The Impossibility of Asynchronous Consensus

An overview of the proof of Fischer, Lynch, and Paterson

Journal of the ACM, April 1985
The Consensus Problem

• n processes, some of which may be faulty
• each correct process “proposes” a value
• in finite time, we want
 • termination: each correct process decides on a value
 • agreement: all correct processes decide on the same value
 • validity: the agreed-on value was proposed by one of the correct processes
The FLP Result

• Michael Fischer, Nancy Lynch, and Michael Paterson, “Impossibility of Consensus with One Faulty Process,” JACM, Apr. 1985
 • Assuming asynchronous (arbitrary delay) messages, we can’t achieve consensus even if all initial votes are either ‘0’ or ‘1’, all messages are eventually delivered, and faulty processes are fail-stop.
 • More complex proposals, unreliable messages, or Byzantine behavior would only make things worse.
Aside: Byzantine Generals [Lamport, 1982]

- Related problem, but with a notion of “leader,” and all correct processes have to decide on the leader’s proposal.
- “Standard” consensus and Byzantine Generals are equally difficult (reductions in both directions—not shown here :-)

But we achieve consensus every day!

- Only by compromising on the goals
 - arrange for crashed processes to recover and continue
 - assume a perfect failure detector (declare a process dead if you don’t hear from it for too long)
 - randomize (make the possibility of indefinite indecision arbitrarily low)
• Credit: presentation here borrows heavily from Henry Robinson

http://the-paper-trail.org/blog/a-brief-tour-of-flp-impossibility/
System Model

- A configuration captures the current state of every process and the set of in-flight messages.
- Initially all processes are in the same state except for their initial proposal and their id, and they run the same code.
- In each time step, some process receives a message (or starts from initial state), optionally sends a message, and updates its internal state.
- At most one process may fail, by stopping.
Proof Structure

• Lemma 1: commutativity of schedules
• Lemma 2: order of message receipt matters
• Lemma 3: *pumping* (bulk of the proof)
• Main result follows
Lemma 1: commutativity of schedules

• If we’re in configuration C and two messages are receivable, one by process p and another by process q ≠ p, then receiving the messages in either order leads to the same configuration.

• Proof: straightforward. Every process is deterministic based on local state and content of incoming message. Configuration is just the union of local states & in-flight messages.
Lemma 2: receipt order matters

- I.e., execution isn’t determined solely by initial conditions. Proof:
 - Suppose the contrary: everything is predetermined.
 - Consider all possible initial configurations. List these in Grey-code order of set of initial proposals.
 - Each configuration differs from neighbors in the list in only one process.
 - 0...0 must decide 0. 1...1 must decide 1. Somewhere in the list there are neighbors with different decisions.
 - But the one process that differs in these neighbors can fail!
Lemma 3: pumping

• Call a configuration 0-valent if it must decide 0; 1-valent if it must decide 1; bivalent if it could go either way.

• Suppose we start in a bivalent configuration C, in which e might be sent. Consider all chains of configurations starting in C and ending w/ receipt of e. Let \(\mathcal{D} \) be the set of ending configurations of those chains. Claim: \(\mathcal{D} \) contains a bivalent config.

• That is: if we can delay e arbitrarily long, we can guarantee the existence of an execution in which e is received in a bivalent config \(\rightarrow \) indefinite delay.
Proof

• Suppose the contrary: no bivalent configurations in D. Let C be the set of configurations reachable from C without receiving e. (Note that every config in D is reached by receiving e when in some config in C.)

• Claim 3a: there must be both 0-valent and 1-valent configurations in D.
 • Consider 0-valency first. Clearly there is a 0-valent configuration E_0 reachable from C, since C is bivalent. Reaching it might or might not entail receiving e.
- E0 is univalent, and must exist, since C is bivalent
- Fix F0 in D: must also be univalent, by assumption
- F0 and E0 must have same valency (0); whichever comes first, the other exists
- Same argument works for 1-valent case.
• Claim 3b: there is a pair of configs C0, C1 in C s.t.
 • receiving e in C0 takes you to a 0-valent config D0 in D
 • receiving e in C1 takes you to a 1-valent config D1 in D
 • C0 and C1 are neighbors: you get to one of them by receiving some message e' when in the other. WLOG, say C0 → e' → C1 (can easily enumerate the other case).

• To see this, assume the contrary. Then (by logic similar to the proof of Lemma 2) on every chain from the initial configuration C, receiving e in any config takes you to uniformly 0-valent or 1-valent configs. But the root is in all chains, at it’s supposed to be bivalent!
Taking Stock

• Assuming that there are no bivalent configs in \(D \), know that
 • There are both 0-valent & 1-valent configs in \(D \)
 • There are neighbors \(C_0 \) and \(C_1 \) that go to \(D \) configs \(D_0 \) and \(D_1 \), of different valency, on \(e \)

• Note that in \(D_1 \) we have received \(e' \) but in \(D_0 \) we haven’t.

• Want a contradiction with no further assumptions.
• Two cases: \(e \) and \(e' \) are received by different or same processes.
• Case 1: e and e’ have different recipients
• D0 and D1 have different univalencies
• By Lemma 2, e’ must take us from D0 to D1, a contradiction
• Case 2: e and e’ have same recipient, p
• Consider finite deciding run from C0, in which p takes no steps (has to exist, because p might fail); say this ends in A
• Take same sequence of message receipts and run from D0 & D1 (has to make sense, since D0 and D1 differ from C0 only in the state of p)
• (continued) config E0, reached from D0, must be 0-valent; config E1, reached from D1, must be 1-valent
• But by Lemma 2, $A \rightarrow e \rightarrow E0$ and $A \rightarrow e' \rightarrow e \rightarrow E1$
• This means A is bivalent, contradicting assumption that it ends a deciding run
Back to Main Theorem

• Lemma 2 says there’s a bivalent starting config.

• Lemma 3 says we can receive a nonzero number of messages from that config and end up in another bivalent config. We can repeat this inductively and get a non-deciding chain of arbitrary length.

• Note that we used the possibility of a (single) failure twice in the proof.