
Final Exam

CSC 252

9 May 2009

Directions; PLEASE READ

This exam has 20 questions, some of which have subparts. Each question indicates its point
value. The total is 88 points. Questions 18 and 20 are for extra credit only, and not included
in the 88; they won’t factor into your exam score, but may help to raise your end-of-semester
letter grade.

This is a closed-book exam. You must put away all books and notes (except for a dic-
tionary, if you want one). Please confine your answers to the space provided. For multiple
choice questions, darken the circle next to the best answer. Be sure to read all candidate
answers before choosing.

In the interest of fairness, the proctor will decline to answer questions during the exam.
If you are unsure what a question is asking, make a reasonable assumption and state it as
part of your answer.

Remaining exams will be collected promptly at 11:30.

Freebie

1. (3 points) Put your name on every page (so if I lose a staple I won’t lose your answers).

Multiple choice (3 points each). Choose the most reasonable answer in each case.

2. The purpose of bias in IEEE floating-point numbers is to

© a.X ensure that nonnegative numbers are ordered the same as in integer arithmetic

© b. avoid the floating-point “gap” near zero

© c. distinguish normal and “not a number” (NaN) values

© d. increase numeric stability in the face of rounding errors

3. Which of the following can be represented precisely in single-precision IEEE floating
point?

© a. 1.25× 2−150

© b. 6.3

© c.X 9.375

© d. all of the above
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4. Many operations that can be performed in a single instruction on the x86 require more
than one instruction on most RISC machines. Which of the following usually does
have a single-instruction equivalent?

© a.X ja foo, where foo is a label in the current subroutine

© b. incl foo, where foo is a global variable

© c. leal -12(%ebp,%esi,4)

© d. movl $0x1a2b3c4d, %eax

5. Why didn’t RISC machines appear before the early 1980s?

© a. Nobody thought of them until then.

© b.X Until then you couldn’t fit enough transistors on a chip to build a pipelined

machine.

© c. That’s when IBM’s patent on pipelining expired.

© d. That’s when the gap between processor and memory speeds reached the point at
which pipelining became profitable.

6. What is the cycle time of a 2.5GHz processor?

© a. 4 ns

© b. 2.5 ns

© c.X 0.4 ns

© d. 0.25 ns

7. Why are the keyboard and main memory usually connected to different buses?

© a. To allow the keyboard to communicate with the processor at the same time that
the disk is communicating with memory.

© b.X To reduce the cost of the keyboard interface.

© c. To minimize the cost of handling keyboard interrupts.

© d. all of the above

8. A memory architect might increase the associativity of a cache in order to

© a. decrease hit time

© b. decrease miss penalty

© c. exploit spatial locality

© d.X reduce the likelihood of thrashing
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Short answer (5 points each). Each answer in this section should be a single sentence.

9. Compared to processors of the 1970s, why is branch prediction so much more important
today?

Answer: Because modern processors are deeply pipelined, and we need to predict
through branches in order to avoid bubbles.

10. Compared to processors of the 1970s, why are caches so much more important today?

Answer: Because processor speed has improved much more than memory speed, so
the distance to memory in cycles has grown dramatically.

11. What is the principal difference in Linux between a process (created with fork) and a
thread (created with pthread_create)?

Answer: Every process has its own address space. Threads of the same program
share an address space.

12. Why can’t we use a lock to protect a data structure shared between the main program
and a signal handler?

Answer: Because if the lock is held by the main program when the signal occurs,
deadlock can result.

13. (4 points) Consider the improvements made over the last 20 years in

3 processor speed 1 memory (DRAM) speed

2 memory capacity 4 disk capacity

Number these from smallest improvement (1) to largest improvement (4).

14. (4 points) Consider the following divisions of disk storage space:

3 cylinder 4 platter

1 sector 2 track

Number these from smallest size (1) to largest size (4).

Essay/problem solving Points as marked.

15. (9 points) As we discussed in class, the time to run a program is the product of (a) the
number of instructions executed, (b) the average number of cycles per instruction, and
(c) the cycle time. For each of these factors, give two examples of techniques that could
be used (by the programmer, compiler, or architect) to improve system performance.
(Be specific. For example, don’t say “reduce the cycle time”; tell me what an architect
could do that would allow the cycle time to be reduced.)
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Answer: There are many possible answers to this question. Here are just a few.

We can reduce the number of instructions executed by picking a better algorithm,
applying compiler techniques that eliminate redundant computation, or designing an
ISA that averages more work per instruction.

We can reduce the average number of cycles per instruction through deeper or wider
pipelining, better branch prediction, register renaming, out-of-order execution, etc. In
the compiler, we can choose instructions that execute more quickly (e.g., shift instead
of multiply), schedule instructions to minimize pipeline stalls, or rename registers in
software to eliminate W–W and R–W dependences.

We can reduce the cycle time if we use smaller transistors, higher voltage, or shallower
circuits (fewer logic levels per cycle).

16. (9 points) Consider a 2 MB, 4-way associative, unified level-2 cache with a 32-byte
block size and 32-bit physical addresses.

(a) How many sets does the cache have?

Answer: Each set contains four 32-byte blocks, for a total of 128 = 27 bytes per
set. Since the whole cache is 2MB = 221 bytes, we have 221−7 = 16K sets.

(b) How many bits are required to hold the tag of a line?

Answer: We need 5 bits (log2 32) to specify a byte index within a block and 14
to specify the set, leaving 32− 5− 14 = 13 bits for the tag.

(c) How many different memory blocks may map to the same set in the cache?

Answer: 213 = 8K blocks.

17. (9 points) Consider a machine with 64-bit addresses and an 8KB page size.

(a) How many bits are required to represent a page number?

Answer: 8KB is 213, so we need 64− 13 = 51 bits for a page number.

(b) Suppose our TLB has 512 entries, and our machine has 4GB of RAM. What
fraction of physical memory can be accessed without suffering a TLB miss?

Answer: 512 TLB entries can cover 4MB of memory, which is 1/1024-th of the
physical memory of the machine. (Obviously we need a lot of temporal locality
to use the TLB well.)

(c) If each page table entry requires 8 bytes, how much space will be required for an
inverted (hash-table style) page table?

Answer: The inverted page table has one entry for each physical frame. With
4GB of RAM, we have 232−13 = 219 entries. At 8 bytes each, that’s 222 = 4MB
of space.

18. (Extra Credit)

(a) (6 EC points) Recall that an inverted page table is shared by all processes running
on the machine. Could the page table of part (c) in the previous question rea-
sonably be implemented in SRAM instead of DRAM? Could it be put on chip?
Explain.
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Answer: 4MB is not an unreasonable amount of SRAM, in terms of dollar
cost. It’s comparable to the space devoted to on-chip cache, however, so finding
that much extra space on-chip would probably be asking too much. Moreover
we just happen to have 4GB of RAM. We have to design an inverted page table
to accommodate the maximum amount of RAM someone might cram into the
machine. Even if the architects limit that to, say, one TB, we’re talking 1GB of
inverted page table. That’s still the same small fraction of main memory, but far
too much to put on-chip—and the situation would get worse with larger physical
memory limits. The next release of Mac OS X will support up to 64TB of RAM.
That would imply a 64GB page table.

(b) (6 EC points) Older SPARC processors used a three-level tree-structured page
table, with hardware TLB reload. More recent models use software TLB reload
instead. Why do you suppose the designers might have made this change?

Answer: Recall the basic tradeoff between hardware and software TLB reload:
hardware is a little faster, but ties the OS to a particular choice of page table
structure. With the move to 64-bit addresses on the SPARC, even tree-structured
tables can grow unacceptably large: we simply can’t afford to devote several bytes
to every page of virtual memory in every address space. Denser segment-by-
segment structures are essential, but these are too complex to manage in hardware.
We can choose to put some subset of the address space in a hardware table—this
is what x86-64 does—and basically treat the hardware page table as a second-
level TLB. The SPARC designers presumably did some performance studies and
concluded that the benefit of that second-level structure (with its fairly low miss
penalty) wasn’t worth the hardware design complexity.

19. (9 points) Consider the following two-thread program fragment, executing on a two-
processor machine connected by a bus with MESI (snooping) cache coherence.

Thread 1 Thread 2
... while (!f) /* spin */ ;

f = true; ...

Suppose Thread 1 and Thread 2 are running on different processors; that f is initially
false; that neither processor has f initially cached; and that Thread 2’s first read of f
occurs before Thread 1’s write. For simplicity, assume that there is only one level of
cache.

Trace the sequence of cache operations (loads, stores, hits, misses, bus messages, in-
validations) that will occur in the process of executing the program fragment.

Answer: Thread 2’s initial load of f causes a cold miss. It sends a message out
on the bus and memory provides the data, which Thread 2’s cache keeps in exclusive
state. Subsequent loads of f hit in Thread 2’s cache.

Thread 1’s store to f causes another cold miss. It requests the data in exclusive
mode and either memory or Thread 2’s cache responds. Either way, Thread 2’s copy
is invalidated. Thread 2’s next load of f suffers a coherence miss, because of the
invalidation. It requests the data. Thread 1’s cache responds, dropping its copy from
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modified to shared, and Thread 2’s cache stores it as shared as well. Because the value
has changed, Thread 2’s loop terminates.

20. (Extra Credit)

(a) (4 EC points) In 2008, the stock market fell 4% in the 1st quarter, 10% in the 2nd
quarter, 6% in the 3rd quarter, and 17% in the 4th quarter. Give an equation for
the average quarterly loss. (You don’t have to actually do the calculation—just
show how.)

Answer: We’re looking for the rate that, if held steady over four quarters, would
have led to the same overall decline. This calls for the geometric mean:

ave = (0.04× 0.10× 0.06× 0.17)1/4

This turns out, by the way, to be almost exactly 8%. Note that the arithmetic
mean would have yielded 9.25%.

(b) (4 EC points) In a 4-leg relay race, runner A averages 9.7m/s, runner B averages
9.4m/s, runner C averages 9.2m/s, and runner D averages 9.8m/s. Give an
equation for the average speed of the team as a whole. (Again, the formula alone
will suffice.)

Answer: We’re looking for the speed that, if achieved by all four runners, would
have led to the same finish time. This calls for the harmonic mean:

ave =
[(

1
9.7

+ 1
9.4

+ 1
9.2

+ 1
9.8

)
/4

]−1

This turns out to be about 9.519m/s. The arithmetic mean would have yielded
9.525m/s—very close in this case, but only because the runners were fairly evenly
matched.
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