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Temporal reasoning is essential for many artificial intelligence applications. To date, most research has concentrated
on temporal inference in isolation without considering the role it can play in a more general reasoning environment.
This paper takes an efficient temporal reasoner and extends its inferential capabilities to handle both strict and nonstrict
relations. The resulting temporal specialist is incorporated into a system intended for low-level reasoning in natural
language understanding. The specialist assists the resolution-based theorem prover in function evaluation, literal evalua-
tion, and generalized resolving and factoring. The combined system can do some proofs in just a few steps that would
normally require many. An example from the fully operational hybrid system is included.
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Le raisonnement temporel est essentiel dans de nombreuses applications relatives a I'intelligence artificielle. Jusqu’a
présent, la plupart des travaux de recherche ont porté sur I’inférence temporelle dans I'isolation sans tenir compte du
role qu’elle peut jouer dans un environnement de raisonnement plus général. Cet article traite d’un raisonneur temporel
efficace dont les capacités inférentielles ont été augmentées afin de pouvoir traiter les relations strictes et non strictes.
Le spécialiste temporel qui en résulte est intégré a un systéme congu pour le raisonnement bas-niveau en langage naturel.
Le spécialiste assiste le démonstrateur de théorémes basé sur la résolution dans ’évaluation des fonctions, I’évaluation
littérale et la fonction factorielle généralisée. Le systéme combiné peut vérifier des preuves en quelques étapes seulement
au lieu d’un grand nombre. Un exemple d’un systéme hybride entiérement opérationnel est fourni.

Mots clés : raisonnement temporel, méthodes d’inférence spéciales, résolution de théories, représentation des

connaissances.
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1. Introduction

Given certain explicit relationships among a set of events
or episodes, we would like to be able to infer additional rela-
tionships implicit in the ones given. For example, if the
events are part of a narrative, they will frequently form
sequences in which adjacent events are known to follow one
another; for such a sequence, we would like to be able to
infer, without much effort, that events earlier in the sequence
precede later ones, regardless of the number of intervening
events. In addition, if we are given information about the
durations or absolute times of some of the events, we would
like to be able to infer quantitative consequences of this
information, such as minimum and maximum elapsed time
between given events. These sorts of inferences are essential
in several areas of artificial intelligence, including story
understanding, causal reasoning, and planning (Allen 1984).

Since temporal orderings are transitive and durations
cumulative, such inferences in a typical general theorem
prover can be computationally expensive. To compensate
for this, researchers have tried to develop special representa-
tions and efficient methods for temporal inference. How-
ever, much of this work concentrates on temporal inference
in isolation, rather than on using such a mechanism in a
more general environment,

In this paper, we start with an efficient temporal specialist
based on Taugher and Schubert’s model (Taugher 1983;

LA shorter version of this paper appeared in the Proceedings
of the Seventh Biennial Conference of the Canadian Society for
the Computational Studies of Intelligence (CSCSI-88), Edmonton,
Alberta.

2Current affiliation: Department of Computer Science, Univer-
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[Traduit par la revue]

Schubert et al. 1983, 19873) which does temporal inference
in isolation. This specialist is unusual in the way it exploits
chains of events, such as are commonly found in narratives
(or plans), so as to achieve constant-time determination of
time order for many pairs of events. It does so without
requiring all events to lie on chains, and without computing
transitive closure. To further increase the effectiveness of
the specialist, its capabilities are extended here to make it
more complete and flexible; the major enhancement being
the ability to handle both strict and nonstrict time ordering.
Nonstrict ordering is often appropriate for the end of one
event in relation to the beginning of the next in a narrative
(where there may or may not be a delay between them), while
strict ordering is often appropriate for the beginning of an
event in relation to its end (when the event is of a type that
cannot transpire instantaneously). This, as well as con-
sistency and expressiveness considerations, required con-
siderable expansion of the set of temporal predicates and
argument patterns handled by the specialist.

We then incorporate the resulting specialist into a general
inference system with a resolution-based core based on
de Haan’s theorem prover (de Haan and Schubert 1986),
where it assists the theorem prover with function evaluation,
literal evaluation, and generalized resolution and factoring.
The temporal specialist bypasses the normal proof procedure
for the operations it handles, and can cut out numerous
proof steps that would otherwise be required. Temporal
literal evaluation uses the specialist’s timegraph representa-
tion to simplify assertions and resolvents generated by the
theorem prover. Function evaluation simplifies a term by

3The Schubert et al. (1987) paper is a revision of the 1983
paper. Henceforth only the 1987 paper will be referred to.
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evaluating it (for example, (start-of-el) can be simplified to
a constant, elstart). Generalized resolving and factoring
make use of Stickel’s partial theory resolution (Stickel 1983)
to quickly determine incompatibility or subordination of one
literal by another. This allows resolution and factoring to
be done where they usually cannot. For example, if we have
[a before-1 b] represented in the timegraph, we can factor
[~ [x during a] or [x during b]] to ~ [x during a], even though
the literals have different signs®. Similarly, if we know
[a before-1 b], we can resolve [x before a] with [x after b]
to the null clause, although the predicates are not identical
and the signs are the same”.

The hybrid system consisting of the resolution-based
theorem prover and the temporal specialist has been imple-
mented in Lucid Common Lisp and runs on a Sun 3/75.
An example is included from the operation of the system,
which is called ECONET®. This system and its descendent,
ECOLOGIC (Schubert and Hwang 1989), are to the best of
our knowledge the most powerful combinations of a general
deductive mechanism with a temporal specialist built to date.

2. The temporal specialist

Most current research in temporal inference uses two basic
types of representations — time intervals and time points.
Time intervals represent a given time period of finite length.
There are numerous simple relations (Allen 1983; Vilain and
Kautz 1986) that can be defined between two intervals
(equal, before, meets (i.e., immediately before), during,
Starts, ends, overlaps, and their inverses).

The other major representation used is time points. These
are abstract ‘‘instants’’ of time and are assumed to be non-
decomposable. Pairs of such time points can be used to
represent intervals. Only a few ordering relations can exist
between time points (<, <, >, =, =), and logical com-
binations of these can be used to define interval relations.
Although we take for granted that sentences in a narrative
typically involve implicit reference to events occupying inter-
vals of time, we have found the time-point representation
more convenient. Apart from being simpler, time-point rela-
tions are easily represented as graphs; a fact we have found
very helpful in the design of efficient algorithms’.

“Intuitively, this is because the known fact [a during b] sub-
sumes the given disjunction.

SBefore-1 means strictly before.

%The Eco-prefix stand for English conversation, reflecting our
larger goals (see de Haan and Schubert 1986).

Allen (1984) argues that time-point representations require
arbitrary assumptions about whether or not a property P holds
at a point of transition from P to - P (where P is some time-
dependent property). However, we claim that no such assumptions
are needed. For instance, our axiomatic theory of *‘sleeping’’ can
simply remain agnostic about whether, if Mary slept from midnight
till noon, Mary was still asleep at noon or no longer asleep. All
it would guarantee is that she was asleep at all moments of time
(strictly) between midnight and noon (and similarly, awake at all
moments of time strictly within some interval right after noon).
Of course, as long as we are using a standard logic, it will remain
provable that Mary was either asleep or not asleep at noon, but
that is very different from saying that it will either be provable
that she was asleep at noon or provable that she was not. Such
‘‘agnosticism’’ about beginnings and end points seems in accord
with intuition, and in no way hinders our ability to draw qualitative
and quantitative conclusions about event relations of practical
interest.

Various refinements of point-based representations have
been proposed. For example, Ladkin (1986) allowed for non-
convex intervals, consisting of discontinuous segments (so
that such ““intervals’’ need not contain all “‘points’’ within).
This gives rise to an extended algebra of interval operations
and relations, including operations for forming nonconvex
intervals from convex ones and vice versa. Leban ef al.
(1986) allowed for sequences of consecutive intervals called
calendars, which could be combined recursively into collec-
tions and could be used to “‘dice”’ intervals, i.e., to segment
them into units equal in size to the units of the calendar.
They could also “‘slice’’ periodic subsequences out of col-
lections, such as the fifth day of every week. Koomen (1989)
develops an axiomatic theory of recurrence in which it is
possible to reason about events repeated # times or until (or
while) some conditions hold. Interesting as these refinements
are, however, they fall largely outside the scope of current
research on temporal specialists (including ours). To the
extent that they are allowed for at all (e.g., by Koomen’s
TEMPOS), they are handled by traditional deductive methods
— though they can, of course, benefit from rapid evaluation
of simple temporal queries that arise in the course of a more
complex temporal inference. :

There is a trade-off between expressiveness and efficiency
of temporal representations. In particular, the achievable
efficiency depends on the extent to which disjunctive com-
binations of relations are allowed. Matters are further com-
plicated by the fact that the effect of allowing disjunction
depends on whether the representation is point-based or
interval-based. Without disjunction, the two types of rep-
resentation are equally expressive and allow computation
of the closure of pairwise time-interval or time-point rela-
tions in O(n?) time, where # is the number of intervals or
points. But if disjunctions of Allen’s interval relations are
allowed, the closure problem becomes NP-hard (Vilain and
Kautz 1986). Disjunctions of point relations are less expres-
sive but more tractable, allowing O (n?) closure. If arbitrary
conjunctive/disjunctive combinations of constraints on sets
of intervals or points are permitted, then, of course, the two
representations are expressively equivalent, and closure is
NP-hard in either case.

As a means of achieving acceptable efficiency in a system
handling disjunctions of interval relations, Allen (1983) sug-
gested that intervals be divided into groups, each subsumed
under a reference interval. Koomen (1988, 1989) subse-
quently developed an algorithm for automatically organizing
intervals into a hierarchy of groups, each group being within
a reference interval. In practice, his TIMELOGIC system has
yielded speedups in update efficiency (for adding a relation-
ship) of around 2.5, compared to updates for an unorga-
nized collection of interval relationships. Dean (1989) simi-
larly uses multiple levels of representation (with time points
at the lowest level) to achieve greater efficiency.

However, neither approach seems capable of providing
a humanlike ability to accept new relationships, and to deter-
mine implicit relationships on the basis of those previously
given, in constant or near-constant time (as appears to hap-
pen in narrative understanding). Beginning with Taugher
(1983), our strategy has been to determine empirically what
classes of temporal structures are important in practice, and
to design the specialist so as to handle as large a class of
the practically important relationships as possible without
sacrificing efficiency. Any inferences that fall outside the
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capabilities of the specialist can still be handled by the
general deductive mechanism, albeit much less efficiently.

In particular, detailed analyses by Taugher of time rela-
tionships taken from newspapers, a book of history, and
fairytales suggested that the time structure of narrative texts
consists almost entirely of nondisjunctive relationships,
forming substantial chains of consecutive events, with some
side chains and parallel chains, and with relatively few inter-
connections between chains. Our aim has therefore been to
find very fast (near-constant time) methods of inferring
ordering and duration information for such structures. Tem-
poral disjunctions, conjunctions, negations, and inequalities
(which are not handled directly by the temporal specialist)
may be expressed using the general inference mechanism.
The specialist serves to simplify these when possible, and
can also assist by comparing literals in such clauses during
resolution.

Among the axioms available to the general deduction algo-
rithm (and “‘built into”’ our specialist) is the transitivity
axiom

[ty = Ll &[Hh = Bl = [t =8]

where universal quantifiers are suppressed. Furthermore, if
either of the relations in the antecedent is strict, then so is
the consequent. Some other basic properties of the time
ordering are

[t = tz] @ [ < t;] or [t = t]
[t < ] = [ = 1]
[ s tl&h = 4ll = [h = 6]

where the last property is a consequence of the previous
properties. Additional axioms defining the meaning of the
predicates used by our temporal specialist in terms of €. <,
and = are included in a later section,

All of these axioms are satisfied by the real numbers. In
fact, for the purpose of reasoning about the quantifiable
aspects of time (dates and durations), it is natural to iden-
tify time with numbers, so that standard arithmetical opera-
tors can be used. Thus, the relationship between durations
and times satisfies

duration(#, £) = £, —
t, <t <t; = duration(s,, #;) = duration(f;, #) +
duration(t,, ;)

We also have equations relating bounds on times and dura-
tions (Taugher 1983, p. 71). Given two consecutive time
points ¢, and ¢, with lower and upper time bounds /;, u,,
I,, and u,, respectively, and lower and upper bounds / and
u on the duration between ¢, and #, (&, — t,), the following
hold:

L =6 =y
L=t <= u
I=th-H=u
Uy = Uy
L=

Hh =bh

For updating the bounds, the following consequences are
used:

E-u=ti=iw=1I

I+ =t =u+uy
e e R RS S AR

Proof that propagation of absolute time bounds establishes
the best possible bounds throughout a Taugher and Schubert
timegraph can be found in an appendix of Taugher (1983).

2.1. Taugher and Schubert’s representation

Taugher and Schubert’s representation (Taugher 1983;
Schubert et al. 1987) is based on time points. Besides being
able to determine relations between time points quickly
(often in constant time), it can represent and reason with
durations and absolute times. The representation uses a par-
tial order graph, called a timegraph, whose nodes represent
time points. Directed links between points indicate the given
relation between the two points (< or < depending on inter-
pretation). The timegraph is partitioned into chains, which
are defined as sets of points that are all linearly ordered with
respect to each other, with possible transitive arcs®. Links
between points in the same chain are in-chain links; between
points in different chains, cross-chain links. Each point has
a pseudo-time (a number) associated with it, which is arbi-
trary except that it respects the ordering relationship between
it and other points on the same chain. Chain and pseudo-
time information are calculated when the point is first
entered into the timegraph and are stored directly with the
point. Determining the relationship between any two points
in the same chain may be done in constant time simply by
comparing their pseudo-times, rather than following the
in-chain links.

To determine the relationship between points in different
chains, a search is required, but only the cross-chain links
need to be examined explicitly. A metagraph keeps track
of the cross-chain links effectively by maintaining a metanode
for each chain, and using the cross-chain links for links
between metanodes. As in-chain checking can be done in
constant time, a graph search is dependent on the number
of cross-chain links rather than the total number of time
points. Creation of all supporting graph structures (including
the metagraph) requires O (n + e) space and O (n + e) time,
where n is the number of time points and e is the number
of relations between them. Note that a timegraph amounts
to a set of atomic inequalities. Disjunctions such as [[a =
b] or [c = d]] or inequalities such as [a # b] cannot be
represented. This restriction, along with the exploitation of
time chains, is what enables the specialist to operate
efficiently.

Figure 1 shows an example timegraph and metagraph.
Following the cross-chain links, we can get that trianglel
is before square3, and squarel is before circle3, but no infor-
mation about triangle2 and square3. To see how new chains
are started, consider adding a point p between squarel and
square3. Since we don’t know the relationship between p
and square2, we must start a new chain for p to maintain
the linear ordering of the chains.

Furthermore, an absolute-time (date) minimum and maxi-
mum are stored with each time point. These are six-tuples
of the form (year month day hour minute second), where
each element may be numeric or symbolic (e.g., (1987 04
a 12 b ¢) represents some time at or after 12 a.m. and before
1 p.m. of some day in April 1987). Absolute-time maxima

8Schubert et al. (1987) clarify this point, as Taugher’s thesis
was not clear on it. Transitive arcs are in-chain links which do not
make up the “backbone” of the chain; that is, there are intervening
nodes and links. Figure 1 shows a transitive arc between circle2
and circle4.
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FIG. 1. Examples: () timegraph (each node represents a time
point); (b) metagraph (each node represents a chain), (—=)
in-chain links; (--->) cross-chain links.

propagate back to points before the given point (in the chain
or on other chains), and minima propagate forward. This
ensures that each point has the best absolute-time informa-
tion possible. Details may be found in Taugher (1983).
Absolute-time comparisons can sometimes be used to get
a relation in constant time between two points on different
chains, avoiding a metagraph search. Duration minima and
maxima (in seconds) are stored on the links between points.
These may affect the absolute times around them, which
are then propagated.

Insertion of a relation requires a constant amount of pro-
cessing in most cases, except for propagation of absolute
times. In the worst case, propagation may require going to
every point in the graph, although this is highly unlikely.
Occasionally, a chain may have to be renumbered, which
involves all the points in a single chain. (This can only hap-
pen if temporal relations are inserted in radically non-
chronological order.)

Intervals/events/episodes® are represented by their start
and end time points. The intervals are kept in a separate
table, which contains these end points. Interval relations are
defined as combinations of time-point relations between the
start and end points of the intervals.

*Interval, event, and episode are used interchangeably in this
paper.

2.2. Enhancements to the Taugher and Schubert model

Although this time model is efficient and does most of
the temporal reasoning we need, it requires several enhance-
ments. First, confusion surrounding whether a point
(a) could be inserted between two others (b and c) and
remain on the same chain'® was resolved by allowing this
to take place only when c has the smallest pseudo-time of
any in-chain descendant of b (i.e., is closest). Note that in
this case the link from b to ¢ will be a transitive arc (bypass-
ing one intermediate node, namely @) of the resulting chain.
Otherwise @ must be placed on a new chain.

Second, the original representation can represent either
strict relations (<, >, =) or nonstrict relations (=, =, =),
depending on whether links between points are interpreted
as < or =, but not both. Our goal here was to extend the
model to handle both, without losing the efficiency of the
original. For cross-chain relations, a flag indicating strict-
ness on the link itself is enough, since cross-chain links are
explicitly examined during a search. For points within the
same chain, however, examining each link for strictness
would mean that we could no longer determine in-chain rela-
tionships in constant time. Attempts to handle this by adding
another pseudo-time failed, because they either could not
represent all possible combinations or were not constant
time.

The successful method eventually found requires two extra
numbers — a maximum-pseudo and a minimum-pseudo.
The minimum-pseudo of a given point is the pseudo-time
of the nearest predecessor on the chain that the point can-
not be equal to; the maximum-pseudo, of the nearest succes-
sor on the chain that it cannot be equal to!!. To determine
the relation between two points, we first compare their
pseudo-times to find out what order the points are in. Then
we compare the pseudo-time of the first point with the range
given by the minimum and the maximum of the second point
(or vice versa). If it is properly within that range (i.e., greater
than the minimum and less than the maximum), the relation
given by the pseudo-times alone is nonstrict; otherwise, it
is strict. Propagation of minima and maxima maintains
strictness of relations throughout the chain. This propaga-
tion is similar to propagation of absolute times (minima
propagate forward, maxima back), although the comparison
at each propagation step may be shorter (only one number
to compare instead of a possible six).

To see how this works, consider the following example.
Supposea = b = ¢ = d < e, and then we assert ¢ < d:

Point a b (= d e
Pseudo-time'? 1 1000 2000 3000 4000
Minimum-pseudo —oo —oo —0 1 1
Maximum-pseudo 3000 +oo +0 +00 +o0

'®A CMPUT 551 (Artificial Intelligence I) class at the Univer-
sity of Alberta discovered this in 1984 while reimplementing the
algorithm as part of a project.

""This requires the addition of two additional pseudo-times to
represent pojnts before the beginning of the chain ( —e0) and beyond
the end (+4o0). To make chain renumbering easier, pointers to the
minimum and maximum points are kept, rather than their actual
pseudo times.

""The pseudo-times are numbers generated by the system which
reflect the ordering on the chain.
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Note wehavea < d,a = b, b = ¢, a < e, and so on, cor-
rectly. When comparing a and d, a’s pseudo-time, 1, is less
than d’s (3000), indicating that a s before 4 in the time
chain. Furthermore, a’s pseudo-time does not fit properly
within @’s minimum and maximum (1, +®), so @ < d. How-
ever, for ¢ and e, ¢’s pseudo-time (2000) is less than e’s
(4000), but now c’s pseudo-time does fit properly within ’s
minimum and maximum (1 and +o), so ¢ < e.
Now note what happens when we assert ¢ < e:

Point a b c d e
Pseudo-time 1 1000 2000 3000 4000
Minimum-pseudo —0 - —oo 1 2000

Maximum-pseudo 3000 4000 4000 +o0 +o0

Note that ¢’s maximum-pseudo has changed so that it no
longer includes e, and e’s minimum-pseudo has changed so
that it no longer includes ¢. Minimums propagate forward,
and maximums back, so b’s maximum was also changed to
the same as c’s. (If ¢ cannot be greater than some point,
neither can anything before c).

This method is flexible enough to handle any combina-
tion of relations, is easy to understand and implement, and
maintains the constant-time in-chain checking.

To evaluate whether a given relation holds, or to deter-
mine the strongest relation constraining two points, we now
need to consider that there may be numerous paths between
the points, some of which may represent strict relations, and
some nonstrict. To determine the relation between two
points, one must continue finding paths until a strict path
is found or all paths between the points have been found.
Within each chain, the strictness of the relation between
points is easily calculated in constant time (the range com-
parison) and used in the path determination. It is only where
there are several possible cross-chain links leaving a point
that there is a possibility for paths of different strictness.
Using a modified search algorithm, the time required is still
O(m).

With the additional capabilities for handling strict and
nonstrict ordering, we now need some way of telling the
temporal specialist which ordering to use. This was one
reason, among others, for some changes to the set of tem-
poral predicates recognized by the specialist. In Taugher’s
thesis, the following predicates were used for entry of
intervals/events:

a before b [c] = a end < b start
(both within time frame c if specified)
= g start = b end
(both within time frame c if specified)
a equal b = qgstart = b start and a end = b end
a during b [c] = if c specified, a between b and c;
otherwise @ within b

a after b [c]

During evaluation, some additional relations could be deter-
mined: overlaps, overlapped-by, contains, as well as some
weaker ones: starts-before, ends-before, starts-after, ends-
after, starts-equal, and ends-equal.

The predicates used in the temporal specialist implemented
in this paper are essentially the same ones that Taugher used,
with some exceptions. The weaker predicates have not been
implemented. During is used only in the sense of ‘‘within,”
enabling the option of a timeframe argument. Between was

introduced to handle the case where one argument is to be
inserted ‘‘during’” two others (see above). Except for
between, all predicates now have the optional third argu-
ment representing a time frame (instead of just before and
after). Usage of this argument leads to fewer chains being
built in the timegraph, resulting in a more nearly optimal
timegraph. All the predicates may be used for both entry
(assertion) and evaluation for consistency.

The original predicates are now considered “‘stems’’ and
may have one or two strictness values appended (stem
[ — strict1[ — strict2]]). Strictness values are

Strictness Value Meaning
-1 Strict (< or >)
-0 Meets (end points abut, i.e., are equal)
nil Nonstrict (= or =)

In terms of the temporal ordering relations <, =<, and =,
the following axioms define the temporal predicates used
by our specialist (arguments beginning with e represent inter-
vals (events); with ¢, time points);

[e; PRED eye;] & [e; PRED e;] &

PRED is one of: [(start-of e;) = (start-of e))] &
before, after, during, [(end-of e)) = (end-of e;)] &
contains, overlaps, [(start-of ey) = (start-of e;)] &
overiapped-by [fend-of e;) = [(end-of e3)]

[e; equal e,] & [(start-of e)) = (start-of e))] &
[(end-of e;) = (end-of e,)]

[#) equal 1)) e [t; = bl

[e; before e,) & [(end-of e)) = (start-of e;)]

[e; before-1 e;] & [(end-of e)) < (start-of e,)]

[e; before-0 e] & [(end-of e)) = (start-of e;)]

[Il before tz} L4 [t] = 12]

[1‘1 before-l tz] o [Il < tz]

[tl befofe-o 12] < [tl = tg]

le; after e;] & l(end-of e;) = (start-of e))]

[e, after-1 e,) & [(end-of e;) < (start-of e,)]

[e, after-0 e,) & [(end-of e;) = (start-of e))]

[, after t;) e [t = 1]

[t after-1 t,] e [, < 1]

[#, after-0 t;] e [ = 1]

[e; during e;] & [(start-of e)) = (start-of e))] &
[(end-of e;) = (end-of e,))]

le; during-1 e;] & [(start-of &) < (start-of e;)] &
[(end-of e;) = (end-of e,)]

[e; during-0 e,] & [(start-of e;) = (start-of e)] &

[(end-of e;) = (end-of e))]
[e; during-1-1 e,] & [(start-of e)) < (start-of e;)] &
[(end-of e;) < (end-of e))]
[(start-of e)) = (start-of e}))] &
[(end-of e)) < (end-of e,)]
[e; during—1 e,] & [(start-of e;) < (start-of e))] &
[(end-of e)) < (end-of e;)]
e, during-1-0 e;] & [(start-of e)) < (start-of e;)] &
[(end-of e;) = (end-of )]
[e; during-0-0 e;] & [(start-of e;) = (start-of e))] &
[(end-of e)) = (end-of e;)]

[e, during-0-1 e;] &
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=> 2(E x_episode (W allve x) & ((x after all-talk) or (x after-1 (end-of eat-goodies))))

Entering disproof clauses:
(W ALIVE SCON-380) (depth 1)

((SCON-380 AFTER ALL-TALK) or (SCON-380 AFTER-1 (END-OF EAT-GOODIES))) (depth 1)

Time Specialist: END-OF (EAT-GOODIES) evaluated to EAT-GOODIESEND
((SCON-380 AFTER ALL-TALK) or (SCON-380 AFTER-1 EAT-GOODIESEND)) (depth 1)

Time Specialist: Trying to factor (SCON-380 AFTER ALL-TALK) and (SCON-380 AFTER-1 EAT-GOODIESEND)
Time Specialist: Factored to (SCON-380 AFTER ALL-TAILK)

(SCON-380 AFTER ALL-TALK) (depth 1)

Resolved (W ALIVE SCON-380) in the disproof clause
(W ALIVE SCON-380) '

against (" U-VAR-2 ALIVE EPISODE-VAR-1) in (" U-VAR-1 KILL U-VAR-2 EPISODE-VAR-2)
or (" EPISODE-VAR-1 AFTER EPISODE-VAR-2) or (- U-VAR-2 ALIVE EPISODE-VAR-1))

yielding ...

(" SCON-380 AFTER EPISODE-VAR-1) or (" U-VAR-1 KILL W EPISODE-VAR-1)) (depth 2)

Resolved (" U-VAR-1 KILL W EPISODE-VAR-1) in the disproof clause
(C SCON-380 AFTER EPISODE-VAR-1) or (" U-VAR-1 KILL W EPISODE-VAR-1))
against (WOODCUTTER KILL W WOLF-DEMISE) in (WOODCUTTER KILL W WOLF-DEMISE)

yielding ...
(" SCON-380 AFTER WOLF-DEMISE) (depth 3)

Time Specialist: Trying to resolve (* SCON-380 AFTER WOLF-DEMISE) against (SCON-380 AFTER ALL-TALK)

Time Specialist: Resolved with residues null

Resolved (" SCON-380 AFTER WOLF-DEMISE) in the disproof clause

(" SCON-380 AFTER WOLF-DEMISE)

against (SCON-380 AFTER ALL-TALK) in (SCON-380 AFTER ALL-TALK)

yielding the null clause.

FiG. 2. Example of ECONET in operation.

NO
le; during—0 e,) ® [(start-of e;) < (start-of e,)] &
[(end-of e)) = (end-of e,)]
le) contains e,) & [(start-of e)) = (start-of e,)] &
[(end-of e;) = (end-of e,)]
[e; overlaps e;] ® [(start-of e)) < (start-of e,)] &

[(end-of e;) = (end-of e,)]

le; overlapped-by e,) :

& [(start-of e;) = (start-of e))] &
[(end-of e;) <= (end-of e,)]
e, between eyeq] & [(end-of e)) = (start- of e))] &

[(end-of e)) < (start-of e;)]

Note that this assumes the existence of functions start-of,
which returns the time point corresponding to the start of
an interval, and end-of, which returns the time point corre-
sponding to the end of an interval. For brevity, not all
predicates are represented here: contains, overlaps,
overlapped-by, and between have stem endings like during,
Axioms for these predicates with strictness indicators can
be determined by noting the effect of the strictness indicators
on the during axiom.

The new specialist is quite flexible, accepting episodes,
time points, or absolute times in any combination as argu-

ments for the predicates (except the timeframe, which must
be an episode), where Taugher’s programs were quite rigid
in the argument patterns accepted. On assertion, if an argu-
ment is an absolute time instead of a named time point or
episode, the appropriate absolute-time bound of the other
argument is updated. For example,

(a before (date 1987 04 *01 *00 *00 ’00))

would update the upper bound of ¢’s absolute time (the max-
imum). For evaluation, the appropriate bound is compared
against the absolute time, or two absolute times may be
compared.

In addition, some new predicates have been introduced
to handle durations: at-most-before, at-most-after, at-least-
before, at-least-after, exactly-before, and exactly-after.
These take three arguments, of which the first two may be
events or time points (no absolute times) and the third
denotes the duration between the two in seconds. Af-most
implies maximum duration, at-least- implies minimum dura-
tion, and exactly- involves both. To determine the duration
between any two points, an exhaustive search must be done
between those points, following both in-chain and cross-
chain links, to get the best duration bounds (the greatest min-
imum and the smallest maximum). Duration information
on arcs and implicit in absolute times is used. Details are
in Miller (1988).
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3. Use of the temporal specialist in a more general
environment

The main system for representing knowledge and making
inferences uses a resolution-based theorem prover featuring
automatic classification of propositions, topical access of
clauses for resolution, and type inheritance through a type
hierarchy (de Haan and Schubert 1986). This system is
designed to handle large, diverse bodies of knowledge effi-
ciently. Although the topical access and type hierarchy
improve the performance of the theorem prover dramatic-
ally, it can still suffer from the computational explosions
to which all theorem provers are prone. This is especially
true when working with the transitive relations involved in
temporal inference, so that it is desirable to delegate tem-
poral inference to the temporal specialist as far as possible.

Interesting proofs we can ask the system to do involve
“mixed”’ inference (i.e., involving both temporal relations
and others). For example, in the story of Little Red Riding
Hood, deciding whether the wolf was alive when everyone
was eating the goodies in the basket requires using knowl-
edge that one can only be alive before one is killed, and tem-
poral inference to determine that the episode of eating the
goodies came after the episode of killing the wolf. Other
examples of the uses of such “‘mixed’’ reasoning in planning
and problem-solving can be found in Allen and Kautz
(19835).

Further extensions were necessary to integrate the special-
ist into the main system. The main system organizes modal
propositions into subnets, with one subset for each person’s
mental world. As the subnets may contain contradictory
information, the temporal specialist also maintains a sepa-
rate timegraph (and metagraph) for each subnet 3. Simple
temporal evaluations may be done within the subnets,
although at this stage no real modal inference is done by
either the temporal specialist or the main theorem prover.
Upon completion of proofs by contradiction, the main sys-
tem retracts all changes made. To remain consistent, the
temporal specialist had to be extended to have this capability
as well, which is used extensively in generalized resolving
and factoring. Changes are stored at an atomic level and
retracted in reverse order.

Schubert et al. (1987) suggest that a specialist can assist
a theorem prover in literal evaluation and generalized resolu-
tion and factoring. In addition, the specialist can be used
to simplify literals by evaluating functional terms. Assertions
must also be entered into the specialist representation for
use in future evaluations (only positive — non-negated —
literals are entered). Most of the requirements for simple
literal evaluation and entry have already been discussed.
Generalized resolution and factoring make use of both the
entry and evaluation phases to check for resolving or fac-
toring actions. Although during the entry and evaluation
phases, only literals with constant arguments are considered,
during generalized resolution, this is extended to include
variables as well (so one might temporarily get a time point
for the variable x in the timegraph).

13This assumes that all temporal propositions within a mental
world are consistent,

Figure 2 shows an example of the system in operation'?,
trying to answer a question about the story of Little Red
Riding Hood, similar to the one mentioned earlier. The ques-
tion the system tries to answer is

Was the wolf alive at some time after everyone talked or
after every one ate the goodies?"

which we translate to'6

9E x__episode[W alive x] & [[x after all-talk]
or [x after-1 (end-of eat goodies)]l]

In this translation, it is taken for granted that there is a noun
phrase referent determination process which has selected the
episode here called all-talk as the referent of everyone talked,
and eat-goodies for everyone ate the goodies. Similarly, W
is the individual referred to as the wolf. It is sometimes
possible to handle this with existential quantification (e.g.,
[E x__episode [everyone eat goodies x] & [x ...1]), but this
only works satisfactorily when a ‘‘yes’” answer is expected.
If a “‘no’’ answer is expected, the system currently answers
“unknown,’’ as there may be events fitting that description
it doesn’t know about (default reasoning would be required
otherwise).

The example in Fig. 2 required about 57.5 s — just under
a minute. This was with a knowledge base consisting of
about 150 propositions (which are normalized into over
450 clauses), some for general knowledge and some for the
simplified version of the Little Red Riding Hood story we
use for testing (it consists of over 70 propositions, 20 of
which temporally relate episodes in the story). The number
of steps required for the proof was small, although the
operations accelerated by the specialist would normally have
required many applications of temporal axioms.

Inferences made by the specialist are essentially applica-
tions of axioms of time theory. For example, the ordering
inferences are based on the transitivity axiom stated earlier.
As we shall see shortly, generalized resolution and factoring
embody some other useful axioms. Because the inferences
are basically resolution inferences with the temporal axioms,
the specialist inherits the soundness of resolution.

Completeness could be also proven for certain classes of
premises for this specialist; for example, it is clearly com-
plete for < and < for arbitrary sets of ground inequalities.

l4This example shows actual output of the system, edited for
clarity and brevity. Bold print is user input; the rest, system out-
put. The existentially quantified variable x in the question has been
converted to the skolem constant SCON-380 used in the proof.
The timegraph contained, among other relations, that all-falk is
during eat-goodies, and that eat-goodies is after wolf-demise, the
episode corresponding to the woodcutter killing the wolf.

15Although somewhat awkard, this question illustrates all the
areas of temporal specialist assistance.

16The question is phrased using after-1, and specifying end-of
to show that the system can actually handle predicates of different
strictness, and combinations of time points and events. The ques-
tions could just as easily have been phrased as [E x__episode
[W alive x] & [[x after all-falk] or [x after eat-goodies]]]. Also note
that a sort tag (__episode) is attached to some terms; this is used
to differentiate terms so that the temporal specialist is called only
when appropriate.
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These ordering inferences are the main function of the tem-
poral specialist. In outline, the proof is as follows. The algo-
rithm confirms 7y < ¢, for any two of the given time points
Iy and ¢,, just in case there is a path from ¢, to #,. By the
transitivity axiom, this inference is sound. Moreover, sup-
pose that this procedure is not complete, so that the ground
inequalities represented by the graph along with the time
axioms logically entail #; = ¢, but there is no path from
fy to f,. But it is an elementary property of acyclic directed
graphs that for any two vertices not connected by a directed
path, one can insert an edge from either of these vertices
to the other, without creating any cycles. Since any acyclic
graph is consistent with the time axioms (e.g., there is always
a real number interpretation of the vertices satisfying the
ordering constraints, even when all of them are interpreted
strictly), it follows that #, < #; can be consistently added
to the premises, and hence #, < ¢, cannot be a consequence.

Furthermore, the algorithm confirms #, < ¢, just in case

there is a path from ¢, to ¢, containing a strict ordering -
link. Again soundness follows from (the strict version of)

the transitivity axiom. If there is no path from #, to t,,
completeness follows as above. If there are paths, but they
consist entirely of = links, then all these paths can be col-
lapsed into a single vertex without creating any cycles in the
timegraph as a whole (again a property of acyclic graphs).
Hence, t, can be interpreted as equal to ¢, without incon-
sistency (e.g., using real numbers as a model), and so f; <
f, cannot be a consequence.

We will not attempt to establish any further completeness
claims here, as this is not the emphasis of this research. The
objective is to accelerate inference in cases that frequently
arise in practice (such as transitive inferencing across ground
inequalities), and for this objective, the issue of completeness
with respect to certain restricted classes of premises is some-
what irrelevant.

In the next sections, we gloss over the interface mecha-
nism between the theorem prover and the temporal special-
ist, and concentrate on the operation of the temporal special-
ist. Details on the interface itself may be found in Miller
and Schubert (1988b) and Miller (1988).

3.1. Function evaluation

During literal simplification, the temporal specialist may
evaluate temporal functional terms to a more usable entity
than the original term. The functions most commonly used
are start-of and end-of, which return the time point for the
start and end of an episode, respectively, and dafe, which
returns an absolute-time representation recognized by the
temporal specialist, given arguments for the year, month,
day, hour, minute, and second (not all of which will neces-
sarily be numbers — some may be symbols representing
unknown or inexact values).

3.2. Literal evaluation

When evaluating whether a literal is true, one or more
of the evaluation techniques already discussed are used. If
the predicate is a duration predicate (e.g., af-most-before),
the duration is calculated and compared to the one given.
For other predicates, if any arguments are absolute times,
an absolute-time comparison is done. Qtherwise, the ques-
tion is split into several time-point-evaluation questions, each
of which uses the following:

1. If the points are on the same chain, a pseudo-time com-
parison is done.

2. For points on different chains, if both have absolute times
associated with them, the absolute times are compared,

3. If this fails, a metagraph search, as described earlier, is
done. If a path cannot be found from the first point to
the second, a search is done to find a path from the
second to the first.

The example shown in Fig. 2 does not overtly show inci-
dences of literal evaluation, but it was used during the
generalized factoring and resolving steps there.

3.3. Generalized resolution and factoring

Schubert ef al. (1987) show some examples of when
generalized resolving and factoring can be done by a tem-
poral specialist. Although some of the inferences made for
generalized resolution and factoring are not as ‘‘obvious’’
as simple evaluations are, they do reflect the properties of
temporal relations mentioned earlier, such as transitivity.
Some examples of generalized resolving (Schubert ef al.
1987):

[t = t'] against [t' = ]

gives a residue!’ of [r = t’]. This inference is equivalent
to two ordinary resolution steps based on the antisymmetry
axiom

[ =6hl&[h = 4] = [t = 1]

Another example, using additional information from the
timegraph:

-1[c = ¢] against [¢' = ]

along with timegraph information [c¢ = ¢'], gives the null
clause. This can be determined by resolution inferences with
the transitivity axiom, [¢ < ¢']and [¢’ = 7], giving [c = {],
which directly contradicts = [c = ¢], giving the null clause.
An example of generalized factoring, using timegraph
information:

[c = flor[c' = (1]

again with timegraph knowledge that [¢ < c¢'], gives
generalized factor [¢c = ¢], which can be obtained in two
ordinary resolution steps and one ordinary factoring step
by applying the transitivity axiom. (However, note that the
preceding examples of generalized resolution and factoring
may in a sense condense arbitrarily many ordinary resolu-
tion steps, since the relationship between ¢ and ¢’ may be
a consequence of arbitrarily many facts stored in the
timegraph.)

There are many more cases where such operations can be
useful, dependent mainly on information already asserted
in the timegraph. Determining whether two literals are
resolvable or factorable involves similar methods, so they
will be described together. The temporal specialist deter-
mines posible unifications that may lead to resolving or fac-

A residue (from Stickel’s partial theory resolution (Stickel
1983)) is a literal (or set of literals) whose negation would make
the two literals incompatible (resolvable in one or more steps to
the null clause).
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toring actions, and uses the timegraph as a medium in which
to compare the literals after substitution.

When resolving or factoring, unification of the arguments
of the two literals is required. Since the predicates in the
two literals are not necessarily identical, there is no restric-
tion that the arguments be unified in the typical order (i.e.,
first from literall with first from literal2, and so on). The
temporal specialist tries all possible unifications, testing after
each to see if there is a resolving or factoring action that
can be taken. Note that the two literals do nof need to have
the same number of arguments'8, For example,

Literals Unifications

(x after y) (x/e1, y/ey), (x/e,, y/ej),
Vs, (x/ey, y/e), (x/e,, y/ey),
(e, between e, e;) (x/ey, y/ey), (x/e;, y/ey)

These can be obtained by using the definitions of the pre-
dicates and axioms about temporal predicates. Using the
definitions, we get

[(start-of x) = (end-of y)]
vs.
[[(start-of e,) = (end-of e,)] and [(end-of e)) =<
(start-of e3)]]
The unification (x/e,, y/e,) is available by unifying the first
literal (the one with x and y) with the first literal in the con-

junction. The second literal in the conjunction can be writ-
ten as

[(start-of e;) = (end-of e))]
using the axiom
(AxAy [x = y] = [y = x])
which unifies in the traditional way against the first literal,
giving us unification (x/e;, y/e;). Applying the axiom
(Ax[(start-of x) = (end-of x)])
plus transitivity, gives us the relations
(start-of e;) < (end-of e;) = (start-of e)) =< (end-of ) =
(start-of e;) = (end-of e;)

From these inferences, [(end-of e;) < (start-of e;)] will give
us unification (x/e;, y/e,). The remaining three unifications
can be obtained by applying the axiom

AxAy [x = y] = [y <x])
to [(start-of x) = (end-of y)], yielding
= [(start-of x) < (end-of y)]

13The only restriction on the unifications is that the timeframe
argument, if present, not be unified with anything, That argument
is used on entry only to generate a more nearly optimal timegraph
and is not essential for later reasoning; the relation given by the
first two arguments with the predicate is the important one. This
means fewer unifications to be tried for factoring or resolution,
and therefore these attempts will be faster.

By separating the disjunctions into < and = literals, for
example,

[[(start-of e;) < (end-of e})] or [(start-of e;) =
(end-of e)]]

and unifying against the negated literal, we get the final three
unifications, (x/e,, y/e,), (x/e,, y/e3), and (x/e,, y/ey).

For each unification, we try to enter one literal into the
timegraph and compare the other one to it within the time-
graph. Use of the timegraph allows comparisons against the
newly entered literal (what we started out to do), as well as
other temporal relations asserted earlier (which enables the
temporal specialist to shortcut the proof so drastically). Dur-
ing a generalized resolving attempt, we are looking for a
unification that makes the two literals incompatible, or
incompatible with the negation of a residue. During a gener-
alized factoring attempt, we look for a unification that
makes one literal unnecessary. Details of the algorithm may
be found in Miller (1988).

4. Conclusions

We have incorporated an efficient temporal reasoner into
a general reasoning environment, handling most of the tem-
poral inferences needed for story understanding. As dis-
cussed below, other applications are expected as well.

The extensions to Taugher and Schubert’s temporal
specialist itself enabled it to handle more temporal inferences,
including reasoning with both strict and nonstrict relations,
at modest computational expense. The specialist accelerates
the main theorem prover by performing literal evaluation
and generalized resolution and factoring, as well as simplify-
ing literals by functional term evaluation. The resulting
hybrid can do some proofs that would normally require
numerous steps in just a few. Although the temporal special-
ist slows down single steps of the system (because of the
greater complexity of tests for resolvability or factorability),
the drastic reduction in the lengths of proofs involving time
relationships allows many previously infeasible deductions
to be completed in reasonable time.

One drawback in such a system is that some of the
inferences are hidden within the temporal specialist and are
thus “‘invisible.”’ However, since the type of temporal
inference performed by the specialist is well understood and
almost ‘‘obvious,’’ justification is not essential, provided
bugs and ‘‘holes’’ have been eliminated.

Since the completion of the temporal specialist, several
other specialists have been added to the system (namely, a
number/arithmetic specialist, a color specialist, and a set/list
specialist), using the same interface method. Effective,
uniform communication between specialists has also been
added. The interface used for this hybrid in described in
Miller (1988) and Miller and Schubert (19885).

As a general reasoning system with a fully integrated tem-
poral specialist, our system appears to be something of a
rarity. For example, the lengthy bibliography by Frisch and
Scherl (1988) on hybrid systems has almost no entries on
systems of this type. Perhaps the most similar system is
Koomen’s TEMPOS (Koomen 1989), which is an extension
of TIMELOGIC layered on top of the Rhet (or rhetorical) sys-
tem of Allen and Miller (1988). (Rhet is a Horn-clause
theorem prover with taxonomic and equality specialists,
besides the temporal one. It is the successor to the HORNE
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system of Allen er a/. (1984).) The tasks carried out by
TIMELOGIC for TEMPOS are mainly of the type, ‘‘Find all
instances of temporal relation x(y, z),”’ wheré y and z may
be interval constants or variables. Naturally, verification of
particular relationships is a special case. The main difference
from ECONET is that TEMPOS uses closure operations to
maintain time relations in rapidly retrievable form, with con-
siderable costs in update time and storage, while the ECONET
time specialist obtains near-constant time operation without
closure. This, of course, holds only for the kinds of story-
based data we have focused on. TIMELOGIC is certainly more
expressive, in its handling of disjunctions, retrieval requests
with variables, and recurrence. ECONET handles disjunctions
and variables through the general reasoner, and it remains
unclear whether in the applications that were of interest to
Koomen it handles them more effectively or less effectively
than TEMPOS. Our time specialist offers more general types
of assistance to ECONET in its pursuit of refutation proofs,
through generalized resolving and factoring. These are
dependent on efficient assertion and retraction of time infor-
mation (since clauses generated in a refutation proof may
be false and have to be retracted), and thus would be very
hard to implement in a closure-based system.

Dean’s system TMM (Dean 1989) is expressively nearly
equivalent to ours, allowing a (nondisjunctive) set of con-
straints in the form of dates and bounds on temporal
distances. One difference is that our system allows for (par-
tially or completely) symbolic dates; on the other hand,
TMM does a certain amount of cause-effect reasoning, based
on rules connecting the occurrence of one type of event with
another. (In our approach, cause-effect reasoning is handled
by the general reasoner, which transmits times associated
with inferred causes or effects to the time specialist.) In its
organization, TMM is much more similar to Koomen’s sys-
tem than to ours; i.e., it uses a hierarchical organization to
limit the complexity of constraint propagation (partial
closure), and its main function is rapid retrieval of sets of
events satisfying given temporal constraints. Time relation-
ships are determined by tree search and heuristic search, with
no use of anything analogous to our constant-time ‘‘pseudo-
time’’ comparisons. It is described as Prolog-compatible,
and as such can presumably be interfaced to a more general
reasoning system in much the same way as TEMPOS, though
no details are given. Like TEMPOS, it is unlikely to lend itself
to more general support of a theorem prover through gener-
alized resolving and factoring.

Plaisted (1986) describes a method for combining a tem-
poral logic with specialized theories, but it does not easily
extend to quantified theories (while our hybrid includes a
general method which does handle quantifiers).

Our temporal specialist was mainly inspired by the
requirements of natural language understanding. One inter-
esting direction for further research concerns possible appli-
cations to other domains, such as planning. In planning (as
opposed to story understanding), temporal constraints may
accumulate in a highly nonchronological order. In such a
situation, the timegraphs built by the temporal specialist may
be far from optimal, containing far more chains and cross-
links than necessary, i.e., large m. Therefore, it would be
appropriate to perform occasional “‘optimizations’’ which
restructure the graph to reduce m. This could include ““merg-
ing’’ chains where the end of one is before the beginning

of the other — either because of an actual link from one
to the other or because the absolute-time bounds of the
respective end and beginning don’t overlap.

Another issue relevant to the planning domain concerns
the practical utility of disjunction. Allen and Koomen (1983)
provide interesting examples of how disjunctive domain and
task constraints can be used in the development of plans.
In these examples, constraint propagation suffices to deter-
mine plans to achieve given disjunctive goals, which would
otherwise require STRIPS-like search. On the other hand,
there is a very substantial computational price paid for
general disjunction-handling, and as stated above, it remains
unclear whether shifting disjunction-handling from the
general reasoner to the specialist yields significant overall
improvements (especially if the general reasoner — like that
of ECOSYSTEM — employs a better proof strategy than sim-
ple backtrack search). Dean (1989) states that his represen-
tation emerged from a series of attempts to provide a
general, practical tool for temporal information manage-
ment, with apparent emphasis on planning and scheduling
problems. Since this quest did not lead him to a disjunctive
representation, but rather one expressively similar to ours,
there seems to be cause for optimism about planning applica-
tions of our approach. Also, planning requires the genera-
tion of alternative time graphs even when disjunctive rela-
tionships are allowed (Koomen 1988), and this is likely to
be easier for our representation than for Koomen’s or
Dean’s, because of its simple, spatially economic structure
and the speed of updates. However, a definite judgement
must await further research, especially into the question of
‘“‘optimizing’’ timegraphs. In the meantime, our temporal
specialist is serving as a very stable and useful component
of our successive inference systems (ECONET and ECOLOGIC)
aimed at story understanding.
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