 
. 

2) The attacker evicts a shared location from the cache
hierarchy.

3) It then waits for the victim’s execution.
4) The attacker subsequently reloads the same shared lo-

cation and determines that the shared location was also
accessed by the victim if it hits in the cache, determined
by timing the access.

This attack model is self-sufficient in the sense that it has
been demonstrated to be capable of leaking RSA keys when
using the GnuPG shared library [11], [46]. It is also a low-
noise, high-bandwidth tool for building more sophisticated
attacks like Spectre-I & II [18], SpectreRSB [19], and Net-
spectre [33]. It is a preferred covert channel for these more
recent attacks for leaking shared library access patterns. Other
contention-based covert channels could also be used for a
similar purpose but are not as precise and hence would make
the attack more difficult.

IV. PER-PROCESS CACHING CONTEXT

TimeCache eliminates reuse-based cache timing side chan-
nels by implementing techniques to allow per-process cache
line visibility of a shared cache line. Unlike partitioning-based
approaches, TimeCache does not use isolation in space; rather,
TimeCache ensures that accesses to a shared cache line by
different processes are isolated in timing. This allows different
processes to share access to the same cache line without
revealing to one another if the cache line was made available
in the cache by another process. Compared to solutions that
rely on cache partitioning (example, Intel’s cache allocation
technology [22] in [7]), this approach does not restrict the
size of usable cache for any process. It is also applicable to
any level of the cache hierarchy from L1 to LLC.

A. First Access

A process’s first access refers to the first time it accesses
a resident cache line that was brought into the cache by
another process. A resident cache line can experience as many
first access misses as the number of processes accessing it
(minus one for the initial cache line fill). If a cache line is
evicted and later brought back into the cache by a process, all
other processes accessing the cache line at a later time will
experience a first access miss.

The importance of the first access lies in the construct of
the attack. If the attacker times its first access after evicting
a data from the cache hierarchy and is able to detect a cache
hit, the attacker is able to infer the victim’s memory access
patterns. Beyond the first access, a fast access or a cache
hit does not provide any clue about the data access pattern
of another process. Using this key observation, TimeCache
enables space sharing (avoids partitioning) by enforcing misses
on first access to provide timing isolation.

In the baseline cache design, processes experience delays in
access due to cold, capacity, conflict, and coherence misses,
whether due to its own actions or due to those of other
processes. Critically, it may also experience hits in the cache
due to data brought in because of another process’s access. It



is this latter timing side channel that TimeCache targets. In
TimeCache, we create a new kind of miss: a first access miss.

B. Distinguishing First Accesses

TimeCache is based on the observation that the attack under
consideration exploits the caching benefits due to another
process. Hence, we propose to identify when a process first
accesses a resident cache line and to treat the access as a miss.
By treating this first access as a miss (essentially incurring the
delay of a miss), an attacker will be unable to infer another
process’s memory access patterns via cache residency.

Whether a cache line has already been accessed by the
currently executing context is represented by a per-hardware-
context security bit (s-bit). When a cache line is brought into
the cache on a miss, the s-bit for the loading context is set and
the s-bits for all other hardware contexts are reset. On a cache
hit, the s-bit of the accessing context is checked. When the s-
bit is set, the access is allowed to proceed as a hit. Otherwise,
the access is recognized as a first access, treated as a miss, and
the context’s s-bit is set so that the future accesses can proceed
as a hit (see Figure 4(b)). First access misses are handled by
sending the request down the memory hierarchy but not filling
the cache with the received data, as the data in the cache is
the most recent copy. This mechanism is implemented at every
level of cache in the memory hierarchy.

C. Handling Context Switches

s-bits represent the caching context (footprint) of a hardware
execution context and are specific to the process executing in
the context. At the time of a context switch, s-bits must be
carefully managed in order to ensure that they are neither stale
nor contain information on the caching context of a different
process.

TimeCache ensures timing isolation at the time of a context
switch using a combination of software and hardware. In
order to retain caching behavior across context switches and
still provide timing isolation, software saves the s-bits for
the process being preempted, along with current time as its
“context-switch” timestamp (Ts). Software also restores the
s-bits for the process being scheduled (saved from the last
time the process executed), to the cache in the corresponding
hardware context where the process is set to resume execution.

Hardware ensures that the stale restored s-bits (reflecting the
state of the cache when the process last executed) are updated
to reflect the current cache content. The s-bit for a cache line
that has been filled after time Ts must be reset, detected by
maintaining (and comparing Ts against) Tc, the time at which
the cache line was last filled.

The s-bit save and restore can be performed by any trusted
computing base library at the time of context switch. In our
design, we allow the operating system to save and restore
the process-specific s-bits. The ability to save, restore, and
update the caching context allows TimeCache to enjoy fast
access as long as the data is not evicted from the cache. Our
design leverages locality across context switches while pro-
viding timing isolation, something that cannot be achieved by

simply flushing the cache on a context switch. The mechanism
described here may be designed as a processor feature that can
be turned off if the processes are trusted and reuse-based cache
attacks are not a concern.

V. TIMECACHE: DESIGN AND IMPLEMENTATION

Figure 3 provides an overview of the hardware modifica-
tions, depicted for a cache consisting of 8 cache lines accessed
by two hardware contexts. The hardware support added to a
conventional cache is as follows:

• A per cache line, per hardware context, security bit (s-
bit).

• A per cache line timestamp Tc to indicate the time at
which the line was filled (became resident).

• A bit-serial, timestamp-parallel comparison logic with
transpose gate and bitline peripherals, to compare times-
tamps efficiently.

• A shift register to hold Ts, the timestamp indicating the
time when a process that is about to resume execution
due to a context switch, last executed.

The following subsections describe the implementation de-
tails of each hardware modification and the software support
required for the defense.

A. First Access Delay Mechanism

On a traditional cache access, the requested data is returned
to the processor if a tag and state lookup succeeds. Otherwise,
the access incurs a miss and the request is passed on to the
next level in the memory hierarchy. With our cache design,
the s-bit for the cache line is checked in addition to the state
and tag bits. An access is considered a hit only if in addition
to the above, the s-bit of the cache line is set, in which case
data is returned to the processor from the cache.

The flowchart in Figure 4 represents the actions taken by
TimeCache to maintain timing isolation for a process during

Fig. 3: TimeCache hardware, depicted for a cache with 8 lines
accessed by a core with 2 hardware contexts

Processor Core

T1 T2

RqRsp

Tc0

Tc1

Tc2

Tc3

Tc4

Tc5

Tc6

Tc7

T2 s-bits

T1 s-bits

Bit line peripheralTs

T
ranspose

 G
ate

TimeStamp 
Comparator

Cache
Comparator SRAM Array

b ~b

a~a

reset

…..
SA SA

S R
Q ~Q

S R
Q ~Q



Fig. 4: Maintaining timing isolation: per-process flowchart
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process creation, execution, and preemption/resumption at the
time of a context switch. Software saves and restores the s-
bits for a process executing on a hardware context to/from
memory at the time of a context switch. Additionally, software
maintains Ts for each process, which is the time the process
was most recently preempted. A newly created process has
both Ts and s-bits reset when it is scheduled for the first time.

Per cache line s-bits are modified by the following actions:
• Restored from memory for the hardware context on which

a process is scheduled/resumed.
• Reset by the timestamp comparison logic for the hard-

ware context on which a process is being scheduled/re-
sumed.

• Reset when a cache line is evicted or invalidated.
• Set for the requesting hardware context when a cache line

is filled; reset on all other hardware contexts.
• Set for the requesting hardware context after a first access

to a resident cache line.
A reset s-bit on a cache hit indicates that the current process

has not accessed the cache line. If the s-bit is reset, the
response to the processor is delayed by sending the request
down the memory hierarchy. Once the response is received,
the received data is discarded, and the data in the cache line
is forwarded to the processor. The s-bit is set to ensure that
future accesses to the cache line by the process do not result
in additional traffic and are treated without additional delay.

The rationale behind sending a request down the memory
hierarchy even when the data is available in the cache is to
make the first access see a response latency equivalent to the
variable access latency it would have incurred on a miss. It is

possible that a context’s s-bit is reset in a higher-level (closer
to the processor) cache but set in a lower-level cache due
to its larger capacity. Sending a request down the memory
hierarchy ensures that if the requested data is available in a
lower-level cache and has the s-bit set, the request is serviced
with the lower cache response latency. The data received in
the response is, however, discarded, as the cache has the most
recent copy of the data.

When a cache line is evicted or invalidated, all s-bits are
reset. When a cache line is filled, the s-bit for the hardware
context loading the line is set; the s-bits for all other hardware
contexts sharing the cache remain reset.

On a context switch, hardware compares Tc for each cache
line against Ts (loaded into a special register by software) for
the process context being resumed; the s-bits for lines that
have Tc greater than Ts are reset for the hardware context on
which the process is being resumed in order to enforce delayed
first access.

The s-bits save and restore is done only at context switch
time. All memory accesses thereafter proceed with an addi-
tional 1 bit lookup in parallel with the cache tag lookup. If
the s-bit is not set, the access results in a miss. This is unlike
conventional caches, where a response is sent back to the
processor if the data is cached.

B. Per-Process s-bits Copy and Update

The s-bits are saved and restored on a context switch to
preserve caching benefits across context switches. If the s-bits
were not saved and instead reset on every context switch, this
would be equivalent to flushing the cache on every context
switch, which can impact performance heavily [7].

The number of 64-byte (cache line size) memory accesses
required to save or restore s-bits is dependent on the cache
size. A small 64KB L1 cache requires only 2 64-byte memory
accesses, while a larger 8MB L3 cache requires 256 64-byte
memory accesses.

Restored s-bits cannot be used as is since they are stale
and need to be updated based on any changes in the cache.
If a cache line is evicted while a process is preempted, its
corresponding saved s-bit in memory will not be up-to-date. To
update the s-bits for cache lines that might have been evicted,
invalidated, or reloaded when the process was preempted, we
use the Ts timestamp. Ts indicates the last time the s-bits
were brought up-to-date, so any cache lines loaded after that
time would not have been accessed by the process. When a
process resumes execution, its restored Ts is compared with
the Tc of every cache line in parallel, and the s-bits for all
cache lines with Tc greater than Ts are reset. Timestamp
comparisons are triggered only at the time of a context switch
and prior to resuming a process. Subsequent accesses need
no comparison since the s-bits now contain the necessary
information. Comparing timestamps serially for all cache lines
at the time of a context switch can consume a significant
number of cycles. We discuss the comparison of Tc and Ts, and
the mechanism for updating large arrays of s-bits in constant



Fig. 5: Transpose SRAM array for timestamps
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time (proportional to the number of Tc bits) in the following
subsection.

C. Bit-Serial, Timestamp-Parallel Comparison of Timestamps

A regular data access from cache is bit-parallel, i.e, all
the bits in a cache line, along with the line’s tag, timestamp,
and hardware-context-specific s-bit, may be accessed at the
same time. Accessing cache SRAM arrays in bit-parallel
fashion implies that the time required to perform timestamp
comparisons would be proportional to the number of cache
lines. In order to perform parallel comparisons of cache line
timestamps (Tc) and Ts, we store the per cache line Tc
timestamps along with the cache line’s s-bits in an SRAM
array in a transposed fashion, similar to that proposed in the
neural cache work [8]. The result is computation performed in
a bit-serial [3] and word-parallel (timestamp-parallel) manner.

1) Transpose Interface: The transpose memory unit [8]
uses 8-T bit cells and two sets of sense amps and drivers
to access data in both regular and transposed modes. While
access times will be higher compared to a 6-T SRAM cell,
accesses can be made in parallel with the much larger cache
data arrays. Figure 5 shows the timestamp array and compari-
son logic, constructed with the 8-T multi-access SRAM cells.
The ‘transpose interface’ is used for the regular operation of
the cache, which is when timestamps are updated and s-bits
of other contexts are reset, or an s-bit needs to be looked
up or set. The ‘regular’ bit-line peripheral interface is used
for s-bit saves and restores, as well as for parallel timestamp
comparisons and s-bit resets.

After the process-specific s-bits are loaded into the SRAM
array in the s-bits for the corresponding hardware context,
they need to be updated with the information about the cache
lines that have been evicted while the process was preempted.
This is done by comparing the Tc and the restored Ts.
The transposed timestamps allow a bit-serial and timestamp-
parallel comparison, taking time linear in the number of bits
in the timestamp (32 in our experiments). The impact of
timestamp rollover is discussed in Section VI-C. The logic
required for the timestamp comparisons and reset of s-bits is
shown in Figure 6.

Fig. 6: Bit-line peripheral
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2) Bit-Serial Comparison Logic: Bit-serial computation
allows us to simplify the comparison logic. The greater of
two unsigned integers can be determined by comparing their
bits sequentially starting from the MSB (most significant bit):
one of the two numbers can be declared as larger when the
first bit that differs is encountered: the larger number will have
the bit set in its binary representation where the other number
has the bit set to 0. We codify the above algorithm in the
following scheme iterating from the MSB:

• If the bit position under consideration has a 1 for only
one of the two numbers, that number can be marked as
greater and the comparison is complete. This behavior
can be checked by performing an xor of the two bits.

• If the bit position under consideration has a 0 for both
the numbers, the next bit position is considered.

• If the bit position under consideration has a 1 for both
the numbers, the next bit position is considered.

For instance, the greater of the two numbers ‘1100’ and
‘0101’ can be determined as the first number ‘1100’ by looking
at the MSB.

Ts is loaded into a shift register. For each of 32 iterations
(the size of our Tc timestamp), the Tc timestamps are read
from the SRAM array 1 bit at a time using the ‘regular’ bit-
serial peripheral interface, at the same time as the shift register
is shifted left to feed the comparison logic.

• If Tc[i] is 0 and Ts[i] is 1, Tc < Ts, the s-bits need not
be updated and the comparison should stop. We latch this
output and use it to ignore further bit comparisons.

• If Tc[i] is 1 and Ts[i] is 0, Tc > Ts, i.e., the cache line
is newer than the Ts. The bit-line peripheral latches a ‘1’
and the latch output is used as the reset for the s-bit.

Figure 6 shows the peripheral circuit attached to each SRAM
bitline. It requires 2 SR latches, which are reset prior to
initiating the timestamp comparisons, and 1 3-input and gate,
and 1 2-input and gate for the comparison operation, with the
Tc bit being fed to ‘b’ and the Ts bit to ‘a’.

The comparison should stop if Tc is determined to be
smaller than Ts, which is the result of the and gate on the
right. To ignore further bit comparison, the result is latched
using an S-R latch, and Q is fed to the and gate on the left.



At the end of the 32 iterations, if it is determined that Tc >
Ts, as latched in the left-hand S-R latch, the bitline drivers
for which the S-R latch has been set, and the wordline for the
s-bit corresponding to the hardware context, are enabled, to
write a 0 into the s-bits.

VI. EVALUATION

We implemented TimeCache in the gem5 cycle-accurate
simulator [4] using L1I and L1D caches of 32KB each and
an L2 (LLC) cache of 2MB. We added a timestamp and
a per-hardware-context s-bit to each cache line, which are
manipulated as described in Section IV. The process context
for a request packet in the cache is determined by the CR3
register within the simulator. Changes in the CR3 register are
used to trigger the timestamp comparisons and the s-bit saves
and restores.

Table I specifies the real and simulation system parameters
used for the evaluation.

TABLE I: Evaluation setup

Real Processor
Core i7-7700, 3304.125

L1D, L1I, L2, LLC cache 32K, 32K, 256K, 8192K
gem5 Simulator

Core TimingSimpleCPU, 2GHz
L1D, L1I, LLC cache 32K, 32K, 2048K

The following subsections present an analysis and evalu-
ation of the security and the performance overheads of our
timestamp-based defense on the gem5 simulator.

A. Security Analysis

The attack depends on a fast reload due to another process.
The attack can be broken if no process is allowed a cache hit
due to another process. If the first access by a process to an
existing cache line is never a cache hit, the attacker remains
oblivious of the data being cached beforehand and cannot learn
if some shared data was accessed by another process. The
second access is of no significance to the attacker. Allowing
unaltered access beyond the first access is sufficient to ensure
security while not significantly compromising performance. A
reuse attack in TimeCache is prevented as follows:

• Attacker evicts a shared location
• Attacker waits for the victim process to execute, resulting

in shared data being cached
• Attacker accesses the shared data but does not experience

a cache hit due to the victim’s caching
The additional information tracked for the defense includes
timestamps and the s-bits, which is saved and restored by
trusted software, and protected from unprivileged access.

1) Microbenchmark functionality evaluation: In order to
confirm the correct operation of the timestamp-based ap-
proach, we created a microbenchmark attack consisting of a
pair of child and parent processes accessing a shared memory-
mapped array of size equal to 256 cache lines. The parent
process acts as the attacker, i.e., flushes the shared array and
yields the processor. The victim’s execution follows, where

it writes a value repeatedly to the shared array. The parent
process then wakes up and performs timed reads of the entire
array. A hit is considered a successful attack. The attacker
does not see any hit with our defense simulation enabled in
gem5.

if parent
flush shrd_mem;
sleep;
read shrd_mem; // cache hit

else
read shrd_mem;

2) Attacking RSA: We use the flush+reload technique
to attack the GnuPG version of RSA, as described in the orig-
inal paper [46]. The attack was tested both on real hardware
and the gem5 simulator, both running Linux. The attacker is
an independent program, sharing the same machine and hence
the caches.

On a real machine, we install a non-stripped GnuPG library
and locate the offsets for the Square, Multiply, and Reduce
functions. The shared library has the encryption algorithm
for exponentiation, which performs a sequence of Square-
Reduce-Multiply-Reduce for processing a key bit value 1 and a
sequence of Square-Reduce when processing a clear bit. RSA
encryption is an example where the control flow through the
shared library is indexed using secret information, i.e., in this
case, bit values from the secret key.

In the original attack, the attacker flushes the cache and
then accesses the memory location for the Square, Multiply,
and Reduce functions in a loop, using the time to process a
1 or 0 bit coupled with whether or not accesses hit in the
cache to extract information about the key being used. In our
evaluation, we simplify the attack and assume a cache hit in
the attacker process represents a successful attack.

We calculate the time required for a cached and uncached
access on the experimental real machine and set that as
the threshold for the cache hit. The attacker program is
an independent program running a loop to flush and read
memory. Reading the timestamps must be fenced/ordered with
respect to the memory access being timed to avoid speculative
loads. The attack goes through, i.e., the independent attacker
program gets hits for its accesses as a simultaneously running
victim process performs an encryption. We are able to launch
the attack both on a real machine and in gem5 full-system
simulation mode.

Our defense in gem5 disallows any cache hit in the attacker
process since the attacker’s timed access is preceded by a flush.
The defense allows a cache hit in a process only if it has
suffered a cache miss for its first access. Since the access
after the flush to a cached data is the first access, which is
delayed, the attacker does not perceive a hit. This attack was
the key demonstration for the flush+reload attack and our
defense successfully breaks the attack.

3) S-bits Do Not Introduce Additional Side Channels: The
additional s-bits do not introduce additional side channels for
the following reasons:



• a process executing on a hardware context will not see
s-bits associated with other hardware contexts

• s-bits are saved and restored at a context switch so that
a process will only ever be able to access its own s-bits

• s-bits are saved in process-specific data structures in
software, accessed only at a context switch, and are only
accessible to a trusted computing base

• s-bit saves and restores at a context switch are constant
time operations and therefore do not leak information

B. Performance Evaluation

1) First Access Delay: We evaluate the performance over-
head of our first-access delay mechanism by simulating bench-
marks from SPEC2006 for 1 billion instructions in gem5
using full system simulation mode. We run two instances
of each SPEC2006 benchmark on a single core with and
without TimeCache. Figure 7 presents the normalized exe-
cution time (execution time using TimeCache/execution time
without TimeCache) of each benchmark. When running two
instances of the same benchmark, the number of first accesses
is impacted by sharing benchmark-specific code and shared
libraries in the shared caches while context switching across
these processes. For instance, while running two instances
of h264, the memory shared between the processes includes
benchmark-specific code and the libc routines for file op-
erations like fopen, lseek, memset, and free. In addition to
the above, kernel-space memory is shared across processes
and accesses to kernel subroutines, system calls, and kernel
data structures may incur first access misses when executing
in privileged mode within a process context. We also run a
combination of different benchmarks on a single core, where
the shared access is limited to shared libraries and kernel
space memory. The geometric mean of overheads across all
workloads is 1.13%.

Figure 8 shows first accesses misses per thousand instruc-
tions. The last-level cache is expected to have a greater number
of first access misses compared to the L1 cache, as it is
larger and retains more shared content. The larger first access
MPKI in wrf and perlbench is due to their larger shared
instruction memory footprint. An interesting observation is
that both perlbench and wrf have higher first access MPKI
in the last-level cache when run with the same benchmark.
However, when run together their effective first access misses
are lower because of cache contention. Similarly, lbm and
leslie3d also have lower effective first access misses due to
capacity evictions when sharing the cache with namd and
gobmk.

We further evaluate the overhead due to first access delay
in the last-level cache when running pthread-based PARSEC
benchmarks using 2 threads on 2 separate cores. We do this
using system emulation mode in the simulator, where the clone
syscall is emulated to allocate the new thread to another core.
The geometric mean of the overheads due to TimeCache is
0.8%, as shown in Figure 9a. Since the threads execute on
different cores, L1I and L1D for both cores have no first access
misses, as shown in Figure 9b. In the case of PARSEC, each

thread incurs first access misses for accesses across different
execution contexts at the LLC for both code and data.

The exact overheads and the change in the number of
misses per thousand instructions (MPKI) for the last-level
cache is presented in Table II. The increase in execution time is
proportional to the increase in MPKI, which changes both due
to additional first accesses and due to the change in caching
behavior from incurring first access misses. The increase in
MPKI is small, which explains the low overhead.

TABLE II: SPEC2006 and PARSEC execution time overhead,
2MB LLC MPKI

Workload Overhead MPKI LLC
Baseline

MPKI LLC
TimeCache

2Xspecrand 0.9908 0.0035 0.0238
2Xlbm 1.0039 14.0349 14.138

2Xleslie3d 1.0751 20.6163 24.3556
2Xgobmk 0.9961 3.2832 3.3361

2Xlibquantum 1.0001 5.8532 5.8831
2Xwrf 1.0135 4.7286 4.8964

2Xcalculix 1.0548 0.2099 0.2672
2Xsjeng 0.999 16.7773 16.8382

2Xperlbench 1.0134 1.021 1.1582
2Xastar 1.0107 0.5654 0.6144

2Xh264ref 1.014 0.555 0.5953
2Xmilc 1.0026 16.4722 16.5295

2Xsphinx3 0.9982 0.2648 0.3118
2Xnamd 1.0108 0.1623 0.2181

2Xgromacs 0.9992 0.292 0.3703
leslie+gobmk 0.9996 22.3133 22.3669

namd+lbm 1.0579 6.3764 7.1136
milc+zeusmp 1.0024 12.5757 12.6121

lbm+wrf 1.0007 9.7181 9.7898
h264+sjeng 1.0108 9.0769 9.1915

perl+wrf 1.0143 1.3984 1.4626
cactus+leslie 1.0034 21.2749 21.3736
gobmk+astar 0.9994 1.1053 1.1469

zeusmp+gromacs 1.0035 5.6352 5.5924
average 1.0113 7.2630 7.5077

fluidanimate 1.029 0.1317 0.1583
raytrace 1.0015 0.2833 0.2836

blackscholes 1.0013 0.0466 0.0511
x264 1.0052 0.8264 0.8634

swaptions 1.0025 0.0051 0.0053
facesim 1.0086 3.3585 3.3589
average 1.008 0.1702 0.1808

2) LLC Size Sensitivity Analysis: To analyze the sensitivity
of our design to cache size, we evaluate the performance over-
head with different LLC sizes for the single benchmark/single
core tests (Figure 10). Since the bigger caches are expected
to have lower eviction rates for the same workload, there are
effectively fewer first accesses, resulting in a smaller additional
delay. Hence, we see the performance overhead in bigger
caches to be smaller. Our analysis with 2MB, 4MB, and
8MB LLC sizes shows an average performance overhead of
1.13%, 0.4%, and 0.1%, respectively. With the increasing size
of the last-level cache, the baseline MPKI reduces as the cache
can retain a larger fraction of the working set memory [14],
resulting in fewer first access misses after a context switch.
These numbers indicate that the defense scales well with larger
caches.



Fig. 7: Single-core SPEC2006 performance normalized execution time due to TimeCache’s delayed first accesses (execution
time with TimeCache/execution time without); The average overhead is 1.13% for two instance of same or different benchmarks
on a single core.
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Fig. 8: Delayed access MPKI at each cache level for single-
core experiments
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C. Space Overhead, Timestamp Rollover, and Scaling

The increase in area due to the additional hardware is
primarily due to the separate SRAM array of timestamps and
s-bits, and the comparison logic. This separate SRAM array
uses 8-T rather then 6-T cells and also includes an additional
set of sense-amps and bit-line drivers. The other components
required are the timestamp comparison logic at each bit-line
peripheral, consisting of 2 latches, 2 and gates, and a shift
register to hold Ts.

In our evaluation, we use 32-bit Tc timestamps to keep the
area overhead low. The number of bits used for the timestamp
counter has an impact on the frequency of timestamp rollover
and is a parameter that can be tuned by the chip maker. A
timestamp rollover can result in an additional miss after 232

cycles depending on the Ts of the process. We illustrate the
correctness of operation using 2 decimal digits of precision
for Tc, resulting in a rollover every 100 cycles for the purpose

of illustration.

1) Processes that preempt before and resume after rollover:
The rollover is detected by comparing Ts and time at
resumption (e.g., 98 and 105). Since there can be newer
unaccessed cache lines with rolled over (smaller) Tc
(e.g., 1(03)), we reset all s-bits when rollover is detected
after a process resumes.

2) Processes that are running during a rollover: No action
is needed while the process is running as the s-bits are
up-to-date.

3) Assuming no rollover between Ts and time at resumption
(e.g., 102 and 105): When the process resumes, since
there can be older cache lines with bigger Tc (e.g.,
78), unnecessary resets may occur, but correctness of
operation is maintained.

Thus, cache line timestamp rollover can result in additional
misses but retains correctness of the defense.

An s-bit is required per hardware context that shares the
cache for each cache line. The total number of s-bits can be
significant for the LLC in server-class processors. Coherence
directories have a similar scalability concern with a large
number of cores, as they store availability information for
each core. In order to keep the number of s-bits low, design
principles used for coherence directories could be applied,
for example, limited pointers [2] or a level of indirection as
in SPACE [50]. For example, the limited pointer [2] direc-
tory design work demonstrated empirically that applications
typically share data across a few processors. Since pointers
require log(n) bits (for n hardware contexts), keeping track
of a limited number of sharers would reduce area overhead to
O(log(n)) as opposed to n bits per cache line.



Fig. 9: 2-core, 2-thread PARSEC benchmark normalized execution time (execution time with TimeCache/execution time
without) and per-cache MPKI.

(a) Normalized execution time. Average performance overhead due
to delayed first accesses is 0.8%
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(b) Delayed access MPKI across different cores
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D. S-bits Save and Restore Overhead

When a process is resumed, the s-bits and the Ts that
were saved for the process at the time of preemption must
be restored. The overhead due to copying the s-bits is low for
small cache sizes. The entire s-bit array for an L1 cache of
size 64KB can be copied in 2 64-byte cache-line-size memory
accesses. The overhead scales with the size of the cache.
The copy can take 256 cache-line-size transfers for a last-
level cache of size 8MB. The s-bits can be read and written
in parallel via the ‘regular’ bit-line interface when a save or
restore is required at a context switch. The save and restore
is done to and from a kernel memory region reserved for the
s-bits, to which the process context points.

On an Intel i7-7700 processor operating at 3.6Ghz, the time
to copy s-bits for an 8MB size cache without caching is 2.4
µ s. This is of comparable magnitude to a null context switch
or system call. A typical process time slice varies from 1 ms
to several ms, so the 2.4 µs overhead is at most 0.24% of the
process run-time. An extra layer of buffering in hardware could
allow the copy to be performed in parallel with the execution
of the next process.

The save and restore of s-bits can also be done using a DMA
transfer. We calculate the latency of transferring a buffer size
equivalent to the one required for our simulation system. The
time taken to save and restore a caching context on a Xeon
processor using a single DMA channel is 1.08 µs. We add
this delay to each context switch in our simulation system to
account for the overhead due to the s-bit book keeping.

VII. OTHER ATTACKS ON SHARED SOFTWARE

A. LRU Attack

LRU attacks exploit the cache line replacement policy and
depend on eviction set creation [42]. They do not depend
on shared software but can also be launched using shared
software. The attack proceeds by creating an eviction set w,

and accessing a shared cache line l followed by (w-1) cache
lines of the eviction set. After a time-lapse to allow the victim’s
execution, the attacker accesses the last element in the eviction
set. The access replaces the oldest line, which is 1 of the (w-
1) lines accessed by the attacker if the victim accesses l. This
attack, like the other contention attacks that require an eviction
set, can be prevented using randomizing caches.

B. Coherence Attack

Two types of attacks on shared memory due to the coher-
ence protocol have been identified in the literature [13], [45].
One variant is know as invalidate+transfer, where the attacker
flushes a cache line, resulting in the cache line being flushed
from all the private caches, and experiences a remote cache
access latency on a subsequent load if the victim running on
another processor accessed the same shared memory [13]. The
second variant exploits the difference in the access response
time of Exclusive and Shared cached lines [45].

We can prevent these types of attacks using TimeCache by
waiting for a DRAM response even when the data is available
in some remote cache or Last level Cache when the accessing
context’s s-bit is not set.

C. Flush + Flush

This attack uses the fact that the execution time of the
‘clflush’ instruction depends on whether the data is available
in the cache. The ‘clflush’ instruction aborts early and takes
less time if the data is not cached [9]. If shared memory is
accessed by the victim, the data is cached and rather than
a fast reuse, the attacker can infer this by a second ‘clflush’
taking longer. This form of attack can be prevented by making
‘clflush’ a constant time instruction. One of the ways to do
so is performing a dummy write back when the data is not
cached.



D. Evict + Time

Evict+Time [25] is another contention-based attack, like the
LRU attack, and does not depend on shared software, but
can be launched using shared software. The attacker evicts
cache sets and checks to see if the evictions slow down the
victim. A finer grain version of Evict+Time is possible on
shared memory where the attacker flushes (using ‘clflush’)
a shared cache line and times the victim’s execution. This
attack remains noisy and less practical unless the attacker
communicates with the victim to trigger and time a specific
access.

VIII. RELATED WORK

Existing solutions for protecting against cache side channel
attacks that exploit shared code and data either resort to cache
partitioning or remove timing information from the accesses.
Both approaches incur significant overhead.

A. Cache Partitioning

While partitioning the cache can prevent multiple types of
attacks, it comes at a performance cost due to reduced cache
availability. Statically partitioning caches causes significant
performance deterioration as some parts of the cache become
unavailable to other processes [26], whereas dynamic cache
partitioning can achieve lower overheads by reallocating space
as needed. SecDCP [39] is one such dynamic partitioning
technique, which broadly categorizes applications as either
‘confidential’ or ‘public’ and prevents any information leak-
age from confidential applications to public applications, but
allows information flow in the other direction. Although this
dynamic cache partitioning technique performs better than its
static counterpart, it provides a very coarse-grained security
classification [39]. Another dynamic cache partitioning tech-
nique utilizes page coloring to allocate pages to a secure
domain [35], [48], but may incur significant copy costs for
recoloring. DAWG [17] partitions cache ways, supporting a
maximum of 16 security domains at a time, and has an asso-
ciated performance overhead due to reduced cache availability
of 4-12%. PLCache defends against reuse attack by locking

Fig. 10: Sensitivity analysis of the overhead relative to increas-
ing last-level cache size
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cache lines with process IDs to prevent their eviction by other
processes [40]. It can be seen as a line-wise cache partitioning
and since the locked lines are not available for eviction, there
is a performance degradation of about 12%.

B. Last Level Cache Defense
1) Using Intel CAT-based Partitioning: Both Catalyst [22]

and Apparition [7] have demonstrated the use of Intel’s cache
allocation technology (CAT) to achieve cache partitioning
for mitigating cache side channels. The performance of the
systems depend on their ability to reassign caches to different
applications and keep cache flushes to a minimum. Appari-
tion [7] uses one Class of Service (CLOS) per application and
flushes it across context switches. Catalyst uses pinned pages
to provide a solution suited to cloud service providers. This
defense mechanism is suited to preventing cross-VM attacks
and attacks targeted at the LLC, and is not suited to higher-
level caches. The design further requires manually tagging
pages that should be pinned or need to remain secure.

2) FTM: First Time Miss (FTM) [29] prevents reuse of
data in the LLC that was brought in by another core by
using the directory presence bits. The defense assumes that the
victim and attacker can only share a last-level cache managed
using a directory protocol and must otherwise run on isolated
hardware. Not all usage scenarios would allow hardware
isolation of attacker and victim processes, nor for that matter
might it be possible to identify all attacker processes.

The threat model, and hence the defense mechanisms in
TimeCache, is stronger than that of FTM. We make no
assumptions about resource isolation between attacker and
victim beyond requiring that they use separate address spaces.
We protect against attacks at any level of the cache, including
the shared LLC, by separating and identifying the hardware
context (from a potentially hyperthreaded core) performing
access to code or data. While recognizing a first-time miss
is straightforward in the presence of a directory, and in the
absence of hyperthreading and context switches across protec-
tion boundaries, doing so across context switches in a shared
cache is enabled by our novel bit-serial, timestamp parallel
comparator and our use of time to recognize a first access
across context switches. Our defense is also able to mitigate
cross-process Spectre variants by eliminating the cross-process
and cross-core reuse cache side channel used by Spectre.

C. Removing Time & Constant Time Algorithm
The ability to time data accesses precisely can also be seen

as the cause for side channel exploits. Taking this ability away
from untrusted applications is not sufficient to prevent the
attacks. There are several new techniques to obtain timestamps
in up to microsecond granularity. These methods provide alter-
nate timing primitives or recovery of clock resolution [32] on
systems that obfuscate time by reducing the clock resolution.

Other approaches to mitigating side channels in shared
memory suggest program transformation for constant time im-
plementation [20], [30], [31]. These program transformations
have impractical overhead due to making each critical access
O(n) [30] and are not useful for large shared libraries.



IX. DISCUSSION

Sharing software is an important component of computing
systems for efficiency and consistency. This work eliminates
a channel for the leak of secret data via monitoring a victim’s
access to shared content using shared caches. In the absence
of shared content, shared caches still allow a victim’s access
behavior to be monitored, but the information channel is
far less accurate. In particular, a “Prime+Probe” attack fills
(primes) an entire cache set, and infers the cache set accessed
by the victim, based on whether the attacker’s probe hits or
misses. Proposed defenses for a “Prime+Probe” attack include
a randomizing cache [28] [21]. These defenses do not work
for attacks against shared content, which provides a more
accurate/less noisy channel of information. TimeCache in
conjunction with these defenses can provide a more complete
defense.

Other approaches to defending against more recent attacks
like Spectre either stall execution, or make speculative in-
structions invisible to succeeding load requests [43] [16].
They do not prevent non-speculative cache side channels.
Speculative side channel attacks rely on conventional side
channels for leaking speculatively loaded data to the attacker,
i.e., the data is eventually leaked via a conventional side
channel. By breaking conventional cache attacks, we also
prevent speculative side channel leaks.

X. CONCLUSION

We have designed and evaluated a timestamp-based defense
against timing side channel attacks that rely on reuse of shared
software in caches to learn secret information. TimeCache
works across context switches and prevents attacks from cross-
core, same core, or SMT contexts, and at any level of cache,
without the need for cache partitioning. To perform timestamp
comparisons in parallel, we use an SRAM array that allows
bit-serial, timestamp-parallel comparison with easy transposed
access. We have evaluated the defense against microbench-
mark attack programs and the classic flush+reload attack
using the gem5 simulator. On SPEC2006 and PARSEC, the
performance overhead is 1.13% and 0.8% on average, most of
which is due to delaying first accesses, with copying process-
specific s-bits at context switches adding 0.024%. Our defense
against timing side channels through shared software retains
the benefits of allowing processes to utilize the entire cache
capacity of a shared cache and allows cache and memory
pressure reduction through data deduplication and copy-on-
write sharing.
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