
Discovering Planning Invariants as Anomalies in State Descriptions

Proshanto Mukherji and Lenhart K. Schubert
Department of Computer Science

University of Rochester
Rochester, NY 14627, USA

{mukherji, schubert}@cs.rochester.edu

Abstract

Planning invariants are formulae that are true in every reach-
able state of a planning world. We describe a novel approach
to the problem of discovering such invariants—by analyzing
only a reachable state of the planning domain, and not its op-
erators. Our system works by exploiting perceived patterns
and anomalies in the state description: It hypothesizes that
patterns that are very unlikely to have arisen by chance rep-
resent features of the planning world. We demonstrate that
the number and types of laws we discover are comparable
to those discovered by a system that uses complete operator
descriptions in addition to a state description.

Keywords. domain-independent classical planning, domain
analysis for planning and scheduling, relational data-mining.

Introduction
Planning invariants are formulae that are true in every reach-
able state of a planning world. They are characteristics
of reachable states, and thus can be used to reduce the
size of the search space in planning. A number of stud-
ies (e.g. (Kautz & Selman 1998; Gerevini & Schubert 1998;
Koehler & Hoffmann 2000; Porteous, Sebastia, & Hoffmann
2001)) have demonstrated empirically that the use of certain
classes of invariants can significantly speed up the planning
process. This is true whether the constraints are added man-
ually, as in (Kautz & Selman 1998), or by automated pre-
planners such asDISCOPLAN (Gerevini & Schubert 1998;
2001), Rintanen’s (2000) algorithm, or TIM (Fox & Long
1998; 2000).

Most systems that try to find such invariants automatically
do so by analyzing the operators of the planning world. In
this paper, we take a complementary approach: We discover
invariants by analyzing one or more reachable states of the
system, rather than by examining the operators. Our model
is that of an observer who is “struck” by surprising regular-
ities in the state, and hypothesizes that they represent fea-
tures of the underlying generative system—in other words,
that they are invariants of the planning domain. For instance,
given a state in the Blocks World, she might be struck by the
fact that theclear blocks tend to be those that have nothing
on them, far more often than is likely wereclear andon
unrelated, and thus hypothesize the corresponding invariant.

This approach has the following advantages:

1. It requires less information (only the description of a
reachable state, not the complete operators). It is there-
fore more widely applicable. It may be used even if the
operators are unknown or only partially known.

2. The precise nature of the operator representation is irrel-
evant to our method. Thus it is applicable whatever the
form of the operators; it does not need to be customized
for different operator representations.

3. The system makes no use of theSTRIPSassumption, since
it requires only a state description. Operator-based meth-
ods, on the other hand, rely heavily on this assumption.
If the world can change in ways the operators don’t al-
low, then deduction based on operator preconditions and
effects is unsound. In fact, theSTRIPSassumption is quite
unrealistic; realistic worlds change through other agencies
than that of the planner. Thus our method is more easily
extensible to more realistic planning worlds.

4. Our approach can easily be extended to find “approximate
invariants”—statements that are true in the great majority
of cases, but have a small number of exceptions. Such
invariants could be useful for guiding the search of some
planners. Moreover, in complex, real-world domains, true
invariants might be difficult or impossible to find.

5. Lastly, operator-based methods tend to use declarative
bias to guide their search through the space of possible
invariants. For instanceDISCOPLAN (Gerevini & Schu-
bert 1998; 2000) searches only for invariants of specific
syntactic forms that the authors believea priori to be use-
ful. Our approach uses correlations in the data to guide
the search instead. Thus it finds useful invariants that
operator-based methods might miss.
The drawback of a state-based method is that, being in-

ductive, it is not sound in the deductive sense. It is possible
that it will find “invariants” that are true in the state or states
it is given, but not true of the world in general. Operator-
based methods, on the other hand, are typically sound given
the STRIPS assumption. However, we will show that the
probability of such false positives being generated by our
methods is small; even in very small domains, few spurious
invariants are produced in practice. Moreover, if informa-
tion about the operators is in fact available, operator-based
methods like that of (Rintanen 2000) can be used to very
quickly verify the correctness of the invariants produced.

The rest of this paper is organized as follows. In the next
section we describe our system for discovering invariants
by means of a search guided by perceived correlations in
the data. We then report and discuss the results obtained
when we apply our methods to some common planning do-
mains, and compare them with the invariants obtained by
DISCOPLAN. We then describe some related work, and fi-
nally discuss ways in which the system could be extended.

Law Discovery
Worlds, Potential Invariants and Metrics
Our model of law discovery is that of an intelligent observer,
who is “struck” by surprising regularities in the state de-
scription(s) it is given, and conjectures and evaluates poten-
tial invariants on that basis.

We take all states to be finite and fully observable. Each
state is described by a set of positive literals. For example, in
a planning domain consisting of the objectsD = {a, b, c},
a statew might be specified by:
w = P (a, a) ∧ P (a, b) ∧ P (a, c) ∧ P (b, c).

We assume that distinct domain constants denote distinct ob-
jects, and make the Closed World Assumption in each state.

Our system is able to use multiple state-descriptions, if
available. However, for simplicity, in what follows we shall
assume that only a single state description is provided. The
extension to multiple states is described at the end of this
section.

The system searches a space of hypotheses consisting
of what we call “proper clauses.” These are disjunc-
tions of literals—possibly containing equality literals and/or
preceded by (universal or existential) quantifiers binding
some of their variables—that meet the following conditions:
(1) they contain no duplicate or complementary literals, and
(2) if they have more then one literal, then each literal shares
at least one variable with another. SoP (x, y) ∨ P (y, x),
∀xP (x, x), andP (x, y) ∨ ¬Q(x) ∨ (x = a) are all proper
clauses, whereasP (x) ∨ ¬P (x) andP (x) ∨ P (y) are not.

Note that proper clauses can contain free variables. These
are not treated as existentially or universally quantified.
Rather, the system operates by counting the number of sub-
stitutions of constants for these free variables that make the
clause true in the given state. These counts are used to drive
a greedy search through the space of proper clauses. In-
variants are conjectured based on the relative values of these
counts for the clauses under consideration and those for their
constituent literals.

True statements, or laws, will always be satisfied in the
state, regardless of what constants are substituted for their
variables. Statements that are true of “almost all” objects
might also be useful in some circumstances. In any case,
we are looking for proper clauses with very few exceptions.
Thus our first measure of the goodness of a potential lawϕ
is the fraction of tuples that satisfy it in statew. We call this
the “support” ofϕ in w, and write it supw(ϕ). Thus:

supw(ϕ) =
‖satw(ϕ)‖
Naϕ

,

whereN is the cardinality ofD, aϕ is the arity (num-
ber of distinct free variables) ofϕ, and satw(ϕ) is the

set of tuples inDaϕ that satisfyϕ in w, i.e., satw(ϕ) =
{~c | ~c ∈ Daϕ ∧ w |= ϕ(~c)}. For example, withw as speci-
fied above, supw(P (x, y)) = 4/32, supw(P (x, x)) = 1/3,
and supw(∀xP (x, y)) = 0/3 (because there are no elements
y such thatP (x, y) is true foreveryx in D).

The other characteristic of a good invariant is that it be
“surprising.” Not every frequently-satisfied proper clause
has this characteristic. For example, supposeP (x) andQ(x)
both have support of90%. In this case, we would not be
surprised ifP (x) ∨ Q(x) had a support of99%, because,
though high, this is what we’d expect even ifP andQ were
completely unrelated. If, on the other hand,P (x) andQ(x)
had support of50% and49% respectively, then support of
99% for P (x)∨Q(x) would be very interesting, for it would
indicate thatP andQ differedsystematically. In this case,
P (x) ∨Q(x) would be a surprising “pattern”—an anomaly.

Thus our second measure of quality, which we call “cor-
relation,” measures surprisingness; it is high for those proper
clauses that are satisfied much more frequently than would
be expected given the support of their subparts. It is defined
as the ratio of the observed support (inw) of a clause to its
“expected” support, which is the probability that an arbitrary
tuple satisfies it given that its subparts are independent1. For-
mally, the correlation of a clauseϕ is given by:

corrw(ϕ) =
supw(ϕ)
PrV (ϕ)

where PrV (ϕ) is the expected support ofϕ, defined recur-
sively below.

The expected support of a proper clause is as follows,
wherex andy are variables andc is a domain constant:

PrV (ϕ) =



supw(P (~x)) if ϕ ≡ P (~x)
1/N if ϕ ≡ (x = y)
1/N if ϕ ≡ (x = c)
1− PrV (ϕ′) if ϕ ≡ ¬ϕ′
1−

∏2
i=1(1− PrV (ϕi)) if ϕ ≡ ϕ1 ∨ ϕ2

PrV (ϕ′)N if ϕ ≡ (∀x) ϕ′
1− (1− PrV (ϕ′))N if ϕ ≡ (∃x) ϕ′

Simple clauses likeP (~x) have no subparts, so their observed
support is used as their expected support. Ifx andy are in-
stantiated to random elements ofD, there is a1/N chance
that they will be equal; thus PrV (x = y) = 1/N . Similarly,
when randomly instantiatingx there is a1/N chance of get-
ting c. The expected support of the negation of any clause
is one minus that of the clause, and the probability that a
tuple satisfies a disjunction of two clauses is one minus the
probability that it does not satisfy either. A universally quan-
tified formula is true exactly if the formula before quantifi-
cation is true for all possible instantiations of the quantified
variable—its probability is a product ofN probabilities. Ex-
istential quantification is similar. Note that universal quan-
tification tends to lower expected support, while existential
quantification tends to increase it.

We have developed a formal, possible-worlds semantics
for this language that yields the formulas above when certain

1The intuition behind this metric is very similar to that of mu-
tual information; we use this one for computational efficiency.

independence assumptions are made about the probability
distributions over the possible worlds. Please see (Mukherji
& Schubert 2003) for these technical details.

In the example above, if supw(P (x) ∨ Q(x)) = 99%
and supw(P (x)) and supw(Q(x)) are both 90%, then
corrw(P (x) ∨ Q(x)) = 0.99/(1 − 0.1 · 0.1) = 1; whereas
if supw(P (x)) and supw(Q(x)) had been50% and 49%
respectively, then corrw(P (x) ∨ Q(x)) would have been
0.99/(1− 0.5 · 0.51) = 1.33.

We remark in passing that, since the space being searched
contains only proper clauses, which have no complemen-
tary literals, there is no danger of simple tautologies being
taken for invariants as a result of high support and correla-
tion scores. We seek clauses that are universally true in the
domain of interest, but are not vacuously true in all domains.

Finally, each proper clause also has a “goodness” score.
This is a linear combination of its support and correlation.

Invariant Finding Algorithm
We use a greedy algorithm to find proper clauses that have
high support and correlation. Given a clause that is not uni-
versally true, we try to find a transformation operation (such
as disjoining it with another clause) that will increase its
goodness. This gives us an updated clause, which we then
try to improve further by further transformations. This con-
tinues until either no further improvements can be made, or
we obtain a clause that satisfies the test for invariance.

This general algorithm is shown in Figure 1.
The typewritten function names in the description that fol-

lows are generic functions; we will describe our implemen-
tation of them later.

find invariants

1. I ← ∅ // The set of invariants found

2. agenda← initial agenda

3. while (agenda6= ∅)
4. curr agendaitem← pop(agenda)

5. newclause←
process agenda item (curr agendaitem)

6. If invariantp (new clause)

7. I ← I ∪ {new clause}
8. Elseifpartial invariantp (new clause)

9. newagendaitems←
gen new agenda items (new clause)

10. For eacha in new agendaitems

11. Adda to agenda

12. returnI

Figure 1: An algorithm for data-driven law discovery

An agenda is maintained. Each item on it represents a
transformation of a clause or a pair thereof into another
clause. The agenda is sorted on the basis of the estimated
goodness of the resultant clause. After it is initialized (by
initial agenda), the main loop runs. Here, successive

items are taken off the agenda until it is empty. Each time
an agenda item is removed, the operation associated with
it is performed (byprocess agenda item), and a new
proper clause obtained. We check (byinvariantp) if this
new clause satisfies the conditions for being an invariant;
if so, it is added toI, the set of invariants found. If not,
we check (bypartial invariantp) to see if it is good
enough to form a partial invariant, i.e. to be a component in
further transformations. If so, all the “good” transformations
involving it are found (bygen new agenda items) and
added to the agenda.

Note that this algorithm is incremental. If it is stopped at
any time,I contains the invariants detected so far.

Generic Functions The generic functionsinvariantp
and partial invariantp simply compare the
goodness of their arguments against preset thresholds.
process agenda item performs the transformation
represented by an agenda item; see (Mukherji & Schu-
bert 2003) for details of how these are implemented for
efficiency.

gen new agenda items andinitial agenda are
the key functions in our algorithm. They have to iden-
tify good transformations to perform—operations that seem
likely to generate good new clauses.initial agenda
returns the set of all “good” transformations involving any
single literal clause;gen new agenda items returns the
set of all “good” transformations involving its argument
(new clause). In the rest of this section, we will discuss how
such transformations are identified.

Candidate Generation These functions can choose
among the following transformation operations, whereϕ is
the proper clause under consideration,x, y are free variables
of ϕ, andc ∈ D is a domain constant:
1. Disjoin a clauseψ toϕ. There are a large number of ways

in which some or all ofψ’s variables can be equated with
some or all the variables ofϕ. Moreover, there are two
negation schemes possible—viz.ϕ ∨ ψ andϕ ∨ ¬ψ;

2. Add one of the disjuncts (x = y) or (x 6= y) toϕ;

3. Add one of the disjuncts (x = c) or (x 6= c) toϕ; or

4. Quantify some subset ofϕ’s free variables
Type 1 operations offer by far the most flexibility. Conse-
quently, finding good candidate operations of this type is
most challenging. We will first discuss how we find such
candidates. Later we will describe how data-driven identifi-
cation methods for the other types of operations fall out of
this approach.

Disjunctions To find good disjunction operations, we
have to tackle three problemssimultaneously: (1) which
clauses to use, (2) how to equate variables in the combina-
tion, and (3) which negation scheme to use.

To do this more efficiently than by enumeration—and in
keeping with our data-driven search philosophy—we explic-
itly maintain the satisfaction set satw(ϕ) of each clauseϕ
under consideration—or rather, for efficiency reasons, we
maintain itscomplement, satw(ϕ). This is more efficient be-
cause our search moves toward clauses with high support,

and thus with large satisfaction sets. The complements of
these sets thus shrink to nothing, and, since we assumew is
complete, storing these complements is equivalent to storing
the original sets.

With each clauseϕ, we storeϕ’s “projection” onto each
non-empty subset of its free variables, as follows. Letϕ
be a proper clause whose free variables areΩϕ; let ~x be an
ordered size-m subset ofΩϕ. The projection ofϕ onto ~x,
written JϕKw

~x , is a vector of counts. Theith count in this
vector is the number of tuples fromsatw(ϕ) that have the
elements of theith tuple fromDm (with respect to some
canonical ordering) substituted for the variables of~x.

For example, letsatw(ϕ) ≡ {〈a, b〉, 〈a, c〉, 〈b, c〉, 〈c, c〉}.
As a table, this is:

x a a b c → (a . 2) (b . 1) (c . 1)
y b c c c → (a . 0) (b . 1) (c . 3)

Projectingϕ onto x gives the vector:JϕKw
〈x〉 = 〈2, 1, 1〉

corresponding to the frequencies with whicha, b, andc re-
spectively occur in thex row of the table. Projecting ontoy
gives:JϕKw

〈y〉 = 〈0, 1, 3〉, corresponding to they row.
So we store the projections of clauses onto subsets of their

free variables. Now for eachm ∈ N, we collect together all
projections onto lists ofm variables. This collection is the
“vector space of lengthm”. Note crucially that projections
of different clauses go into the same vector spaces.

Now, to find good disjunction operations, we need only
look in each of these vector spaces for pairs of vectors with
minimal dot product(relative to their size)! This is because
the dot-product of any two vectors in the same space, say
JϕKw

~x andJψKw
~y (where~x and~y have the same length), is ex-

actly the cardinality ofsatw(ϕ∨ψ) when the variables~x are
equated pairwise with~y. To see this, consider the following
example:

Let ϕ ≡ P (v, x) andψ ≡ Q(y, z). P (v, x) ∨ Q(x, z) is
the clause that results from disjoiningϕwith ψ and equating
x with y. We will see that

‖satw(P (v, x) ∨Q(x, z))‖ = JϕKw
〈x〉 · JψKw

〈y〉

This is because the triples〈cv, cx, cz〉 of domain objects that
don’t satisfyP (v, x) ∨ Q(x, z) are those for which neither
P (cv, cx) nor Q(cx, cz) are true. Now for each valuecx
thatx can take, thecx component ofJϕKw

〈x〉 gives the num-
ber of pairs〈cv, cx〉 that don’t satisfyP (v, x); similarly the
cx component ofJψKw

〈y〉 gives the number of〈cx, cz〉’s that
don’t satisfyQ(x, z). The product of these components thus
gives the number of triples involvingcx that satisfy neither.
Thus the total number of tuples that don’t satisfy the new
clause is the sum, over allcx’s, of these products—in other
words,JϕKw

〈x〉 · JψKw
〈y〉.

From these dot products we can easily compute goodness
scores for possible disjunctions—but only when the order of
the variables being equated is the same for both disjuncts.
For instance computing the dot product ofJϕ(v, x)Kw

〈v,x〉
and Jψ(y, z)Kw

〈y,z〉 will give us the size ofsatw(ϕ(v, x) ∨
ψ(v, x)), but not that of satw(ϕ(v, x) ∨ ψ(x, v)). We also
need a way of evaluating different negation schemes (ϕ ∨ ψ

andϕ∨¬ψ). We tackle the first of these cheaply by extend-
ing the dot product operation from a sum of scalars to a sum
of vectors representing the possible equation schemes; for
the second, we derive counts of the other negation schemes
from satw(ϕ ∨ ψ) in constant time by applying simple set
theory; see (Mukherji & Schubert 2003) for details

Thus, to recap, in a single pass our system identifies
good Type 1 operations by computing the dot products of
the vectors in the vector spaces, thus obtaining the sizes
of (the complements of) the satisfaction sets resulting from
the corresponding disjunction operations, for every variable-
equation and negation scheme, and then identifying those
that give rise to clauses of sufficient goodness (as measured
by partial invariantp).

We now describe how the system identifies good candi-
date transformation operations of the other types. These
transformations all involve single clauses, so the necessity
for them makes itself manifest as surprising regularities
within the satisfaction set of a clause. Since we already
maintain projections of the exceptions to each clause on each
subset of its free variables, we can readily identify clauses
with such support patterns.

Constants, Equality and Quantification Good places to
add such statements are immediately apparent in our data
representation. Adding a disjunct of the form(x = c) toϕ is
appropriate if a large fraction of the exceptions toϕ involve
c in the x position. If there are a great many exceptions,
distributed over all the possible values ofx exceptc, then a
(x 6= c) disjunct is appropriate.

Many interesting laws—for instance the “single-
valuedness” invariants of (Gerevini & Schubert 1998;
2001)—involve (in)equality between variables. From the
projections of clauses ontopairs of variables, we find what
fraction of exceptions correspond to pairs with the same
object in both positions (e.g.〈a, a〉, 〈b, b〉, etc.) If this
is large, we add a disjunct equating the variables of the
projection; if very small, we add an inequality instead.

Patterns in a projection vector point to good quantification
operations on the free variablesnotbeing projected onto. We
compute how many components of each vector have (a) the
maximum possible value, and (b) the value zero. If surpris-
ingly few have the maximum value, then existentially quan-
tifying all the variables not in the vector is appropriate; if
many have the value zero, then universal quantification is
used instead. Note that since the resulting clauses remain
under consideration, multiple quantification operations may
be performed, and invariants with nested quantifiers found.
We are still in the process of implementing this quantified-
formula detection technique in our system.

Using Multiple States

For simplicity, we have so far assumed that the algorithm
gets only a single state-description as input. However, the
method we have described readily extends to multiple states.
The multiple state-descriptions are composed into a single
one by the addition of a “state number” argument to each
literal. For example, if there are two states,w1 andw2, and

if P (a) is true inw1 but not inw2, then the combined state
description will contain the literalsP (a, 1) and¬P (a, 2).

It is also necessary to ensure that these state number
variables are always equated when two clauses are com-
bined. ThusP (x,m) andQ(y, n) (wherem and n are
the respective state number variables) can combine to give
P (x,m) ∨Q(x,m), but notP (x,m) ∨Q(x, n).

The expected probabilities also change in the obvious way
to take account of the fact that the state number variables
range over state numbers rather than domain objects.

Experiments
We evaluated our system in three standard planning do-
mains: the Blocks World, the Towers of Hanoi World, and
the ATT Logistics world. We compare the results with those
obtained byDISCOPLAN, using both state and operator de-
scriptions, in the same domains. Since our system does not
yet exploit implicit type structure in the domain, our results
are somewhat incomparable with those of systems like TIM ,
which relate the invariants they find to a type-structure they
(automatically) infer in the domain. Our Blocks World had
11 blocks and a table (which isfixed); our Towers of Hanoi
world had 3 disks and 3 pegs; our Logistics world had 8
packages, 3 cities, 3 airports, 3 other locations, 3 airplanes,
and 3 trucks.

Since our method is state-based, we also want to test how
robust it is in terms of finding good laws from different types
of states. Accordingly, we ran our algorithm repeatedly on
different reachable states. In Tables 1, 2, and 3, we re-
port how often each of the resulting laws is found, and also
whetherDISCOPLAN found it too.

We obtain a set of “random” reachable states by randomly
performing sequences of valid operations from the initial
state. We then randomly select states to operate on from this
set. We used 10 Blocks World states (out of 50 generated),
15 Hanoi states (out of 25), and 5 Logistics states (out of
50). Since the Hanoi domain is so small, we used a set of 3
states as input each time, for 5 total experiments. The Blocks
World experiments took an average of 190 msec; the Hanoi
experiments an average of 610 msec; and the Logistics ex-
periments an average of 27400 msec on a 2GHz Pentium
IV with 512M of RAM. We conjecture that the greatly in-
creased running time in the case of the Logistics experiments
is due primarily to the large number of type-based candi-
date hypotheses that the system has to consider—hypotheses
like location(x) → ¬ truck(x) and variants and extensions
thereof—that would be eliminated by the planned incorpo-
ration of type information into the system.

We use implicative form for the invariants, becauseDIS-
COPLAN does; our system produces the equivalent formulas
in clause form. Our system also produces some additional
invariants that are obviously subsumed by those presented
here. We have removed these. We also do not consider in-
variantsDISCOPLAN finds that contain constructs not in our
language (e.g.n-valuedness constraints).

Evaluation
We seek patterns that are “interesting and certain enough.”
Thus we must consider two factors when evaluating these

Statement Our DISCO-

System PLAN

1 on(x, y) ⇒ ¬ fixed(x) 10
√

2 ¬ on(x, x) 10
√

3 on(x, y) ⇒ ¬ on(y, x) 10
√

4 on(x, y) ∧ on(x, z) ⇒ (y = z) 10
√

5 on(x, y) ∧ ¬ fixed(y) ⇒ ¬ clear(y) 6
√

6 on(x, y) ∧ on(y, z) ⇒ ¬ on(z, x) 10

7 on(x, y) ∧ on(y, z) ⇒ ¬ on(x, z) 10

8 ¬ fixed(y) ∧ on(x, y) ∧ on(z, y) ⇒ (x = z) 0
√

9 ∀y∃x ¬fixed(y) ⇒ (on(x, y) ∨ clear(y)) 0
√

Table 1:Blocks World Results (10 trials)

Statement Our DISCO-

System PLAN

1 on(x, y) ⇒ smaller(x, y) 4
√

2 on(x, y) ⇒ ¬ clear(y) 5
√

3 on(x, y) ⇒ disk(x) 5
√

4 ¬ on(x, x) 5
√

5 on(x, y) ∧ on(x, z) ⇒ (y = z) 5
√

6 on(x, y) ∧ on(z, y) ⇒ (x = z) 5
√

7 on(x, y) ⇒ ¬ on(y, x) 5
√

8 ¬ smaller(x, x) 5

9 smaller(x, y) ⇒ ¬ smaller(y, x) 5

10 on(x, y) ∧ on(y, z) ⇒ ¬ on(z, x) 5

11 smaller(x, y) ⇒ disk(x) 5

12 disk(x) ∧ ¬ disk(y) ⇒ smaller(x, y) 5

13 smaller(x, y) ∧ smaller(y, z) 5

⇒ ¬ smaller(z, x)

14 on(x, y) ∧ on(y, z) ⇒ smaller(x, z) 2

15 on(z, x) ∧ smaller(x, y) ⇒ smaller(z, y) 2

16 ∀y∃x (on(x, y) ∨ clear(y)) 0
√

17 X on(x, y) ∧ smaller(y, z) ⇒ ¬ disk(z) 2

18 X smaller(x, y) ∧ on(y, z) ⇒ clear(x) 2

Table 2:Towers of Hanoi World Results (5 trials; 3 states each)

results: whether the invariants we hypothesize are in fact
“true” laws of the world, and how “interesting” and useful
they are.

Every single one of the laws produced in the Blocks
World domain is correct; all are real invariants. Moreover,
all except rule 5 are obtained independently in each of the
10 different reachable states we tried. This is despite the
fact that we use a single state each time, with just 12 ob-
jects. It turns out that statistics from even this small set can
eliminate false positives. Moreover, the set of laws found is
very stable with respect to the precise input state.

Moreover, we observe that our system outputs many of the
same hypotheses asDISCOPLAN does. Now the hypothesis
forms thatDISCOPLAN finds are thosechosen by its authors
as being interesting. Moreover many of these hypotheses
were also among those hand-crafted for this world by Kautz
& Selman (1996). Thus many of the laws our system finds
have been identified independently by human beings as in-
teresting features of the domain. Moreover, Gerevini &
Schubert(1998) show empirically that the use of these rules
(when obtained byDISCOPLAN) can significantly speed up
planning.

Statement Our DISCO-

System PLAN

1 on(x) ⇒ ¬ truck(x) 5
√

2 airplane(x) ⇒ ¬ on(x) 5
√

3 airplane(x) ⇒ ¬ truck(x) 5
√

4 airplane(x) ⇒ ¬ location(x) 5
√

5 airplane(x) ⇒ ¬ airport(x) 5
√

6 airplane(x) ⇒ ¬ city(x) 5
√

7 location(x) ⇒ ¬ on(x) 5
√

8 location(x) ⇒ ¬ truck(x) 5
√

9 airport(x) ⇒ ¬ on(x) 5
√

10 airport(x) ⇒ ¬ truck(x) 5
√

11 airport(x) ⇒ location(x) 5
√

12 airport(x) ⇒ ¬ city(x) 5
√

13 city(x) ⇒ ¬ on(x) 5
√

14 city(x) ⇒ ¬ truck(x) 5
√

15 city(x) ⇒ ¬ location(x) 5
√

16 at(x, y) ∧ at(x, z) ∧ airplane(x) ⇒ (y = z) 0
√

17 at(x, y) ∧ at(x, z) ∧ truck(x) ⇒ (y = z) 0
√

18 at(x, y) ∧ at(x, z) ∧ on(x) ⇒ (y = z) 0
√

19 in(x, y) ∧ in(x, z) ⇒ (y = z) 5
√

20 in(x, y) ⇒ ¬ in(y, x) 5
√

21 at(x, y) ⇒ ¬ in(x, z) 0
√

22 in(x, y) ∧ in(z, y) ∧ on(y) ⇒ (x = z) 0
√

23 in(x, y) ∧ in(z, y) ∧ location(y) ⇒ (x = z) 0
√

24 ∀x∃y, z on(x) ⇒ at(x, y) ∨ in(y, z) 0
√

25 at(x, y) ⇒ ¬ at(y, x) 5

26 at(x, y) ∧ at(y, z) ⇒ ¬ at(x, z) 5

27 in(x, y) ∧ in(y, z) ⇒ ¬ in(x, z) 5

28 incity(x, y) ⇒ ¬ incity(y, x) 5

29 X truck(x) ∧ airport(y) ⇒ ¬ at(x, y) 3

Table 3:ATT Logistics World Results (5 trials)

Our system also finds two other invariants (rules 6 and
7), whichDISCOPLAN does not. Are these interesting? We
claim that in fact they are. The first is of a form that has, we
are informed, been added into later versions ofDISCOPLAN,
still under construction. This is independent confirmation
of its usefulness. Rule 7 captures the intransitivity of the
on relation, which is an important and interesting property
of any binary relation. Finally,DISCOPLAN finds two rules
(8 and 9) that our system misses entirely. These are inter-
esting rules (rule 8’s form is similar to that of number 4,
which we do find), but our pattern-based method does not
find them. We do not expect to find Rule 9 because it in-
volves explicit quantification of variables, the detection of
which, as we have mentioned, we are still in the process of
implementing in our system.

Nevertheless, the fact that all the rules our method
finds are correct and interesting—including some thatDIS-
COPLAN does not find—together with the fact that it finds
almost all the rulesDISCOPLAN does, seems to indicate that
our metrics and search methods are to some extent capturing
human-like notions about what makes an interesting law, at
least in the Blocks World.

The results on the Towers of Hanoi world are similar in
many ways. This time, we find all but one of the rules that
DISCOPLANdoes. We also find many additional rules. Some
of these are acyclicity and intransitivity rules of the sort we

discovered in the Blocks World. There are two interesting
facts about the others, which demonstrate respectively the
strengths and weaknesses of our approach. First, we are able
to find many interesting rules involving the “smaller” rela-
tion, which DISCOPLAN cannot find because “smaller” is a
binary static predicate. On the other hand, our system hy-
pothesizes twoincorrect laws (numbers 17 and 18, marked
“X”). These rules happen to be true in the three states ex-
amined for those trials, but not in Towers of Hanoi worlds
in general. Thus in thisverysmall domain, we occasionally
find a small number of false positives. These could be made
less probable by examining more than three states at a time,
or, alternatively, states with more disks. Nevertheless, this
failure demonstrates the fact that our system, since it oper-
ates inductively, cannot be sound in the deductive sense.

Finally, in the Logistics world, we find much the same
pattern. Of the 29 invariants in Table 3, 17 are found by
both systems;DISCOPLAN finds 8 that our system does not;
and our system finds 5 thatDISCOPLAN does not, of which
one is incorrect. Again, the correct invariants are found in
all 5 trials, while the incorrect one is found less frequently:
in only 3 trials. Our system also finds a large number (31) of
rules stating that certain variables cannot be of certain types
(e.g. in(x, y) ⇒ ¬ location(x)), which DISCOPLAN does
not find. However,DISCOPLAN can optionally compute do-
mains for each variable from which such invariants can be
inferred. Thus, to save space, we have not included these in
the table.

Again we find that the set oftrue invariants found is very
stable with respect to the set of states chosen as input; it is
thefalse“invariants” that tend to be found rarely.

Related Work
We have already alluded to prior work on operator-based in-
ference of invariants in planning domains, and have made
some empirical comparisons with a specific system,DIS-
COPLAN. Other operator-based approaches are those of
Kelleher & Cohn (1992), Rintanen (1998; 2000), Fox &
Long (1998; 2000), and Scholz (2000). They have in com-
mon the use of operator structure to verify the correctness of
hypothesized invariants, though they differ in the ways hy-
potheses are generated in the first place. Rintanen’s method
is perhaps closest in spirit to ours, in that the initial set of
hypotheses depends only on the predicates occurring in the
problem instance, and that hypotheses are progressively re-
fined until they can be verified. However, a key feature of
our approach is its “greedy” preference for hypotheses with
high support and correlation. While such a strategy may
sometimes miss hypotheses whose proper parts seem rela-
tively unpromising, it limits the severity of the combinato-
rial explosion in the number of hypotheses under consider-
ation, and thus in general facilitates finding more complex
hypotheses than would otherwise be possible. This is why
our approach is able to discover invariants as effectively as
methods that are much better informed, through their knowl-
edge about operator structure. Finally, if operator knowl-
edge is available, some of these systems (e.g. Rintanen’s)
could easily be used to verify the correctness of the invari-
ants our system produces.

It is also interesting to look at other approaches that re-
late to the identification of “laws” in logically-described
systems. We should first remark that despite possible ap-
pearances, there is little relation between discovery in our
sense andabductionor induction, usually defined as forma-
tion of general hypotheses that—together with background
knowledge—explain a set of new observations (see (Paul
1993; Muggleton 1999) for broad overviews). Abductive
or inductive methods seek a comprehensive theory account-
ing for all of the given facts, whereas our method looks for
miscellaneous regularities, indicated by the “statistics” of
those facts. Also along these lines is recent work on learn-
ing Probabilistic Relational Models of databases (Friedman
et al. 1999; 2001; Getoor 2000). The idea here is to un-
cover dependency structure between the fields of a relational
database so that missing data can be filled in. These depen-
dencies are usually expressed as Bayes Nets. These systems
also differ from ours in that they attempt to come up with a
single model of all the given data.

A more closely related problem is that of mining asso-
ciation rules (implicative rules describing relationships be-
tween sets of attributes) in databases. Agrawal, Imielin-
ski, & Swami (1993) give a fast algorithm, called APRIORI,
for mining such rules by means of an efficient exhaustive
search of the space of possibilities. This and many other
such systems, however, deal only with unary predicates (i.e.
flat database tables). Dehaspe & de Raedt(1997; 2001) at-
tempt to extend this enumerative approach to finding asso-
ciation rules in relational databases with their WARMR sys-
tem. They do so by adapting Inductive Logic Programming
techniques—in particular, those ofCLAUDIEN (Deraedt &
Bruynooghe 1993; Deraedt & Dehaspe 1997).CLAUDIEN
and WARMR both differ from our system most crucially in
how they search through the space of hypotheses. Where
our system uses perceived correlations in the data to drive
its search, they use linguistic bias in the shape of subsump-
tion relationships between clauses. These systems also dif-
fer from ours in that they attempt exhaustively to enumer-
ate all hypotheses that satisfy certain conditions, whereas
our greedy approach eschews exhaustiveness in favor of a
search targeted at “interesting” concepts. In consequence,
their hypothesis language is more restricted than ours, and
the user is expected to provide strong syntactic constraints
on the forms of the invariants sought, in order to reduce the
size of the search space. In WARMR, for instance, the user
is required to specify a predicate of interest, and only impli-
cations with that predicate as their head are sought. More-
over, the user specifies a set of variables of interest in this
predicate, and all other variables are implicitly existentially
quantified. These systems are also unable to find laws that
involve equality (so they cannot find the important single-
valuedness invariants, for instance). These systems are thus
poorly suited to finding invariants in planning domains.

Much closer to our approach is that of the Tertius sys-
tem (Flach & Lachiche 2001). Like ours, this system uses a
notion of confirmation or interestingness based on correla-
tions in the data to guide the search (an A* search through
the space of possible rules using an optimistic estimate of
confirmation.) Moreover, Tertius does not require the user

to specify a ”target” concept, nor does it assume existen-
tial quantification for all variables but those specified by
the user. However, it also differs from our system in that
it returns an exhaustive list of the rules satisfying its crite-
ria, which means that in practice more stringent restrictions
must be placed on the syntactic forms of the hypotheses
considered. It also lacks our system’s ability to simultane-
ously identify good clauses to combine and good variable-
equation and negation schemes to combine them with. It is
thus unable to find many of the invariants our system can,
such as those involving equality or explicit quantification.

Conclusions
We have described a system that finds planning invariants
from state descriptions, without requiring knowledge of the
operators. Invariants can thus be identified in more realistic
settings, such as systems without theSTRIPSassumption, or
whose operators are only partially known. Despite the lesser
knowledge requirement, our system’s performance is com-
parable with that of systems in the literature that do require
full operator knowledge.

Although an inductive process like ours cannot guarantee
the correctness of the laws it finds, we have shown that, in
practice, the system is robust enough to identify invariants in
many different reachable states. Even in very small domains,
the focus on “interestingness” holds the system mostly to
true invariants; there are very few false positives. More-
over, operator-based algorithms like Rintanen’s (2000) can
be used to verify the correctness of the invariants our system
produces.

Although we do not show it here, the system can obvi-
ously identify “almost universal” laws: it is only necessary
to set the support threshold parameter to something less than
one. We are currently working on an extension that will al-
low the discovery of true statistical invariants, with confi-
dence intervals for their satisfaction rate, from a small set of
state descriptions.

Thus far, our system can exploit the type structure of a
domain only insofar as the types are explicitly defined by
predicates. In planning worlds, however, implicit type struc-
ture is typically very informative; TIM , in particular, shows
how useful such information can be for rule discovery. We
are currently working on statistical techniques to obtain such
information, and ways to incorporate it into our system.

Acknowledgments This work was supported in part by
the National Science Foundation under Grant No. IIS-
0082928.

References
Agrawal, R.; Imielinski, T.; and Swami, A. N. 1993.
Mining association rules between sets of items in large
databases. InProc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 207–216.

Dehaspe, L., and de Raedt, L. 1997. Mining association
rules in multiple relations. InProc. Int. Workshop on In-
ductive Logic Programming, 125–132.

Dehaspe, L., and Toivonen, H. 2001. Discovery of rela-
tional association rules. In Dzeroski, S., and Lavrac, N.,
eds.,Relational Data Mining. Springer-Verlag. 189–212.
Deraedt, L., and Bruynooghe, M. 1993. A theory of clausal
discovery. InProceedings of the 13th International Joint
Conference on Aritificial Intelligence (IJCAI93).
Deraedt, L., and Dehaspe, L. 1997. Clausal discovery.
Machine Learning26:99–146.
Flach, P., and Lachiche, N. 2001. Confirmation-guided dis-
covery of first-order rules with tertius.Machine Learning
42.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM.JAIR9:367–421.
Fox, M., and Long, D. 2000. Utilizing automatically in-
ferred invarinats in graph construction and search. InAIPS
2000, 102–111. AAAI Press.
Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. InIJCAI, 1300–
1309.
Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 2001.
Relational Data Mining. Springer-Verlag. chapter Learn-
ing Relational Data Models.
Gerevini, A., and Schubert, L. K. 1998. Inferring state con-
straints for domain-independent planning. InAAAI/IAAI,
905–912.
Gerevini, A., and Schubert, L. K. 2000. Discovering
state constraints in DISCOPLAN: Some new results. In
AAAI/IAAI, 761–767.
Gerevini, A., and Schubert, L. 2001. DISCOPLAN: An
efficient on-line system for computing planning domain in-
variants. InProc. European Conf. on Planning.
Getoor, L. 2000. Learning probabilistic relational models.
Lecture Notes in Computer Science.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
AAAI/IAAI, 1194–1201. AAAI Press.
Kautz, H., and Selman, B. 1998. The role of domain-
specific axioms in the planning as satisfiability framework.
In Proceedings of AIPS-98.
Kelleher, J., and Cohn, A. 1992. Automatically synthe-
sising domain constraints from operator descriptions. In
ECAI ’92, 653–655.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm.JAIR12:338–386.
Muggleton, S. 1999. Inductive Logic Programming. In
The MIT Encyclopedia of the Cognitive Sciences.
Mukherji, P., and Schubert, L. 2003. Discovering laws as
anomalies in logical worlds. Technical Report 828, Uni-
versity of Rochester.
Paul, G. 1993. Approaches to abductive reasoning—an
overview.Artificial Intelligence Review7:109–152.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering and usage of landmarks in planning. In
Proc. European Conf. on Planning.

Rintanen, J. 1998. A planning algorithm not based on
directional search. InKR ’98, 617–624.
Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. InAAAI/IAAI, 806–811.
Scholz, U. 2000. Extracting state constraints from PDDL-
like planning domains. InWorking Notes of the AIPS00
Workshop on Analyzing and Exploiting Domain Knowl-
edge for Efficient Planning, 43–48. AAAI press.

