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Abstract

Planning invariants are formulae that are true in every reach-
able state of a planning world. We describe a novel approach
to the problem of discovering such invariants in propositional
form—by analyzing only a set of reachable states of the plan-
ning domain, and not its operators. Our system works by ex-
ploiting perceived patterns of propositional covariance across
the set of states: It hypothesizes that strongly-defined patterns
represent features of the planning world.
We demonstrate that, in practice, our system overwhelmingly
produces correct invariants. Moreover, we compare it with a
well-known system from the literature that uses complete op-
erator descriptions, and show that it discovers a comparable
number of invariants, and moreover, does so orders of mag-
nitude faster.
We also show how an existing operator-based invariant finder
can be used to verify the correctness of the invariants we find,
should operator information be available. We show that such
hybrid systems can efficiently produce verifiably true invari-
ants.

Keywords. domain analysis for planning and scheduling,
domain-independent classical planning, invariant discovery.

Introduction
Planning invariants are formulae that are true in every reach-
able state of a planning world. They are characteristics
of reachable states, and thus can be used to reduce the
size of the search space in planning. A number of studies
(e.g., (Gerevini & Schubert 1998; Kautz & Selman 1998;
Koehler & Hoffmann 2000; Porteous, Sebastia, & Hoffmann
2001)) have demonstrated empirically that the use of certain
classes of invariants can significantly speed up the planning
process. This is true whether the constraints are added man-
ually, as in (Kautz & Selman 1998), or by automated pre-
planners such asDISCOPLAN (Gerevini & Schubert 1998;
2001), Rintanen’s (2000) algorithm, or TIM (Fox & Long
1998; 2000).

Most systems that try to find such invariants automatically
do so by analyzing the operators of the planning world. In
this paper, we take a complementary approach: We discover
invariants by analyzing a set of the reachable states of the
system, rather than by examining the operators. Our model
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is that of an observer who sees patterns of covariance across
the observed states, and hypothesizes that they represent fea-
tures of the underlying generative system—in other words,
that they are invariants of the planning domain. For instance,
in a propositional Blocks World, she might be struck by the
fact that the propositionson-a-b andon-b-a never co-
occurred in the same state, and thus hypothesize the invari-
ant¬on-a-b ∨¬on-b-a .

The drawback of a state-based method is that, being in-
ductive, it is not sound in the deductive sense. It is possible
that it will find “invariants” that are true in the states it is
given, but not true of the world in general. However, as we
will demonstrate, in domains where operator-based meth-
ods are applicable, they can be modified to efficientlyverify
the correctness of the invariants hypothesized by our state-
based methods. Moreover, in complex, real-world domains,
it may be impossible or inefficient to apply operator-based
techniques. In such worlds, state-based methods provide sta-
tistical invariants—formulae that areprobably true in any
reachable state—which can be used to guide the search of
probabilistic or priority-based planners.

State-based methods may thus either be used indepen-
dently, to produce statistical invariants, or combined with
standard operator-based methods (where these are applica-
ble) to quickly produce verified invariants. The latter hy-
brid approach can equivalently be viewed as using state-
based methods as a preprocessing step to speed up the sound
operator-based invariant discovery method.

Standalone State-based Methods Standalone state-based
invariant detection has many advantages:

1. State-based approaches require less information than
operator-based ones—only a set of reachable states, rather
than the complete operators (which implicitly describeall
reachable states). They are thus applicable even if the op-
erators are unknown or only partially known.

2. State-based systems make no use of theSTRIPSassump-
tion, since they require only state descriptions. Operator-
based methods, on the other hand, rely heavily on this as-
sumption. If the world can change in ways the operators
don’t allow, then deduction based on operator precondi-
tions and effects is unsound. In fact, theSTRIPSassump-
tion is quite unrealistic; realistic worlds change through



other agencies than that of the planner. Thus such meth-
ods are more easily extensible to more realistic planning
worlds.

3. Lastly, operator-based methods tend to use declarative
bias to guide their search through the space of possible
invariants. For instanceDISCOPLAN (Gerevini & Schu-
bert 1998; 2000) searches only for invariants of specific
syntactic forms that the authors believea priori to be use-
ful. Our approach uses correlations in the data to guide
the search instead. Thus it finds useful invariants that
operator-based methods might miss.

Hybrid Methods If operator information is in fact avail-
able, then standard operator-based methods can be used to
quickly verify the correctness of the hypotheses produced
by our method. Such an hybrid approach might turn out to
be the best of both worlds: It would yield provably correct
invariants, and at the same time use inductive state-based
reasoning for efficiency. Moreover, since invariant detection
in general is PSPACE-complete (Rintanen 2000), no prac-
tical system can hope to find all invariants, which indicates
that the radically different state-based approach might also
help operator-based systems find invariants they would oth-
erwise miss.

Many of the invariant identification systems in the liter-
ature (e.g. DISCOPLAN, TIM ) generate invariants in first-
order form. State-based approaches to that problem have
been studied (see for example (Mukherji & Schubert 2003;
2005a)), but, in this paper, we will tackle the related problem
of discoveringpropositionalinvariants from states. Propo-
sitional invariants are of particular interest because many
modern planners—for exampleGRAPHPLAN (Blum & Furst
1995), and the family of satisfiability-based planners (Kautz
& Selman 1992)—do propositional planning. Moreover,
propositional worlds lack the rich relational structure of
first-order ones, and thus pose a very different set of chal-
lenges for state-based invariant discovery. This leads to
the employment of significantly different algorithms, which
could potentially find invariants that first-order systems
miss.

The rest of this paper is organized as follows. In the next
section, we describe our methods. This section has three
parts: In the first part we present our algorithm for (stand-
alone) state-based propositional invariant discovery; in the
second, we describe a standard operator-based propositional
invariant finder (Rintanen’s iterative system (Rintanen 2005;
2000)); and finally, in the third part, we describe how this
operator-based system can be modified to verify the candi-
date invariants our system hypothesizes. We then go on to
report and discuss the results obtained when we apply our
methods to some common planning domains; we compare
them with the invariants obtained by Rintanen’s method, and
demonstrate that state-based methods might offer significant
speedups over operator-based methods with little loss of ac-
curacy. Finally, we state our conclusions and discuss ways
that the system might be extended in the future.

Methods
In this section, we first describe our standalone state-based
propositional invariant discovery algorithm, then describe a
well-known operator-based system from the literature, and
finally show how it can be modified to verify the invariants
found by our state-based technique.

Propositional Invariant Discovery
Our model of invariant discovery is that of an observer who
is “struck” by patterns in the set of state descriptions it is
given and conjectures and evaluates potential invariants on
that basis. The output is a list of propositional clauses rep-
resenting the set of invariants hypothesized.

We take all states to be finite and fully observable. Each
state is described by a set of positive propositions. Function-
free first-order domains are propositionalized in the obvious
way before the algorithm is run.

Our approach works by mapping propositional literals
to an intermediate representation—which we call a “state
set”—that can be manipulated independently. This repre-
sentation is crucial to our technique, because it permits us
to map logical operations to set operations, and to do a very
large number of inferences at the same time.

An Intermediate Representation: State Sets
Let S1, S2, . . . , Sk be the given state descriptions. We treat
each as a set of the propositional atoms that are true in it. Let
Σ be the set of literals that occur in at least one of these state-
descriptions and the negations of such literals. Formally,

Σ = {` | ` ∈
k⋃

i=1

Si or¬` ∈
k⋃

i=1

Si}

For every clauseϕ consisting of literals fromΣ, thestate-
setof ϕ, denotedf(ϕ), is the set of the indices of those states
in whichϕ is satisfied. That is,

f(ϕ) = {i | Si |= ϕ}
For example, suppose in a Blocks World domain with two

blocks, we are given the following three state descriptions:
S1 = {on-A-B, on-B-Tbl, clear-A, clear-Tbl}
S2 = {on-A-Tbl, on-B-Tbl, clear-A, clear-B, clear-Tbl}
S3 = {on-A-Tbl, on-B-A, clear-B, clear-Tbl}

where the atoms have the obvious meanings.
Here, clear-Tbl is true in every state, sof(clear-Tbl) =

{1, 2, 3}. on-A-B is only true inS1, sof(on-A-B) = {1}.
Similarly, f(on-A-B∨ ¬clear-A) = {1, 3}.

Operations
There is a clear connection between syntactic operations on
clauses and set operations on their state-sets. The follow-
ing lemmas should be intuitively obvious; for formal proofs
see (Mukherji & Schubert 2005b).
Lemma 1 (Disjunction). If ϕ1, ϕ2, . . . ϕn are clauses of lit-
erals fromΣ then
f(ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn) = f(ϕ1) ∪ f(ϕ2) ∪ . . . ∪ f(ϕn)

Lemma 2 (Negation). If ϕ is a clause of literals fromΣ
then

f(¬ϕ) = {1, 2, . . . , k} \ f(ϕ)



State-based Invariant Discovery

Overview Lemmas 1 and 2 show we can manipulate state
setsindependently of the clauses that map to them, and then
reverse the mappingf to get the actual logical formulae. We
use this observation to come up with an algorithm for (stand-
alone) state-based propositional invariant discovery. Essen-
tially, the algorithm works as follows: First, it computes the
state-sets of all̀ in Σ. It then repeatedly combines these
state-sets using the union operation; any new state-sets cre-
ated in this process may themselves be combined at later
steps. Finally, it reverses the mappingf to find the clauses
that correspond to the complete state-set{S1, . . . , Sk}—in
other words, those that are true in all the given states—and
outputs these as potential invariants.

The key observation here is that, in general, arbitrarily
many propositions map to the same state set. The ability to
manipulate state-sets independently of the clauses that map
to them thus greatly decreases the number of operations that
have to be performed: In computing the union of two state-
sets, we implicitly compute the disjunctions of all pairs of
clauses that map to them.

Algorithm A general algorithm for generating invariants
is shown in Figure 1. The function names written in fixed-
width font below refer to generic subroutines that can be im-
plemented in different ways, and can be used to control the
running time of the algorithm and the richness and number
of the invariants produced, and to make fine-grained trade-
offs between various quality metrics. These are discussed in
detail below.

This algorithm first computesΣ from the given state de-
scriptions. It then initializesS—a collection of state-sets—-
to those corresponding to all single-literal sentences. It then
introduces two important families of variables:F andH.
For each state-sets ∈ S, H(s) is a set of clauses whose
state-set iss, andF(s) is a set of (unordered) pairs of state
sets that union tos. F(s) always starts out as just{s, ∅},
but every time the algorithm unions two state-setss1 and
s2 giving s, F(s) is updated by the addition of the element
{s1, s2}.

The main loop of the algorithm then begins, and proceeds
as follows: It repeatedly updatesS with state-sets created by
unioning sets that are already inS and that also satisfy the
generic subroutineallow union . Each time it does so, it
updatesF . This continues as long as the generic subroutine
keep iterating continues to return true.

When the main loop is complete, the algorithm maps each
state-set inS to the set of clauses that have been found to be
satisfied in it. This is done as follows: The state-setss ∈ S
are considered in increasing order of size. For each one, the
elements ofF(s) are considered one by one. If the element
is of the form{s, ∅}, then the corresponding set of clauses
is just:

{(`) | ` ∈ Σ andf(`) = s}

If, on the other hand, the element is of the form{s1, s2},
then the corresponding clauses are:

{(c1 ∨ c2) | c1 ∈ H(s1) andc2 ∈ H(s2)}

Note that since the algorithm proceeds in increasing order of
state-set size, the values ofH(s1) andH(s2) are certain to
have been finalized beforeH(s) is considered.

The generic subroutineallow disjunct can be used
as a filter on the syntax of the disjuncts produced; it disal-
lows all those for which it fails.

Finally, the system outputs all the sentences that corre-
spond to the set{1, 2, . . . , k}, which is the set of all the
states. That is to say, it outputs the set of clauses it has found
that are true ineverystate.

We will now describe the generic subrou-
tines keep iterating , allow union and
allow disjunct in the algorithm above, and show
how they can be used to control the efficiency and scope of
the system.

Fine-Tuning the System With perfectly permissive im-
plementations ofallow union andallow disjunct ,
the system might output a very large number of invariants.
This set might be too large to be useful in practice.

This is why we have incorporated the three generic
subroutines keep iterating , allow union and
allow disjunct into the algorithm. They have many
uses: They serve as filters built into the state set-generation
mechanism to prevent the explicit enumeration of clauses
already created; they provide a degree of control over the
running time of the algorithm and the forms of the hy-
potheses generated; and they permit the system to use other
constraints and metrics to fine-tune the set of constraints
produced.

keep iterating controls how often the main loop of
the algorithm is run. In its least restrictive form, it simply
continues to return true until an iteration occurs in which
S remains unchanged. Another possibility is to have it run
at most a constant numberT times. Such a metric would
improve the speed of the algorithm, and also incidentally
restrict the maximum number of literals permitted in an in-
variant.

allow union controls how new state-sets are added to
S. We use it to bias state-set creation in two ways: First, we
don’t allow state-setss1 ands2 to combine if the resulting
union is smaller than some threshold; this prevents the sys-
tem from wasting time with sets that are very small, and thus
unlikely to be useful. Second, we use it to prohibit state-sets
that overlap “too much” from combining, since such a com-
bination would not result in a significantly larger state-set.

The subroutineallow disjunct can be used to con-
strain the syntactic form of the disjunctions permitted. We
use it to eliminate tautologies by forbidding clauses that con-
tain both an atom and its negation, and also to restrict the
number of disjuncts allowed in a clause. If the world is a
propositionalized first-order world, then first-order syntac-
tic information is used here as well—for instance, to forbid
clauses from combining unless their first-order equivalents
have arguments in common.

Finally, if such first-order information is available, we
make use of it in a post-processing step to increase the size
of the set of invariants found. We generalize the invari-
ants we find to first-order form, and then re-specialize these



find-propositional-invariants (S1, . . . , Sk : state descriptions)

1. Σ← {` | ` ∈
Sk

i=1 Si or¬` ∈
Sk

i=1 Si}
2. S ← {f(`) | ` ∈ Σ} � a collection of state sets

3. for each̀ ∈ Σ, F(f(`))← {{f(`), ∅}}
4. for each̀ ∈ Σ,H(f(`))← H(f(`)) ∪ {`}.
5. H(∅)← {false}
6. whilekeep iterating

7. for each{κ, τ } ∈ {{κ, τ } | κ, τ ∈ S and{κ, τ } /∈ F(κ ∪ τ) andallow union(κ, τ)}
8. S ← S ∪ {κ ∪ τ }
9. F(κ ∪ τ)← F(κ ∪ τ) ∪ {{κ, τ }}

10. for eachs ∈ S in increasing order of‖s‖
11. for each{κ, τ } ∈ F(s)

12. H(κ ∪ τ)← H(κ ∪ τ) ∪


ϕκ ∨ ϕτ

˛̨̨̨
ϕκ ∈ H(κ) andϕτ ∈ H(τ) and
allow disjunct(ϕκ, ϕτ )

ff
13. outputH({1, 2, . . . , k})

Figure 1: The algorithm for finding propositional invariants

to give a set of propositional invariants that have the same
first-order signature as ones found, but were not themselves
found. We discard those that are not present in all the state-
descriptions supplied, and then add the remainder to the
list of invariants. For instance, if¬on-a-b ∨¬on-b-a
was detected, we would add additional invariants like
¬on-c-d ∨¬on-d-c , which could potentially have been
missed by the heuristics used.
Complexity The running time of the algorithm can be
controlled by the generic subroutines described above.
However, even using perfectly permissive versions of these
functions, its running time is exponential only in the number
of states, and not in the number of literals. This is because
the number of statesk serves as an upper bound on the num-
ber of literals in a clause.

Moreover, given some fixedk, it is theoretically possible
to pre-compute the union relationships between all the state-
sets there could be, making it unnecessary to run the first part
of the algorithm at all. It would, however, be necessary to
assume that every state-set was present, which makes such a
scheme too costly in practice.
Soundness and CompletenessThe algorithm is (a) sound
and (b) complete in the following restrictive senses: (a) ev-
ery hypothesis it outputs is in fact true in allk of the states
it is given; and (b) with perfectly permissive subroutines, it
finds every such clause of length uptok.

Here we merely state these theorems. For complete proofs
please see (Mukherji & Schubert 2005b).

Theorem 3 (Soundness).If the algorithm returns a hypoth-
esis of the form

ϕ =
m∨

i=1

`i

where(∀i : 1 ≤ i ≤ m)[`i ∈ Σ], then,

(∀j : 1 ≤ j ≤ k) [Sj |= ϕ]

Theorem 4 (Completeness).Letϕ be any clause ofm ≤ k
literals fromΣ—i.e.

ϕ =
m∨

i=1

`i

where(∀i : 1 ≤ i ≤ m)[`i ∈ Σ]. If ϕ is true in all k
states given, then the algorithm outputsϕ (using perfectly
permissive subroutines).

Rintanen’s Operator-based Approach
Given theSTRIPS assumption, operator-based approaches
have the potential to be sound. However, since the general
problem of invariant detection is PSPACE-complete, any
practical system that tries to maintain soundness must com-
promise on completeness. In this section, we will describe
one operator-based algorithm that makes this tradeoff.

Rintanen (2005; 2000) has given a sound, operator-based
algorithm for discovering invariants. The invariants it finds
are framed as propositional clauses that are at mostn literals
long, for some constantn. The algorithm is polynomial-
time bounded (although sometimes slow in practice, as we
demonstrate later) and sound, but not complete.

In what follows, operators are thought of as
〈precondition, effect〉 pairs, where both the precondi-
tion and the effect are conjunctive propositional formulas.
For any operatoro, precondition(o) is the set of literals in
o’s precondition, and effect(o) is the set of literals in its
effect.

In overview, the algorithm works as follows: it is iterative,
and at each stagei maintains a setCi of clauses. For eachi,
Ci contains only clauses that the algorithm knows to be true



in every state within distancei of the initial state (the dis-
tance between two statess1 ands2 is defined as the length of
the shortest sequence of operator applications that mapss1

to s2). To computeCi+1, the algorithm examines the clauses
of Ci one by one, and tries to prove that they remain true
after another operator application. Clauses that cannot be
proved to be inCi+1 are not necessarily dropped—instead,
they are weakened and re-tried. The algorithm halts when
two successive setsCi′ andCi′+1 are found to be identical;
it returns the final setCi′ .

The tight link between the setsCi and distancei from
the initial state yields a simple inductive proof of sound-
ness (Rintanen 2005).

The algorithm outlined above is shown in Figure 2; we
now proceed to a more detailed description. The typewritten
functions in the algorithm denote generic functions, which
will be described in more detail later.

The algorithm starts by settingC0 to the set of all one-
literal clauses that are true in the initial state. It then enters
the main loop, which terminates only whenCi andCi+1 are
equal.

In the main loop, it proceeds to construct successive
Ci+1’s from the correspondingCi’s. To do so, it first sets
Ci+1 to Ci, and then tries each clausecj of Ci+1 (lines 3–
15), the aim being to see ifcj can be proved to remain true
after one further operator application.

This proof is attempted as follows: The algorithm consid-
ers every operatoro and tries (usingpreserved ) to prove
thatcj must remain true after the application ofo. If it can do
so for everyo, it falls through the intervening loops andcj is
retained inCi+1 in line 14. If, on the other hand, this proof
attempt fails for someo, thencj is weakened (by means of
the functionweaken ) and the resulting (weaker) clauses are
checked—and, if necessary, further weakened—until a set is
found of clauses that do remain true aftero. This set is then
checked against falsification by the remaining operators in
the same way, and the set that results used to replacecj in
Ci+1 in line 14.

The generic functionpreserved —which tries to prove
that a clausec, assumed to be true in any world satisfying all
the clauses in a setC, must remain true after one application
of an operatoro—is clearly crucial. Rintanen’s version is
shown in Figure 3. This algorithm is self-explanatory: it
tries four different ways to prove thatc must remain true
after o; if they all fail, it concludes thatc need not remain
true.

The other generic function in Figure 2 isweaken . In
Rintanen’s system, this function just checks if the original
clause already has the maximumn disjuncts—in which case
it returns∅—and, if not, returns the set of all clauses ob-
tained by disjoining one literal to the original clause.

Operator-based Verification
EachCi in Rintanen’s algorithm is just a list of propositional
clauses, of varying sizes, that the algorithm knows to be true
in all states at distancei from the initial-state. Thus this
algorithm can be used soundly to verify a set of candidate
propositional hypothesesH as follows:

1. Ensure that all the candidate hypotheses are true in the
initial state

2. InitializeC0 toH, and

3. Replaceweaken with a function that always returns∅.

Line 1 and 2 above ensure thatC0 satisfies the corre-
sponding invariant; Rintanen’s algorithm is constructed so
as to ensure that this invariant is maintained by laterCis. Fi-
nally, line 3 ensures that unverifiable candidates are dropped,
rather than weakened.

This verification method is sound but not, of course,
complete (verification of an invariant is PSPACE-complete
in general). Thus it is possible that there will be false
negatives—true candidate invariants that fail of verification.

We know that all the invariants we find are true in the
initial state (indeed, they are true in allk of the states we are
given). Thus Line 1 is satisfied. We can thus use this method
to verify the invariants our state-based method produces.

Experiments
We evaluated our system in four standard planning prob-
lems: one instance of the Blocks world, two of the ATT Lo-
gistics world and one of the Towers of Hanoi world. We also
used Rintanen’s algorithm to verify the candidate invariants
we produced as described above. We compare the results
with those obtained by Rintanen’s operator-based algorithm
running by itself in the same domains.

Our Blocks world had 4 blocks and a table; our small Lo-
gistics world had 1 package, 2 cities, 2 airports, 2 other lo-
cations, 1 airplane, and 1 truck; our large Logistics world
had 8 packages, 3 cities, 3 airports, 3 other locations, 3 air-
planes, and 3 trucks; and our Towers of Hanoi world had 3
disks and 3 pegs.

We obtained a set of “random” reachable states by ran-
domly performing sequences of valid operations from the
initial state. We then randomly selected a subset of these
states to operate on. We used 12 states in the Blocks world,
the small Logistics world, and the Towers of Hanoi world,
and 16 states in the large Logistics world. The experiments
were conducted on a 2 GHz Pentium IV with 512 MB of
RAM.

Table 1 summarizes the invariants found. For each do-
main it shows how many candidate invariants our state-
based method generated and how many of these were ver-
ified by the operator-based verification scheme described
above. It also reports how many invariants the operator-
based approach was able to discover on its own. The last
column shows what percentage of the invariants detected by
Rintanen’s algorithm the hybrid system was able to generate
and verify.

Table 2 gives a comparison of the time taken by the
two systems in milliseconds. For our system, it shows the
amount of time taken for each of the two steps: state-based
candidate invariant generation and operator-based verifica-
tion. It also gives the time taken by Rintanen’s algorithm
running independently on the same domain, and finally re-
ports the speedup factor achieved by our generate-and-verify
approach.



invariants (Σ: set of atoms,I: initial state,O: operators,n: max disjunct size)

1. C0 ← {σ | σ ∈ Σ andI |= σ} ∪ {¬σ | σ ∈ Σ andI 6|= σ}
2. repeat withi← 0, 1, . . .

3. Ci+1 ← Ci

4. for each clausecj = `1 ∨ . . . ∨ `m in Ci+1

5. for each operatoro ∈ O

6. N ← {cj}
7. repeat

8. N ′ ← N

9. for each clauseck ∈ N

10. if not(preserved (ck, Ci, o)) then

11. N ← (N \ {ck}) ∪ weaken(ck, Σ, n)

12. endif

13. until(N = N ′)

14. Ci+1 ← (Ci+1 \ {cj}) ∪N

15. untilCi = Ci+1

16. returnCi

Figure 2: Rintanen’s sound operator-based algorithm

Domain Our Algorithm Rintanen %Found
#Found #Verified %Verified & Verified

Blocks 218 206 94.5 219 93.2
Logistics (small) 224 209 93.3 231 90.5
Logistics (large) 990 901 91.0 1385 65.0
Towers of Hanoi 81 77 95.1 108 71.3

Table 1: Number of invariants detected and verified

Evaluation
In evaluating these results, we will discuss three questions,
based on the roles we set out for state-based invariant dis-
covery methods in the Introduction.

1. How good is the state-based system in isolation?

2. How does the preliminary state-based candidate identifi-
cation affect the performance of the operator-based invari-
ant detector?

3. How well does the invariant-based verifier work?

Question 1 corresponds to the first potential role we de-
scribed for state-based methods in the Introduction—that of
standalone invariant detector. Questions 2 and 3 correspond
to two natural views of the hybrid invariant detection pro-
cess. If we view the state-based system primarily as a tech-
nique to improve the performance of the sound operator-
based invariant discovery system, then it is natural to ask,
with Question 2, how much value this enhancement adds.
If, on the other hand, we think of operator-based verification
as a post-processing filter for invariants discovered by the
state-based method, then Question 3 is more pertinent.

Standalone State-Based Invariant Detection Table 1
shows that between 91% and 95% of the invariants produced

by the state-based method in these domains were subse-
quently verified. Moreover, it is entirely possible—indeed,
very likely—that Rintanen’s algorithm failed to verify some
candidates that were in fact true invariants. Thus the vast
majority of the candidates that our system produced with-
out the use of operator information were genuine, and rep-
resented real features of the planning domain.

The time taken for the state-based production of invariants
varied from 30–340 msec. Rintanen’s algorithm on the same
domain required between 20550 and 494490 msec. Our al-
gorithm thus ran between 685 and 3962 times faster than
Rintanen’s well-known one.
State-based Preprocessing In this section, we evaluate
our system with respect to Question 2 above. If our aim
is to find verifiably true invariants, how well does the hybrid
system do in comparison with Rintanen’s operator-based al-
gorithm in isolation?

From Tables 1 and 2, we observe that the hybrid system
found between 65% and 90.5% of the true invariants that
Rintanen’s algorithm did. It is important to remember, how-
ever, that this decrease does not entail the loss of any form
of “completeness”; Rintanen’s algorithm in its original form
potentially misses many invariants too. The hybrid system



preserved (c = `1 ∨ . . . ∨ `r: a clause,C: a set of clauses,o: an operator)

1. if (∃c′ ∈ C) s.t. [c′ |= ¬ ∧(p∈precondition(o)) p] then

2. � Operatoro is not applicable

3. return true

4. else if (6 ∃i ∈ {1 . . . r}) s.t. [¬ `i ∈ effect(o)] then

5. � No literal of c is falsified byo

6. return true

7. else if (∃j ∈ {1 . . . r}) s.t. [j 6= i & `j ∈ effect(o)] then

8. � o forces some other literal`j of c to be true

9. return true

10. else if (∃k ∈ {1 . . . r}) s.t.k 6= i and¬ `k /∈ effects(o) and»
`k ∈ precondition(o) or

(∃p1 . . . pm ∈ precondition(o)) and(¬ p1 ∨ . . . ∨ ¬ pm ∨ `k) ∈ C

–
11. � Some other literal̀k of c was true and hasn’t been made false

12. return true

13. else

14. return false

15. endif

Figure 3: Rintanen’s version of the generic functionpreserved

Domain Our Algorithm Rintanen Speedup
Generation Verification Total Factor

Blocks 40 1060 1100 32640 30
Logistics (small) 80 200 280 316960 1132
Logistics (large) 340 48600 48940 494490 10
Towers of Hanoi 30 70 100 20550 206

Table 2: Time (msec) taken to find and/or verify invariants

found and verified upto 35% fewer invariants than the pure
operator-based one, but did so upto 1132 times faster.

Operator-based Verification Here we discuss our results
in the light of Question 3. If we treat Rintanen’s algorithm
as a filter, removing from the list of invariants discovered by
our state-based system those that are not easily verifiable,
how effective is it?

We have already remarked that Rintanen’s algorithm was
able to verify most of the invariants our state-based system
finds (91%–95%). It is very hard to tell what fraction of
those labeled “unverifiable” really were so. Without this fig-
ure, it is impossible fully to evaluate the performance of the
verifier, but it seems likely that it is doing a good job, since,
intuitively, an error rate of 5%–10% in our method seems
plausible in the small subsets of states we used.

The speed of the verifier was less impressive. Certainly,
it ran many times faster than Rintanen’s basic algorithm, but
this was still 2–143 times slower than the state-based system
in isolation.

Discussion

In cases where statistical invariants are useful (for instance,
in probabilistic or priority-based planners) there are signif-
icant speed advantages to using the standalone state-based
system. The efficiency gains are great enough that the sys-
tem can often be run multiple times on different subsets of
states to increase the number of invariants found and refine
the statistics of those generated.

In cases where statistical invariants cannot be used, either
the hybrid approach or the pure operator-based one must be
used. There is a trade-off between the number of invari-
ants found (higher for the pure operator-based system) and
efficiency (higher for the hybrid system). However, the effi-
ciency savings are so great that there is room to improve the
size of the hypothesis set generated by the hybrid system by
running the algorithm repeatedly, as above.

Finally, the Rintanen system is an effective verifier—
it seems to generate only a small proportion of false
negatives—but its running time is a very significant drag on
the efficiency of the hybrid system. Perhaps other operator-
based system (such asDISCOPLAN) might be more effi-



ciently adapted to the purpose.

Conclusions
We have described a system that finds propositional plan-
ning invariants from state descriptions, without requiring
knowledge of the planning operators. Although an induc-
tive process like ours cannot guarantee the correctness of
the laws it finds, we have shown that, in practice, the system
is robust enough to overwhelmingly identify only correct in-
variants.

Our approach’s weaker knowledge requirement means
that invariants can be identified in more realistic settings,
such as systems without theSTRIPSassumption, or whose
operators are only partially known. We have shown that our
system generates sets of invariants comparable with those of
systems in the literature that do require full operator knowl-
edge. Moreover, we have demonstrated efficiency improve-
ments of many orders of magnitude over one such system.

We have described one way to combine our state-based
method with an operator-based verifier for domains where
“likely” invariants are not good enough, and in which in-
formation about the operators is in fact available. We have
shown that the verifier is able to verify a large proportion
of the candidates found by our methods. We compared this
hybrid system to a well-known operator-based system, and
showed that it achieved up to a thousand-fold improvement
in efficiency at the price of a relatively small (<35%) drop
in number of invariants found.

One interesting direction for future research involves gen-
eralizing the propositional invariants found to first-order
form. We are working on a Bayesian model of type-structure
that will automatically find optimal generalizations for the
formulae. We hope that such a system might find invariants
that other systems miss.
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