
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reducing the Overhead of Sharing on
Shared Memory Multiprocessors

by

Maged M. Michael

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Michael L. Scott

Department of Computer Science
The College

Arts and Sciences

University of Rochester
Rochester, New York

1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9808902

UMI Microform 9808902
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents, Hilda and Milad Michael

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Curriculum Vitae

Maged Michael was bom in Alexandria, Egypt. In 1988, he received a Bachelor

of Science degree with honors from Alexandria University in Computer Science. In

1992, he entered the graduate program at the Department of Computer Science,

University of Rochester and received a Master of Science degree in Computer Sci­

ence in 1994. His research focused on multiprocessor synchronization techniques

and algorithms, cache coherence protocols, and memory hierarchy architecture.

At Rochester he worked closely with his Ph.D. advisor Professor Michael L. Scott

on the above issues. In 1995 he interned at the Scalable Systems Division of Intel

Corporation, and in 1996 he interned at the IBM Thomas J. Watson Research

Center.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I owe almost everything I know about parallel computing, and about doing

research, in computer science to my mentor and advisor, Michael Scott. I thank

him for all the guidance, support, flexibility, encouragement, and for caring about

my career goals.

The other members of my committee, Alexander Albicki, Tom Leblanc, and

Wei Li, also deserve many thanks for the helpful discussions and suggestions

throughout the course of my Ph.D. work. Tom contributed directly to my de­

velopment as a researcher by running the boot camp called CSC 400. My thanks

to the department’s staff for being the most competent and friendly I have ever

seen.

In addition to Michael Scott, my thanks to all the other collaborators in the

systems group especially Galen Hunt and Srinivasan Parthasarathy, and to Jack

Veenstra for creating MINT. I also had the pleasure of collaborating with Anthony-

Trung Nguyen, Arun Sharma, and Josep Terrellas from the University of Illinois

at Urbana Champaign, and John Carbajal, Dave Archer, and many others at Intel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

j

Corporation.

Prom the IBM Thomas J. Watson Research Center I would like to thank for a

wonderful research environment, Michael Rosenfield, Ashwini Nanda, Beng-Hong

Lim, Moriyoshi Ohara, Pradip Bose, Kattamuri Ekanadham, and all the other

members of the parallel systems departments.

Special thanks to Shumin for all the support and encouragement, and to my

friends Olac, Justin, Ramesh, Raj, Choh Man, Martin, Michal, Eric, Marius, and

all the friends who made my stay in Rochester a pleasant experience.

My deepest gratitude to my parents for their unconditional love and support

throughout my life, and for showing me firsthand what it is like to be dedicated

and distinguished scientists. I owe my pursuit of a career in research to their

inspiring example.

This work was supported in part by NSF Institutional Infrastructure grants

nos. CDA-88-22724, CCR-93-19445, and CDA-94-01142, by ONR research grant

no. N00014-92-J-I801 (in conjunction with the DARPA Research in Information

Science and Technology—High Performance Computing, Software Science and

Technology program, ARPA Order no. 8930), and by IBM Corporation.

) _

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Shared m em ory provides an intuitive and flexible programming model for par­

allel application developers relative to the message passing programming model.

However, the need to keep shared data structures consistent via synchronization

mechanisms and cache coherent shared memory, entails substantial overheads.

The goal of this work is to characterize and improve the performance of shared

memory multiprocessors by reducing the overheads associated with synchroniza­

tion and cache coherence on shared memory multiprocessor systems. To that

end, we present innovative techniques and quantitative experimental performance

evaluation and analysis.

The contributions of this work include new fast shared data structure algo­

rithms, including a link-based shared queue that outperforms all known alterna­

tives. We also study the performance of alternative synchronization techniques

on multiprogrammed systems. The study demonstrates the superior performance

of data-structure-specific non-blocking algorithms over lock-based techniques on

multiprogrammed as well as dedicated systems, and the importance of univer­

sal atomic primitives such as compare_and_svap and the pair lo a d -lin k ed and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

v i i

sto re_conditional. We propose cache coherence protocols for the hardware

implementation of these primitives on distributed shared memory multiproces­

sor systems and evaluate their performance, recommending an implementation

of compare_and_swap for future architectures. Finally, we study the architecture

of coherence controllers which is a crucial factor in the performance of cache co­

herence mechanisms and overall shared memory system performance. Our study

demonstrates that the bandwidth of coherence controllers is the main bottleneck

for SMP-based CC-NUMA multiprocessor systems. The study also demonstrates

the significant performance benefits of using multiple protocol engines and in­

troduces a new measure of parallel application demand for coherence controller

bandwidth. This metric can be used to quickly predict the performance of large

parallel applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Curriculum Vitae iii

Acknowledgments iv

Abstract vi

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Synchronization... 3

1.2 Cache C oherence .. 5

1.3 C on tribu tions.. 6

1.4 O utline... 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IX

II

2 Shared Data Structures 9

2.1 Shared Priority Queue Heap Algorithm .. 10

2.2 Shared Queue A lg o r ith m s .. 25

3 Synchronization and Multiprogramming 45

3.1 Introduction... 45

3.2 Preemption-Safe L ocking... 48

3.3 Non-Blocking Algorithm s... 51

3.4 Experimental R e su lts ... 55

3.5 S u m m a ry .. 75

4 Atomic Primitives and Coherence 77

4.1 Introduction... 77

4.2 Atomic Prim itives... 79

4.3 Implementations ... 83

4.4 Experimental R e su lts ... 90

4.5 S u m m a ry .. 105

5 Coherence Controller Architectures 107

5.1 Introduction... 107

5.2 System D escription .. I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

j

5-3 Experimental R esu lts .. 121

5.4 Related W o r k ... 139

5.5 S u m m a ry ... 141

6 Conclusions 144

6.1 C on tribu tions... 144

6.2 Future D irec tions.. 147

Bibliography 149

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Concurrent insert operation. For conciseness, we treat ‘priority as

if it were the only datum in each data_item....................................... 13

2.2 Concurrent delete operation... 14

2.3 A bit-reverse counter... 18

2.4 Performance results for a) 100,000 insertions and b) 100,000 deletions. 21

2.5 Performance results for 10,000 sets of 10 insertions and 10 deletions

on an empty heap... 21

2.6 Performance results for a) 100,000 insert/delete pairs on a 7-level-

full heap and b) 100,000 insert/delete pairs on a 17-level-full heap. 22

2.7 Structure and operation of a non-blocking concurrent queue. . . . 32

2.8 Structure and operation of a two-lock concurrent queue....... 33

2.9 Net execution time for one million enqueue/dequeue pairs on a

dedicated multiprocessor.. 41

2.10 Net execution time for one million enqueue/dequeue pairs on a

multi program mp.d system with 2 processes per processor....... 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x i i

2.11 Net execution time for one million enqueue/dequeue pairs on a

multiprogrammed system with 3 processes per processor.................. 41

3.1 Structure and operation of Treiber’s non-blocking concurrent stack

algorithm [86].. 53

3.2 A non-blocking concurrent counter using lo ad -lin k ed and s to re —

c o n d itio n a l.. 54

3.3 Implementations of te s t- a n d -s e t and compare-and-swap using

lo ad -lin k ed and s to re -c o n d itio n a l.. 56

3.4 Normalized execution time for one million enqueue/dequeue pairs

on a multiprogrammed system, with multiprogramming levels of 1

(top), 2 (middle), and 3 (bottom).. 58

3.5 Normalized execution time for one million push/pop pairs on a

multiprogrammed system, with multiprogramming levels of 1 (top),

2 (middle), and 3 (bottom).. 62

3.6 Normalized execution time for one m illion insert/delete_min pairs

on a multiprogrammed system, with multiprogramming levels of 1

(top), 2 (middle), and 3 (bottom).. 65

3.7 Normalized execution time for one million atomic increments on a

multiprogrammed system, with multiprogramming levels of 1 (top),

2 (middle), and 3 (bottom).. 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XIII

3.8 Normalized execution time for quicksort of 500,000 items using a

shared queue on a multiprogrammed system, with multiprogram­

ming levels of 1 (top), 2 (middle), and 3 (bottom).................. 70

3.9 Normalized execution time for quicksort of 500,000 items using a

shared stack on a multiprogrammed system, with multiprogram­

ming levels of 1 (top), 2 (middle), and 3 (bottom).................. 71

3.10 Normalized execution time for a 17-city traveling salesman prob­

lem using a shared priority queue, stack and counters on a mul­

tiprogrammed system, with multiprogramming levels of 1 (top), 2

(middle), and 3 (bottom)... 73

4.1 Transitive closure program for process p id .. 92

4.2 Histograms of the level of contention in LocusRoute, Cholesky, and

Transitive Closure... 95

4.3 Average time per counter update for the lock-free counter applica­

tion. P denotes processors, c contention, and a the average number

of non-interleaved counter updates by each processor....................... 98

4.4 Average time per counter update for the TTS-lock-based counter

application. P denotes processors, c contention, and a the average

number of non-interleaved counter updates by each processor. . . 99

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x iv

4.5 Average time per counter update for the MCS-lock-based counter

application. P denotes processors, c contention, and a the average

number of non-interleaved counter updates by each processor. . . 100

4.6 Total elapsed time for LocusRoute, Cholesky, and Transitive Clo­

sure with different implementations of atomic primitives................. 101

5.1 A node in a SMP-based CC-NUMA system....................................... 112

5.2 A custom-hardware-based coherence controller design (HWC). . . 115

5.3 A commodity PP-based coherence controller design (PPC) 115

5.4 A custom hardware coherence controller design with local and re­

mote protocol FSMs (2HWC)... 117

5.5 A commodity PP-based coherence controller design with local and

remote protocol processors (2PPC).. 117

5.6 Normalized execution time on the base system configuration. . . . 126

5.7 Normalized execution time for system with smaller (32 byte) cache

lines... 126

5.8 Normalized execution time for system with higher (1 fjs.) network

latency. .. 127

5.9 Normalized execution time for base system with base and large data

sizes... 127

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

J

5.10 Normalized execution time with 1,2,4, and 8 processors per SMP

node... 130

5.11 Coherence controller bandwidth limitations................................. 134

5.12 Effect of communication rate on PP p en a lty on the base system. . 135

5.13 Effect of communication rate on the relative performance of PPC

vs. 2PPC.. 135

5.14 Effect of communication rate on PP penalty on a 8 processor/node

system.. 136

5.15 Effect of communication rate on PP penalty on a 2 processor/node

system.. 136

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Execution, times in seconds for one million enqueue/dequeue pairs

on a single processor (no contention)... 60

3.2 Execution times in seconds for one million push/pop pairs on a

single processor (no contention).. 61

3.3 Execution times in seconds for one million insert/delete_min pairs

on a single processor (no contention)... 64

3.4 Execution times in seconds for one million atomic increments on a

single processor (no contention).. 67

3.5 Execution times in seconds for quicksort of 500,000 items using a

shared queue on a single processor (no contention)........................... 69

3.6 Execution times in seconds for quicksort of 500,000 items using a

shared stack on a single processor (no contention)............................ 69

3.7 Execution times in seconds for a 17-city traveling salesman prob­

lem using a shared priority queue, stack and counters on a single

processor (no contention)... 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XVII

4.1 Serialized network messages for stores to shared memory with dif­

ferent coherence policies.. 102

5.1 Base system no-contention latencies in compute processor cycles (5

ns.)... 113

5.2 Protocol engine sub-operation occupancies for HWC and PPC in

compute processor cycles (5 ns.)... 118

5.3 Breakdown of the no-contention latency of a read miss to a remote

line clean a t home in compute processor cycles (5 ns.)......................... 119

5.4 Protocol engine occupancies in compute processor cycles (5 ns.). . 122

5.5 Benchmark types and data sets... 124

5.6 Communication statistics on the base system configuration 131

5.7 Communication statistics for controllers with two protocol engines

on the base system configuration.. 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

1 Introduction

Parallel application developers use two main programming models to express par­

allel algorithms: message passing and shared memory. In message-passing sys­

tems, the programmer’s view is of a set of separate computers that communicate

only by exchanging explicit messages. Message-passing, in general, requires the

programmer (or the compiler) to control communication explicitly between the

parallel application processes. In shared memory systems, memory is accessible

to all processors, and processors communicate through shared variables.

Message passing allows the programmer to optimize the application for min­

imal communication, and accordingly achieve high speedup on multiprocessor

systems. The main problem with message passing is that the programmer has to

use different models for intra- and inter-processor computing, which is unintuitive.

In addition, it is sometimes impossible for the programmer to anticipate the opti­

mal communication patterns between the parallel processes for applications with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

input-dependent control structure. Also, it is very difficult to employ fine-grain

parallelism and dynamic load balancing under message passing.

Shared memory, on the other hand, provides an intuitive and easy program­

ming model for parallel application developers, as it frees the programmer from

the burden of planing explicit communication between the application processes.

Shared memory allows each application process to consider the whole shared mem­

ory as part of its address space. However, since multiple processes are allowed to

access and possibly modify the shared data concurrently, explicit synchronization

is needed to maintain the consistency of shared data structures. Explicit syn­

chronization can be a significant source of overhead on shared memory systems

relative to message passing systems.

Another significant source of overhead on shared memory multiprocessors is

cache coherence. Due to the large disparity between the access times to processor

caches and main memory, processor caches are essential in modem multiprocessor

and uniprocessor systems. Under shared memory, multiple processors can access

and replicate a copy of the same memory location in their caches. Replication

introduces the cache coherence problem: the need to keep copies consistent in the

face of local changes.

The goal of this work is to characterize and improve the performance of shared

memory multiprocessors by reducing the overheads associated with synchroniza­

tion and cache coherence. We achieve this goal through innovative techniques, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

quantitative experimental performance evaluation and analysis. We use native ex­

ecution on a Silicon Graphics Challenge multiprocessor to study the performance

of software-based techniques, and execution-driven simulation to study the per­

formance of architectural designs.

After discussing the overheads of synchronization in Section 1.1 and cache

coherence in Section 1.2, we present an overview of the main contributions of this

work in Section 1.3, and the outline of the rest of the dissertation in Section 1.4.

1.1 Synchronization

On shared memory multiprocessors, processes communicate through shared

data structures. Synchronization techniques are needed to maintain the consis­

tency of these data structures under arbitrary concurrent updates. The overhead

of naive approaches to synchronization is one of the main sources of overhead

on shared memory multiprocessor systems. We study the performance of impor­

tant common concurrent data structures under varying levels of contention and

processor scheduling policies, and propose new implementations.

The most common technique for synchronizing concurrent access to shared

data structures is to enclose each operation on the data structure in a critical sec­

tion protected by a simple mutual exclusion lock, commonly implemented using

the test_and_set atomic primitive. Such locks are not scalable, they limit concur-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

rency, and they cause the application to suffer significant performance degradation

under multiprogramming.

Researchers have proposed several techniques to address these problems. Queue-

based locks [5; 21; 52; 56] were proposed mainly to address the scalability of mutual

exclusion locks. Reactive synchronization [49] was proposed to achieve near op­

timal performance under various levels of contention. Reader-writer locks [57]

and multiple-lock data structures [43; 47; 76] were proposed to increase con­

currency and hence reduce serialization. Preemption-safe locks [7; 15; 41; 53;

67] and non-blocking synchronization [3; 8; 9; 29; 45; 54; 77] were proposed to

protect the performance of shared data structures from the adverse effects of mul­

tiprogramming.

In this dissertation we address the issues of concurrency and robustness under

multiprogramming for important data structures. We present and study the per­

formance of new multiple-lock algorithms for priority queue heaps and link-based

queues, and a non-blocking algorithm for link-based queues. Also, we study the

relative performance of preemption-safe locking and non-blocking synchronization

on multiprogrammed systems with queues, stacks, counters, and priority queues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Cache Coherence

Cache coherence frees the programmer from the burden of ensuring the con­

sistency of shared data through explicit message passing. On bus-based symmet­

ric multiprocessors (SMPs), cache coherence is achieved through broadcast-based

snooping protocols. However, the centralized nature of a shared bus limits the

scalability of bus-based systems. Cache coherence protocols on distributed shared

memory (DSM) systems are more complex and, typically, they involve exchang­

ing many more messages that on a comparable message passing system. Cache

coherence is one of the main sources of overhead on DSM multiprocessors.

The main issues in cache coherence performance on DSM systems are protocol

design, flexibility in protocol design, and the cost-effectiveness of hardware support

for cache coherence. Researchers have proposed several classes of software- and

hardware-based cache coherence protocols. Flexibility in protocol design varies

from all-software cache coherence, to programmable hardware protocol processors,

to custom hardware finite state machines. We concentrate, in this dissertation, on

hardware cache coherent DSM systems. We present and evaluate the impact of

various cache coherence policies on the implementation and performance of atomic

primitives, and we study the performance implications of alternative coherence

controller architectural designs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

1.3 Contributions

The contributions of this dissertation include:

• Presenting new algorithms for:

— Multiple-lock priority queue heaps [33]. Our algorithm allows O(M)

concurrency, where M is the size of the heap. The algorithm out­

performs other multiple-lock algorithms in all cases, and outperforms

single lock priority queue heaps in the case of high contention with

large heap sizes.

— Non-blocking link-based queues [60]. Our algorithm is simple, fast,

and practical. It is the best known link-based implementation on ded­

icated as well as multiprogrammed systems, under both high and low

contention.

— Two-lock link-based queues [60]. Our algorithm allows complete con­

currency between enqueue and dequeue operations on non-empty queues.

It outperforms single-lock link-based queue implementations under high

contention.

• Demonstrating the superior performance of special-purpose non-blocking

implementations of common data structures such as queues, stacks, and

counters, over lock-based implementations on multiprogrammed as well as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

dedicated systems [62]. Our study also demonstrates the superior perfor­

mance of preemption-safe locking with respect to ordinary (preemption-

oblivious) locking on multiprogrammed systems.

• Presenting and evaluating implementations of the atomic primitives f e tc h .

and_$, compare.and.swap, and loacL linked /sto re-cond itional in the

context of directory-based cache coherence protocols on DSM multiproces­

sors [59]. In particular, our study recommends implementing compare_and_

swap with a write-invalidate protocol in combination with a load exclusive

primitive.

• Evaluating the performance of coherence controller architectures [61] on

SMP-based cache-coherent non-uniform memory access (CC-NUMA) sys­

tems, demonstrating the following results:

— The occupancy (bandwidth) of protocol engines is a major bottleneck

on CC-NUMA systems.

— Using commodity protocol processors in the coherence controller can

lead to significant performance degradation relative to using custom

hardware controllers.

— Using multiple protocol engines in the coherence controller increases

bandwidth and improves the performance of the system.

— The relative performance of systems with various coherence controller

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

designs can be predicted using a new measure of application demand

for coherence controller bandwidth namely, RCCPI.

1.4 Outline

The rest of the dissertation is organized as follows. Chapter 2 presents our

multiple-lock and non-blocking priority queue heaps and link-based queues. Chap­

ter 3 describes our study of the performance of non-blocking synchronization and

preemption-safe locking on multiprogrammed systems. Chapter 4 considers the

implementation of atomic primitives in the context of hardware cache coherence

protocols on distributed shared memory multiprocessors. Our study of the perfor­

mance of coherence controller architectures appears in Chapter 5. We summarize

our results and recommendations in Chapter 6.

: •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

2 Shared Data Structures

Parallel applications with significant amounts of concurrent access to naive imple­

mentations of shared data structures can suffer substantial performance losses due

to synchronization. To address this problem, we present three novel algorithms:

one for shared priority queue heaps and two for link-based queues.

The priority queue heap algorithm uses multiple locks to allow more concurrent

access, thus increasing the throughput of the data structure.

The shared queue algorithms achieve performance superior to tha t of other

queue implementations as a result of their simplicity. One algorithm uses two

locks to allow concurrency between enqueues and dequeues. The other algorithm

is non-blocking and accordingly is immune to the adverse effects of multipro­

gramming on the performance of shared data structures, and allows enqueues and

dequeues to proceed concurrently. The latter algorithm outperforms all other

known implementations of a link-based queue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

2.1 Shared Priority Queue Heap Algorithm

2.1.1 Introduction

The heap data structure is widely used as a priority queue [14]. The basic

operations on a priority queue are insert and delete. Insert inserts a new item in

the queue and delete removes and returns the highest priority item from the queue.

A heap is a binary tree with the property that the key at any node has higher

priority than the keys at its children (if they exist). An array representation of a

heap is the most space efficient: the root of the heap occupies location 1 and the

left and right children of the node at location i occupy locations 2i and 2i 4- 1,

respectively. No items exist in level I of the tree unless level I — 1 is completely

full.

Many applications (e.g. heuristic search algorithms, graph search, and discrete

event simulation [63; 71]) on shared memory multiprocessors use shared priority

queues to schedule sub-tasks. In these applications, items can be inserted and

deleted from the heap by any of the participating processes. The simplest way

to ensure the consistency of the heap is to serialize the updates by putting them

in critical sections protected by a mutual exclusion lock. This approach limits

concurrent operations on the heap to one. Since updates to the heap typically

modify only a small fraction of the nodes, more concurrency should be achievable

by allowing processes to access the heap concurrently as long as they do not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

interact with each other.

Biswas and Browne [10] proposed a scheme that allows many insertions and

deletions to proceed concurrently. Their scheme relies on the presence of main­

tenance processes that dequeue sub-operations from a FIFO work queue. Sub­

operations are placed on the work queue by the processes performing insert and

delete operations. The work queue is used to avoid deadlock due to insertions

and deletions proceeding in opposite directions in the tree. The need for a work

queue and maintenance processes causes this scheme to incur substantial overhead.

Rao and Kumar [72] present another scheme that avoids deadlock by using top-

down insertions, where an inserted item has to traverse a path through the whole

height of the heap (insertions in a traditional sequential heap proceed bottom-up).

Jones [37] presents a concurrent priority queue algorithm using skew heaps.1 He

notes that top-down insertions in array-based heaps are inefficient, while bottom-

up insertions would cause deadlock if they collide with top-down deletions without

using extra server processes.

This section presents a new concurrent priority queue heap algorithm that

addresses the problems encountered in previous research. On large heaps the al­

gorithm achieves significant performance improvements over both the serialized

single-lock algorithm and the algorithm of Rao and Kumar, for various inser-

1An array based heap can be considered as a binary tree that is filled at all levels except
possibly the last level. In skew heaps this restriction is relaxed; the representative binary tree
need not be filled at all the intermediate levels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

tion./deletion workloads. For small heaps it still performs well, but not as well

as the single-lock algorithm. The new algorithm allows concurrent insertions and

deletions in opposite directions, without risking deadlock and without the need for

special server processes. It also uses a “bit-reversal” technique to scatter accesses

across the fringe of the tree to reduce contention.

2.1.2 The Algorithm

The new algorithm augments the standard heap data structure [14] with a

mutual-exclusion lock on the heap’s size and locks on each node in the heap. Each

node also has a tag that indicates whether it is empty, valid, or in a transient state

due to an update to the heap by an inserting process. Nodes that contain no data

are tagged EMPTY. Nodes that are available for deletion are tagged AVAILABLE. A

node that has been inserted, and is being moved into place, is tagged with the

process identifier (pid) of the inserting process.

A delete operation in the new algorithm, as in the sequential algorithm, starts

by reading the data and priority of the root of the heap and then replacing them

with those of as rightmost node in the lowest level of the heap. Then, the delete

operation “heapifies” the heap. It compares the priority of the root with that

of each of its children (if any). If necessary, it swaps the root item with one of

its children in order to ensure that none of the children has priority higher than

the root. If no swapping is necessary the delete operation is complete; it returns

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

record dataJtem {lock := FREE; tag := EMPTY; priority := 0}
record heap {lock := FREE; bit_reversed_counter size; dataJtem items]]}
define LOCK(x) as lock(heap.items[x].lock)
define UNLOCK(x) as unlock(heap.items[x].lock]
define TAG(x) as heap.itemsfx] .tag
define PRIORITY(x) as heap.items[x].priority

procedure concurrent Jnsert(priority, heap)
Insert new item at bottom o f the heap.
lock(heap.lock); i := bitjreverse<Lincrement(heap.size); LOCK(i); unlock(heap.lock)
PRIORITY(i) := priority; TAG(i) := pid; UNLOCK(i)

Move item towards top o f heap while it has a higher priority than its parent,
while i > 1 do

parent := i / 2; LOCK (parent); LOCK(i)
if TAG(parent) = AVAILABLE and TAG(i) = pid then

if PRIORITY(i) > PRIORITY(parent) then
swapJtem s(i, parent); i := parent

else
TAG(i) := AVAILABLE; i := 0

else if TAG (parent) = EM PTY then
i := 0

else if TAG(i) ^ pid then
i := parent

UNLOCK(i); UNLOCK(parent)
enddo
if i = 1 then

LOCK(i)
if TAG(i) = pid then

TAG(i) := AVAILABLE
UNLOCK(i)

Figure 2.1: Concurrent insert operation. For conciseness, we treat priority as if it
were the only datum in each dataJtem .

the data that was originally in the root. Otherwise, the operation recursively

“heapifies” the subheap rooted a t the swapped child. To handle concurrency all

these steps are performed under the protection of the locks on the individual nodes

and a lock on the size of the heap. In each step of the heapify operation, the lock

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

function, concurrent-delete(heap)
Grab an item from the bottom of the heap to replace the to-be-deleted top item.
lock(heap.lock);

bottom := bit_reversed.decrement(heap.size); LOCK(bottom);
unlock(heap.lock)
priority := PRIORITY(bottom); TAG(bottom) := EMPTY; UNLOCK(bottom)

Lock first item. Stop if it was the only item in the heap.
L0CK(1); if TAG(l) = EMPTY then UNLOCK(l); return priority

Replace the top item with the item stored from the bottom,
swap (priority, PRIORTTY(l)); TAG(l) := AVAILABLE

Adjust the heap starting at the top.
We always hold a lock on the item being adjusted,
i := 1
while (i < MAX.SIZE / 2) do

left := i * 2; right := i * 2 + 1; LOCK(left); LOCK(right)
if TAG(leffc) = EMPTY then

UNLOCK(right); UNLOCK(left); break
else if TAG(right) = EMPTY or PRIORITY(left) > PRIORITY(right) then

UNLOCK(right); child := left
else

UNLOCK(left); child := right

If the child has a higher priority than the parent then swap them. If not, stop,
if PRIORITY(child) > PRIORITY(i) then

swap_items(child, i); UNLOCK(i); i := child
else

UNLOCK(child); break
enddo
UNLOCK(i)
return priority

Figure 2.2: Concurrent delete operation.

of the subtree root is already held. It is not released until the end of that step.

Prior to comparing priorities, the locks of the children are acquired. If swapping

is performed, the lock on the swapped child is retained through the next recursive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

heapify step, and the locks on the root and the unswapped child are released.

Otherwise, all the locks are released, and the delete operation completes.

An insert operation starts by inserting the new data and priority in the lowest

level of the heap. If the inserted node is the root of the heap, then the insert

operation is complete. Otherwise, the operation compares the priority of the

inserted node to that of its parent. If the child’s priority is higher than that

of its parent, then the two items are swapped, otherwise the insert operation is

complete. If swapping was necessary, then the same steps are applied repeatedly

bottom-up until reaching a step in which no swapping is necessary, or the inserted

node has become the root of the heap. To handle concurrency, all these steps

are performed under the protection of the locks and tags on the individual nodes

and the lock on the size of the heap. In every step of the bottom-up comparison,

the lock of the parent is acquired first, followed by the lock on the inserted node.

After comparison and swapping (if necessary), both locks are released. Locks

are acquired in the same order as in the delete operation, parent-child, to avoid

deadlock. This mechanism requires releasing and then acquiring the lock on the

inserted item between successive steps, which opens a window of vulnerability

during which the inserted item might be swapped by other concurrent operations.

Tags are used to resolve these situations.

An insert operation tags the inserted item with its pid. In every step, an insert

operation can identify the item it is moving up the heap even if the item has been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

swapped upwards by a deletion. In. particular, tags are used in the following

manner:

• If the tag of the parent node is equal to AVAILABLE and the tag of the current

node is equal to the insert operation’s pid , then no interference has occurred

and the insertion step can proceed normally.

• If the tag of the parent node is equal to EMPTY, then the inserted item must

have been moved by a delete operation to the root of the heap. The insert

operation is complete.

• If the tag of the current node is not equal to the operation’s pid, then the

inserted item must have been moved upwards by a delete operation. The

insert operation moves upward in pursuit of the inserted item.

In some definitions of heaps [14], all nodes in the last level of the heap to

the left of the last item have to be non-empty. Since this is not required by

priority queue semantics, in the new algorithm we chose to relax this restriction to

reduce lock contention, and thereby permit more concurrency. Under our relaxed

model, consecutive insertions traverse different sub-trees by using a “bit-reversal”

technique similar to that of an FFT computation [14]. For example, in the third

level of a heap (nodes 8-15, where node 1 is the root), eight consecutive insertions

would start from the nodes 8,12,10,14, 9,13,11, and 15, respectively. Notice that

for any two consecutive insertions, the two paths from each of the bottom level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

nodes to the root of the heap have no common nodes other than the root. This

lack of overlap serves to reduce contention for node locks. Consecutive deletions

from the heap follow the same pattern, but in reverse order. The relation between

the indices of parents and children remains as it is in heaps without bit reversal.

The children of node i are nodes 2i and 2i + 1, and the parent of node i > 1 is

node i/2 . Moreover, if a node has only one child, it is still 2i, never 2i + 1.

Since insertions in the new algorithm do not have to traverse the whole height

of the heap, they have a lower bound of Q(l) time, while the algorithm due to Rao

and Kumar requires Q(log M) time for insertions (top-down) in a heap of size M ,

as insertions have to traverse the entire height of the heap. In addition to reducing

traversal overhead, the bottom-up insertion approach of the new algorithm reduces

contention on topmost nodes.

We next consider the space requirements for algorithms under consideration.

Let M be the maximum number of nodes in the heap, and P the maximum

number of processes operating on the heap. Assume that each lock requires one

bit of memory. The new algorithm requires 1 bit for the lock on the heap size

variable, 3 log M bit-reversal bits, and I + logP lock and tag bits per node, for

a total of 1 + 3 log M + (1 + log P)M bits of memory. The single lock algorithm

requires 1 bit of memory for the single lock. Rao and Kumar’s algorithm requires

3 bits per node for a total of 3M bits of memory. If bit reversal were added

to Rao and Kumar’s algorithm, i t would require 3 log M extra bits, for a total of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

record bit_reversed_counter
{counter := 0; reversed := 0; high-bit := -1}

function bit -reversedJncrement (c)
c.counter := c.counter + -1
for bit := c.high_bit - 1 to 0 step -1

c.reversed := not(c.reversed, bit)
if test (c.reversed, bit) = TRUE then

break
if bit < 0 then

c.reversed := c.counter; c.high_bit := c.high_bit -f 1
return c.reversed

function bit_reversed_decreinent (c)
c.counter := c.counter - 1
for bit := c.high_bit - 1 to 0 step -1

c.reversed := not(c.reversed, bit)
if test(c.reversed, bit) = FALSE then

break
if bit < 0 then

c.reversed := c.counter; c.high_bit := c.high_bit - 1
return c.reversed

Figure 2.3: A bit-reverse counter.

3 log M + 3M bits of memory. The single lock algorithm is significantly more space

efficient than the multiple lock algorithms. Rao and Kumar’s algorithm requires

less space than the new algorithm (0(M) for the former compared to © (M logP)

for the latter). In practice, however, bit packing results in false sharing in cache-

coherent systems, and should therefore be avoided. If overhead bits for different

nodes occupy different memory words, and if the number of processes operating

on the heap does not exceed 2n — 2, where n is the number of bits per memory

word, then the space overhead of the new algorithm is the same as that of Rao

and Kumar’s algorithm, except for three words for the bit-reverse counter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Figures 2.1 and 2.2 present pseudo code for the insert and delete operations of

the new algorithm, respectively. Initially, all locks are free, all node tags are set

to EMPTY, and the number of elements in the heap is zero.

Bit reversals can easily be calculated in 0(n) time, where n is the number of

bits to be reversed. For long sequences of increments only or decrements only,

we can improve this bound to an amortized time of 0(1) by remembering the

high-order bit (see Figure 2.3). Alternating increments and decrements may still

require 0 (n) time.

2.1.3 Experimental Methodology

We use a 12-processor Silicon Graphics Challenge multiprocessor to compare

the performance of the new algorithm, the single-lock algorithm, and Rao and

Kumar’s algorithm. We tried the latter both with and without adding our bit-

reversal technique, in order to determine if it suffices to improve performance.

For mutual exclusion we used test-and-test-and-set locks with backoff using the

MIPS R4000 lo ad -lin k ed and s to re -c o n d itio n a l instructions. On small-scale

multiprocessors like the Challenge, these locks have low overhead compared to

other more scalable locks. [56].

To evaluate the performance of the algorithms under different levels of con­

tention, we varied the number of processes in our experiments. Each process runs

on a dedicated processor in a tight loop that repeatedly updates a shared heap.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0

Thus, in our experiments the number of processors corresponds to the level of con­

tention. We believe these results to be comparable to what would be achieved with

a much larger number of processes, each of which was doing significant real work

between queue operations. In all experiments, processors are equally loaded. We

studied the performance under workloads of insertions only, deletions only, and

various mixed insert/delete distributions. We also varied the initial number of

full levels in the heap before starting time measurements to identify performance

differences with different heap sizes. For the experiments we used workloads of

around 100,000 to 200,000 heap operations. Experiments with smaller workloads

are too fast to time. Inserted item priorities were chosen from a uniform random

distribution on the domain of 32-bit integers.

The sources for all the algorithms were carefully hand-optimized. For example

in the multiple-lock algorithms we changed the data layout to reduce the effect

of false sharing. This optimization was not applied to the single lock algorithm

as it does not support concurrent access; aligning data to cache lines would only

increase the total number of cache misses. We believe we have implemented each

algorithm as well as is reasonably possible, resulting in fair comparisons.

Figures 2.4a and 2.4b show the time taken to perform 100,000 insertions and

deletions on a heap with 17 full levels. Figure 2.5 shows the time taken to perform

10,000 sets of 10 insertions and 10 deletions on an empty heap. Figures 2.6a

and 2.6b show the time taken to perform 100,000 insert/delete pairs on a 7-level-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1

17 level 100.000 Ins6
new multi-lock ——
R&K multWock ——-

R4K multWock wi hit-rev ■
single lock ——

S

4

3

2

1

0
1 2 3 4 5 6 7 8 9 10 11

6

5

4
cn

1 .s
2

1

0

processors
17 level 100,000 del

new multWock
R4K multWock —-

R4K multWock w/ bit-rev -«■-
single lock

1 2 3 4 5 6 7 8 9 10 11
processors

Figure 2.4: Performance results for a) 100,000 insertions and b) 100,000 deletions.

empty 10,000 (10 ins 10 del)
8

new multi-lock ——
R4K multWock - —

R4K multi-lock w/ bit-rev
single lock - —

7

6

5

4

3

2
1

0
1 2 3 4 5 6 7 8 9 10 11

processors

Figure 2.5: Performance results for 10,000 sets of 10 insertions and 10 deletions
on an empty heap.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 levels 100,000 (1 ins 1 del)a
new multWock -•—
R&K multWock - — •

R&K multi-lock w/bit-rev -«•—
single lock ——

7

6
5

I
8 4
8

3

2

1
0

1 2 3 4 5 6 7 8 9 10 11
processors

17 levels 100,000 (i ms 1 del)
10

new multi-lock -*■
R&K multi-lock —-

R&K multWock w/bit-rev -a-
single lock —

s\9

8
7

<n

1 .aaj s
4

3

2
1 2 3 4 5 6 7 8 9 10 11

processors

Figure 2.6: Performance results for a) 100,000 insert/delete pairs on a 7-level-full
heap and b) 100,000 insert/delete pairs on a 17-level-full heap.

full heap and a 17-level-full heap.

In the case of insertions only (Figure 2.4a), the single-lock and the new al­

gorithm have better performance because insertions do not have to traverse the

whole height of the tree (as they do in Rao and Kumar’s algorithm), and most

inserted items settle in the two bottom-most levels of the heap. Insert operations

for the single-lock algorithm in this case are fast enough that greater potential for

concurrency in the new multi-lock algorithm does not help much.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

In the case of deletions only (Figure 2.4b), the multi-lock a lg o rithm s outper­

form the single-lock algorithm. This is because most deletions have to traverse

the whole height of the tree and may not traverse the same path each time. As

a result, the concurrency permitted in the multi-lock algorithms is higher and

outweighs the overhead of locking, since there is little contention along the paths.

Deletions in the new algorithm proceed top-down, similar to deletions in Rao and

Kumar’s algorithm; therefore the two algorithms display similar performance.

In the case of alternating insertions and deletions on an initially empty heap

(Figure 2.5), the height of the heap is very small. The single-lock algorithm

outperforms the other algorithm s because it has low overhead and there is little

opportunity for the multi-lock algorithms to exploit concurrency. Comparing the

new algorithm with that of Rao and Kumar, we find that the new algorithm yields

better performance as it suffers less from contention on the topmost nodes of the

heap. Note that after severed insert/delete cycles, the items remaining in the heap

tend to have low priorities, so new insertions have to traverse most of the path

to the root in the new algorithm. This means that the performance advantage

of the new algorithm over that of Rao and Kumar in this case is due more to

reduced contention for the topmost nodes of the tree (due to opposite directions

for insertion and deletion) than to shorter traversals.

In the case of alternating insertions and deletions on a 7-level-full heap (Fig­

ure 2.6a), the heap height remains almost constant. The single-lock algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

outperforms the others due to its low overhead, but the difference between it and

the new algorithm narrows as the level of contention increases, since 7 levels pro­

vide the new algorithm with reasonable opportunities for concurrency. Rao and

Kumar’s algorithm suffers from high contention on the topmost nodes.

In the case of alternating insertions and deletions on a 17-level-fiill heap (Fig­

ure 2.6b), the larger heap height makes concurrency, rather than locking overhead,

the dominant factor in performance. The multi-lock algorithms therefore perform

better than the single-lock algorithm. As in the case of the empty and 7-level-full

heaps, new insertions tend to have higher priorities than the items already in the

heap, and tend to settle near the top of the heap. In spite of this, the new algo­

rithm outperforms that of Rao and Kumar because of reduced contention on the

topmost nodes.

2.1.4 Summary

We have presented a new algorithm that uses multiple mutual exclusion locks

to allow consistent concurrent access to array-based priority queue heaps. The new

algorithm avoids deadlock among concurrent accesses without forcing insertions

to proceed top-down [72], or introducing a work queue and extra processes [10].

Bottom-up insertions reduce contention for the topmost nodes of the heap, and

avoid the need for a full-height traversal in many cases. The new algorithm also

uses bit-reversal to increase concurrency among consecutive insertions, allowing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

them to follow mostly-disjoint paths. Empirical results, comparing the new al­

gorithm, the single-lock algorithm, and Rao and Kumar’s top-down insertion al­

gorithm [72] on a SGI Challenge machine, show that the new algorithm provides

reasonable performance on small heaps, and significantly superior performance on

large heaps under high levels of contention.

2.2 Shared Queue Algorithms

2.2.1 Introduction

Concurrent FIFO queues are widely used in parallel applications and operating

systems. To ensure correctness, concurrent access to shared queues has to be syn­

chronized. Generally, algorithms for concurrent data structures, including FIFO

queues, fall into two categories: blocking and non-blocking. Blocking algorithms

allow a slow or delayed process to prevent faster processes from completing opera­

tions on the shared data structure indefinitely. Non-blocking algorithms guarantee

that if there are one or more active processes trying to perform operations on a

shared data structure, some operation will complete within a finite number of time

steps. On asynchronous (especially multiprogrammed) multiprocessor systems,

blocking algorithms suffer significant performance degradation when a process is

halted or delayed a t an inopportune moment. Possible sources of delay include

processor scheduling preemption, page faults, and cache misses. Non-blocking

; i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

algorithms are more robust in the face of these events.

Many researchers have proposed lock-free algorithms for concurrent FIFO

queues. Hwang and Briggs [34], Sites [79], and Stone [84] present lock-free al­

gorithms based on compare_and_swap.2 These algorithms are incompletely spec­

ified; they omit details such as the handling of empty or single-item queues, or

concurrent enqueues and dequeues. Lamport [46] presents a wait-free algorithm

that restricts concurrency to a single enqueuer and a single dequeuer.3

Gottlieb et a i [20] and Mellor-Crummey [55] present algorithms that are lock-

free but not non-blocking: they do not use locking mechanisms, but they allow a

slow process to delay faster processes indefinitely.

Treiber [86] presents an algorithm that is non-blocking but slow: a dequeue

operation takes time proportional to the number of the elements in the queue.

Herlihy [30]; Prakash, Lee, and Johnson [69]; Turek, Shasha, and Prakash [88];

and Barnes [9] propose general methodologies for generating non-blocking ver­

sions of sequential or concurrent lock-based algorithms. However, the resulting

implementations are generally slow compared to specialized algorithms.

Massalin and Pu [54] present lock-free algorithms based on a double_compare_

ancLswap primitive that operates on two arbitrary memory locations simultane-

2Compare.and.swap, introduced on the IBM System 370, takes as arguments the address of
a shared memory location, an expected value, and a new value. If the shared location currently
holds the expected value, it is assigned the new value atomically. A Boolean return value
indicates whether the replacement occurred.

3A wait-free algorithm is both non-blocking and starvation free: it guarantees that every
active process will make progress within a bounded number of time steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ously, and that seems to be available only on later members of the Motorola 68000

family of processors. Herlihy and Wing [25] present an array-based algorithm that

requires infinite arrays. Valois [89] presents an array-based algorithm that requires

either an unaligned compare_and_swap (not supported on any architecture) or a

Motorola-like double_compare_and_swap.

Stone [82] presents a queue that is lock-free but non-linearizable4 and not non-

blocking. It is non-linearizable because a slow enqueuer may cause a faster process

to enqueue an item and subsequently observe an empty queue, even though the

enqueued item has never been dequeued. It is not non-blocking because a slow

enqueue can delay dequeues by other processes indefinitely. Our experiments also

revealed a race condition in which a certain interleaving of a slow dequeue with

faster enqueues and dequeues by other process (es) can cause an enqueued item

to be lost permanently. Stone also presents [83] a non-blocking queue based on a

circular singly-linked list. The algorithm uses one anchor pointer to manage the

queue instead of the usual head and tail. Our experiments revealed a race condi­

tion in which a slow dequeuer can cause an enqueued item to be lost permanently.

Prakash, Lee, and Johnson [68; 70] present a linearizable non-blocking algo­

rithm that requires enqueuing and dequeuing processes to take a snapshot of

the queue in order to determine its “state” prior to updating it. The algorithm

4 An implementation of a data structure is linearizable if it can always give an external
observer, observing only the abstract data structure operations, the illusion that each of these
operations takes effect instantaneously at some point between its invocation and its response [28].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

achieves the non-blocking property by allowing faster processes to complete the

operations of slower processes instead of waiting for them.

Valois [89; 90] presents a list-based non-blocking algorithm that avoids the

contention caused by the snapshots of Prakash et al.'s algorithm and allows more

concurrency by keeping a dummy node at the head (dequeue end) of a singly-

linked list, thus simplifying the special cases associated with empty and single­

item queues (a technique suggested by Sites [79]). Unfortunately, the algorithm

allows the tail pointer to lag behind the head pointer, thus preventing dequeuing

processes from safely freeing or re-using dequeued nodes. If the tail pointer lags

behind and a process frees a dequeued node, the linked list can be broken, so

that subsequently enqueued items are lost. Since memory is a limited resource,

prohibiting memory reuse is not an acceptable option. Valois therefore proposes

a special mechanism to free and allocate memory. The mechanism associates a

reference counter with each node. Each time a process creates a pointer to a node

it increments the node’s reference counter atomically. When it does not intend to

access a node that it has accessed before, it decrements the associated reference

counter atomically. In addition to temporary links from process-local variables,

each reference counter reflects the number of links in the data structure that point

to the node in question. For a queue, these are the head and tail pointers and

linked-list links. A node is freed only when no pointers in the data structure or

temporary variables point to it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

We discovered and corrected [58] race conditions in the memory management

mechanism and the associated non-blocking queue algorithm. Even so, the mem­

ory management mechanism and the queue tha t employs it are impractical: no

finite memory can guarantee to satisfy the memory requirements of the algorithm

all the time. Problems occur if a process reads a pointer to a node (incrementing

the reference counter) and is then delayed. While it is not running, other pro­

cesses can enqueue and dequeue an arbitrary number of additional nodes. Because

of the pointer held by the delayed process, neither the node referenced by that

pointer nor any of its successors can be freed. It is therefore possible to run out

of memory even if the number of items in the queue is bounded by a constant.

In experiments with a queue of maximum length 12 items, we ran out of memory

several times during runs of ten million enqueues and dequeues, using a free list

initialized with 64,000 nodes.

Most of the algorithms mentioned above are based on compare_and_swap, and

must therefore deal with the ABA problem: if a process reads a value A in a shared

location, computes a new value, and then attempts a compare_ancLswap operation,

the compare_and_swap may succeed when it should not, if between the read and

the compare_and_swap some other processes) change the A to a B and then back

to an A again. The most common solution is to associate a modification counter

with a pointer, to always access the counter with the pointer in any read-modify-

compare_and_swap sequence, and to increment it in each successful compare_and_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f
30

swap. This solution does not guarantee that the ABA problem will not occur,

but it makes it extremely unlikely. To implement this solution, one must either

employ a double-word compare_and_swap, or else use array indices instead of

pointers, so that they may share a single word with a counter. Valois’s reference

counting technique guarantees preventing the ABA problem without the need for

modification counters or the double-word compare_and_swap. Mellor-Crummey’s

lock-free queue [55] requires no special precautions to avoid the ABA problem

because it uses compare_and_swap in a fetch_and_store-modify-compare-and_

swap sequence rather than the usual read-modify-compare_and_swap sequence.

However, this same feature makes the algorithm blocking.

In section 2.2.2 we present two new concurrent FIFO queue algorithms in­

spired by ideas in the work described above. Both of the algorithms are simple

and practical. One is non-blocking; the other uses a pair of locks. Correctness

of these algorithms is discussed in section 2.2.3. We present experimental results

in section 2.2.4. Using a 12-node SGI Challenge multiprocessor, we compare the

new algorithms to a straightforward single-lock queue, Mellor-Crummey’s block­

ing algorithm [55], and the non-blocking algorithms of Prakash et al. [70] and

Valois [90], with both dedicated and multiprogrammed workloads. The results

confirm the value of non-blocking algorithms on multiprogrammed systems. They

also show consistently superior performance on the part of the new lock-free al­

gorithm, both with and without multiprogramming. The new two-lock algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

cannot compete with the non-blocking alternatives on a multiprogrammed sys­

tem, but outperforms a single lock when several processes compete for access

simultaneously. Section 2.2.5 summarizes our conclusions.

2.2.2 The Algorithms

Figure 2.7 presents commented pseudo-code for the non-blocking queue data

structure and operations. The algorithm implements the queue as a singly-linked

list with Head and Tail pointers. As in Valois’s algorithm, Head always points to

a dummy node, which is the first node in the list. Tail points to either the last

or second to last node in the list. The algorithm uses compare_and_swap, with

modification counters to avoid the ABA problem. To allow dequeuing processes

to free dequeued nodes, the dequeue operation ensures that Tail does not point

to the dequeued node nor to any of its predecessors. This means that dequeued

nodes may safely be re-used.

To obtain consistent values of various pointers we rely on sequences of reads

tha t re-check earlier values to be sure they haven’t changed. These sequences of

reads are similar to, but simpler than, the snapshots of Prakash et al. (we need to

check only one shared variable rather than two). A sim ilar technique can be used

to prevent the race condition in Stone’s blocking algorithm. We use Treiber’s

simple and fast non-blocking stack algorithm [86] to implement a non-blocking

free list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

re c o rd pointer.t
re c o rd node-t
re c o rd queue-t

{ptr: pointer to node_t, count: unsigned integer}
{value: data type, next: pointers}
{Head: pointer_t, Tail: pointer^}

lNmALlZE(Q: p o in te r to queue_t)

Enqueub(Q: p o in te r to queue-t, value: d a ta type)
E l: node := new_node() # Allocate a new node from the free list
E2: node-+value — value # Copy enqueued value into node
E3: node-tnext.ptr := NULL # Set next pointer of node to NULL
E4: loop # Keep trying until Enqueue is done
E5: tail := Q->Tail # Read Tail.ptr and TaiLcount together
E6: next ~ tail.ptr-vnext # Read next p tr and count fields together
E7: if tail = Q-vTail # Are tail and next consistent?
E8: if next.ptr = NULL # Was Tail pointing to the last node?
E9: i f CAS(&taiLptr-4next, next, [node, next.count+lj) # T ty to link node a t the end of the linked list
£10: b rea k # Enqueue is done. Exit loop
E l l : end if
E12: else # Tail was not pointing to the last node
E13: CAS(&Q—►Thil, tail, [next.ptr, tail.count+1]) # T ty to swing Tail to the next node
E14: en d if
E1S: en d if
E16: end loop
E17: CAS(&Q—►Tail, tail, [node, taQ.count-M]) # T ty to swing Tail to the inserted node

D equeue(Q: pointer to queued, pvalue: p ointer to data type): boolean
D l: loop # Keep trying until Dequeue is done
D2: head := Q-^Head # Read Head
D3: tail := Q-fThil # Read Tail
D4: next := head.ptr-m ext # Read H ead.ptr-tnext
D5: if head = Q-4Head # Are head, tail, and next consistent?
D6: if head.ptr = tail.p tr # Is queue em pty or Tail falling behind?
D7: if next.ptr = NULL # Is queue empty?
D8: re tu rn FALSE # Queue is empty, couldn’t dequeue
D9: end if
DIO: CAS(&Q—t-Tail, tail, [next.ptr, tail.count+1]) # Tail is falling behind. Try to advance it
D ll : else # No need to deal with Tail

Read value before CAS, otherwise another dequeue might free the next node
D12: *pvalue := next.ptr—►value
D13: if CAS(&Q-*Head, head, [next.ptr, head.count+1]) # TVy to swing Head to the next node
D14: b reak # Dequeue is done. Exit loop
D15: endif
D16: en d if
D17: en d if
D18: endloop
D19: free(head.ptr) # It is safe now to free the old dummy node
D20: r e tu r n TRUE # Queue was not empty, dequeue succeeded

Figure 2.7: Structure and operation of a non-blocking concurrent queue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

rec o rd node_t {value: da ta type, next: p o in te r to node.t}
re c o rd queue.t {Head: p o in te r to node-t, Tail: p o in te r t o node-t, HJock: lock type, TJock: lock type}

Initiauzb(Q: p o in te r to queue-t)
node := new_node() #. Allocate a free node
node—*next := NULL # Make it the only node in the linked list
Q -f Head " Q—►Thil := node # Both Head and Thil point to it
Q—►HJock = Q -fT Jock := FREE # Locks are initially free

Enqoeub(Q: p o in te r to queue-t, value: data type)
node := new_node() # Allocate a new node from the free list
node—►value — value # Copy enqueued value into node
node—►next ~ NULL # Set next pointer of node to NULL
Iock(&Q—►TJock) # Acquire TJock in order to access Thil

Q—►Tail—►next ~ node # Link node at the end of the linked list
Q—►Tail := node # Swing Tail to node

un!ock(fcQ—►TJock) # Release TJock

DequeubCQ: p o in te r to queue-t, pvalue:
lock(fcQ—►HJock)

node := Q—►Head
new_head := node—►next
i f new-head = NULL

unlock(&Q—► HJock)
r e tu r n FALSE

e n d if
•pvalue := newJiead—►value
Q—►Head := newJtead

imIock(&Q—►HJock)
free(node)
r e tu r n TRUE

p o in te r to data type): b o o le an
Acquire HJock in order to access Head
Read Head
Read next pointer
Is queue empty?
Release HJock before return
Queue was empty

Queue not empty. Read value before release
Swing Head to next node
Release HJock
EVee node
Queue was not empty, dequeue succeeded

Figure 2.8: Structure and operation of a two-lock concurrent queue.

Figure 2.8 presents commented pseudo-code for the two-lock queue data struc­

ture and operations. The algorithm employs separate Head and Tail locks, to allow

complete concurrency between enqueues and dequeues. As in the non-blocking

queue, we keep a dummy node at the beginning of the list. Because of the dummy

node, enqueuers never have to access Head, and dequeuers never have to access

Tail, thus avoiding potential deadlock problems that arise from processes trying

to acquire the locks in different orders.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

2.2.3 Correctness

Safety

The presented algorithms are safe because they satisfy the following properties:

1. The linked list is always connected.

2. Nodes are only inserted after the last node in the linked list.

3. Nodes are only deleted from the beginning of the linked list.

4. Head always points to the first node in the linked list.

0. Tail always points to a node in the linked list.

Initially, all these properties hold. By induction, we show th a t they continue

to hold, assuming that the ABA problem never occurs.

1. The linked list is always connected because once a node is inserted, its next

pointer is not set to NULL before it is freed, and no node is freed until it is

deleted from the beginning of the list (property 3).

2. In the lock-free algorithm, nodes are only inserted at the end of the linked

list because they are linked through the Tail pointer, which always points to

a node in the linked-list (property 5), and an inserted node is linked only to

a node tha t has a NULL next pointer, and the only such node in the linked

list is the last one (property 1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

In the lock-based algorithm nodes are only inserted at the end of the linked

list because they are inserted after the node pointed to by Tail, and in this

algorithm Tail always points to the last node in the linked list, unless it is

protected by the tail Lock.

3. Nodes are deleted from the beginning of the list, because they are deleted

only when they are pointed to by Head and Head always points to the first

node in the list (property 4).

4. Head always points to the first node in the list, because it only changes

its value to the next node atomically (either using the head lock or using

compare_and_swap). When this happens the node it used to point to is

considered deleted from the list. The new value of Head cannot be NULL

because if there is one node in the linked list the dequeue operation returns

without deleting any nodes.

5. Tail always points to a node in the linked list, because it never lags behind

Head, so it can never point to a deleted node. Also, when Tail changes

its value it always swings to the next node in the list and it never tries to

change its value if the next pointer is NULL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Linearizability

The presented algorithms are Iinearizable because there is a specific point

during each operation a t which it is considered to “take effect” [28]. An enqueue

takes effect when the allocated node is linked to the last node in the linked list.

A dequeue takes effect when Head swings to the next node. And, as shown in

the previous subsection (properties 1,4, and 5), the queue variables always reflect

the state of the queue; they never enter a transient state in which the state of the

queue can be mistaken (e.g. a non-empty queue appears to be empty).

Liveness

The Lock-Free Algorithm is Non-Blocking

The lock-free algorithm is non-blocking because if there are non-delayed pro­

cesses attempting to perform operations on the queue, an operation is guaranteed

to complete within finite time.

An enqueue operation loops only if the condition in line E7 fails, the condition

in line E8 fails, or the compare.and.svap in line E9 fails. A dequeue operation

loops only if the condition in line D5 fails, the condition in line D6 holds (and the

queue is not empty), or the compare.ancLswap in line D13 fails.

We show that the algorithm is non-blocking by showing that a process loops

beyond a finite number of times only if another process completes an operation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

on the queue.

• The condition in line E7 fails only if Tail is written by an intervening process

after executing line E5. Tail always points to the last or second to last node

of the linked list, and when modified it follows the next pointer of the node

it points to. Therefore, if the condition in line E7 fails more than once, then

another process must have succeeded in completing an enqueue operation.

• The condition in line E8 fails if Tail was pointing to the second to last node

in the linked-list. After the compare_and_swap in line E13, Tail must point

to the last node in the list, unless a process has succeeded in enqueuing a

new item. Therefore, if the condition in line E8 fails more than once, then

another process must have succeeded in completing an enqueue operation.

• The compare_and_swap in line E9 fails only if another process succeeded in

enqueuing a new item to the queue.

• The condition in line D5 and the compare_and_swap in line D13 fail only

if Head has been written by another process. Head is written only when a

process succeeds in dequeuing an item.

• The condition in line D6 succeeds (while the queue is not empty) only if

Tail points to the second to last node in the linked list (in this case it is also

the first node). After the compare_and_swap in line DIO, Tail must point

to the last node in the list, unless a process succeeded in enqueuing a new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

item. Therefore, if the condition of line D6 succeeds more than once, then

another process must have succeeded in completing an enqueue operation

(and the same or another process succeeded in dequeuing an item).

The Two-Lock Algorithm is Livelock-Free

The two-lock algorithm does not contain any loops. Therefore, if the mutual

exclusion lock algorithm used for locking and unlocking the head and tail locks

is livelock-free, then the presented algorithm is livelock-free too. There are many

mutual exclusion algorithms that are livelock-free [56].

2.2.4 Performance

We use a 12-processor Silicon Graphics Challenge multiprocessor to compare

the performance of the new algorithms to that of a single-lock algorithm, the

algorithm of Prakash et al. [70], Valois’s algorithm [90] (with corrections to the

memory management mechanism [58]), and Mellor-Crummey’s algorithm [55]. We

include the algorithm of Prakash et al. because it appears to be the best of the

known non-blocking alternatives. Mellor-Crummey’s algorithm represents non-

lock-based but blocking alternatives; it is simpler than the code of Prakash et

al., and could be expected to display lower constant overhead in the absence of

unpredictable process delays, but is likely to degenerate on a multiprogrammed

system. We include Valois’s algorithm to demonstrate that on multiprogrammed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

systems even a comparatively slow non-blocking algorithm can outperform block­

ing algorithms.

For the two lock-based algorithms we use test-and-test_and_set locks with

bounded exponential backoff [5; 56]. We also use backoff where appropriate in

the non-lock-based algorithms. Performance was not sensitive to the exact choice

of backoff parameters in programs that do at least a modest amount of work

between queue operations. We emulate both test_and_set and the atomic opera­

tions required by the other algorithms (compare_and_swap, f etch_and .increment,

fetch_and_decrement, etc.) using the MIPS R4000 lo ad -lin k ed and s to re -

c o n d itio n a l instructions.3

To ensure the accuracy of the experimental results, we used the multiprocessor

exclusively and prevented other users from accessing it during the experiments.

To evaluate the performance of the algorithms under different levels of multipro­

gramming, we used a feature in the Irix operating system th a t allows programmers

to associate processes with certain processors. For example, to represent a dedi­

cated system on which multiprogramming is not permitted, we created as many

processes as the number of processors we wanted to use and locked each process

to a different processor. And in order to represent a system with a multiprogram-

5Load-linked and store-con d ition al, proposed by Jensen et al. [36], must be used together
to read, modify, and write a shared location. Load-linked returns the value stored at the shared
location. Store-conditional checks if any other processor has since written to that location. If
not then the location is updated and the operation returns success, otherwise it returns failure.
Load-linked and store-con d ition al are supported by the MIPS II, PowerPC, and Alpha
architectures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

ming level of 2, we created twice as many processes as the number of processors

we wanted to use, and locked each pair of processes to an individual processor.

The algorithms were compiled at the highest optimization level, and were care­

fully hand-optimized. We tested each of the algorithms in hours-long executions

on various numbers of processors. It was during this process that we discovered

the race conditions mentioned in section 2.2.1.

All the experiments employ an initially-empty queue to which processes per­

form a series of enqueue and dequeue operations. Each process enqueues an item,

does “other work” , dequeues an item, does “other work”, and repeats. W ith p

processes, each process executes this loop [106/pJ or [l06/p] times, for a total of

one million enqueues and dequeues. The “other work” consists of approximately

6 ps of spinning in an empty loop; it serves to make the experiments more re­

alistic by preventing long runs of queue operations by the same process (which

would display overly-optimistic performance due to an unrealistically low cache

miss rate). We subtracted the time required for one processor to complete the

“other work” from the total time reported in the figures.

Figure 2.9 shows net elapsed time in seconds for one million enqueue/dequeue

pairs. Roughly speaking, this corresponds to the time in microseconds for one

enqueue/dequeue pair. More precisely, for k processors, the graph shows the time

one processor spends performing 106/k enqueue/dequeue pairs, plus the amount

by which the critical path of the other 106(fc — 1) /k pairs performed by other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

25

20

15

10

10 12

Figure 2.9: Net execution time for one million enqueue/dequeue pairs on a dedi­
cated multiprocessor.

25

20

IS

10

2 3 5 6
P rocessors

7 8 9 101 11 12

Figure 2.10: Net execution time for one million enqueue/dequeue pairs on a mul­
tiprogrammed system with 2 processes per processor.

25

20

15

10

5 -

1 8 02 3 5 10 124 11

Figure 2.11: Net execution time for one million enqueue/dequeue pairs on a mul­
tiprogrammed system with 3 processes per processor.

i _____

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
42

processors exceeds the time spent by the first processor in “other work” and loop

overhead. For k — 1, the second term is zero. As k increases, the first term shrinks

toward zero, and the second term approaches the critical path length of the overall

computation; i.e. one million times the serial portion of an enqueue/dequeue pair.

Exactly how much execution will overlap in different processors depends on the

choice of algorithm, the number of processors k , and the length of the “other

work” between queue operations.

W ith only one processor, memory references in all but the first loop iteration

hit in the cache, and completion times are very low. With two processors active,

contention for head and tail pointers and queue elements causes a high fraction of

references to miss in the cache, leading to substantially higher completion times.

The queue operations of processor 2, however, fit into the “other work” time

of processor 1, and vice versa, so we are effectively measuring the time for one

processor to complete 5 x 105 enqueue/dequeue pairs. At three processors, the

cache miss rate is about the same as it was with two processors. Each processor

only has to perform 106/3 enqueue/dequeue pairs, but some of the operations of

the other processors no longer fit in the first processor’s “other work” time. Total

elapsed time decreases, but by a fraction less than 1/3. Toward the right-hand

side of the graph, execution time rises for most algorithms as smaller and smaller

amounts of per-processor “other work” and loop overhead are subtracted from

a total time dominated by critical path length. In the single-lock and Mellor-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Cruinmey curves, the increase is probably accelerated as high rates of contention

increase the average cost of a cache miss. In Valois’s algorithm, the plotted time

continues to decrease, as more and more of the memory management overhead

moves out of the critical path and into the overlapped part of the computation.

Figures 2.10 and 2.11 plot the same quantity as Figure 2.9, but for a sys­

tem with 2 and 3 processes per processor, respectively. The operating system

multiplexes the processor among processes with a scheduling quantum of 10 ms.

As expected, the blocking algorithms fare much worse in the presence of multi­

programming, since an inopportune preemption can block the progress of every

process in the system. Also as expected, the degree of performance degradation

increases with the level of multiprogramming.

In all three graphs, the new non-blocking queue outperforms all of the other

alternatives when three or more processors are active. Even for one or two proces­

sors, its performance is good enough that we can comfortably recommend its use

in all situations. The two-lock algorithm outperforms the one-lock algorithm when

more than 5 processors are active on a dedicated system: it appears to be a reason­

able choice for machines that are not multiprogrammed, and that lack a universal6

atomic primitive (compare_and-Swap or load-linked/store-conditional).

8Herlihy [29] presented a hierarchy of non-blocking objects that also applies to atomic prim­
itives. A primitive is at level n of the hierarchy if it can provide a non-blocking solution to
a consensus problem for up to n processors. Primitives at higher levels of the hierarchy can
provide non-blocking implementations of those at lower levels, but not conversely. Compare-
and-svap and the pair load-linked and store-conditional are universal primitives as they
are at level oo of the hierarchy. Widely supported primitives such as test_and_set, fetch_and_
add, and fetch.and -store are at level 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

2.2.5 Summary

Queues are ubiquitous in parallel programs, and their performance is a m atter

of major concern. We have presented a concurrent queue algorithm that is simple,

non-blocking, practical, and fast. We were surprised not to find it in the litera­

ture. It seems to be the algorithm of choice for any queue-based application on a

multiprocessor with universal atomic primitives (e.g. compare_and_swap or load-

lin k e d / sto re_cond it io n a l) .

We have also presented a queue with separate head and tail pointer locks.

Its structure is similar to that of the non-blocking queue, but it allows only one

enqueue and one dequeue to proceed at a given time. Because it is based on locks,

however, it will work on machines with such simple atomic primitives as t e s t -

and_set. We recommend it for heavily-utilized queues on such machines (For a

queue tha t is usually accessed by only one or two processors, a single lock will run

a little faster.)

Immunity to arbitrary processes delays is a primary benefit of non-blocking

parallel algorithms and preemption-safe locking. In the next chapter, we com­

pare the performance of these two approaches in the context of multiprogrammed

systems for several important data structures, including queues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II
!

45

3 Synchronization and

Multiprogramming

3.1 Introduction

In order to achieve acceptable response time and high utilization, most multi­

processors are multiprogrammed by time-slicing processors among processes. The

performance of mutual exclusion locks in parallel applications degrades signifi­

cantly on time-slicing multiprogrammed systems [94] due to the preemption of

processes holding locks. Any other processes busy-waiting on the lock are then

unable to perform useful work until the preempted process is rescheduled and

subsequently releases the lock.

Alternative multiprogram m ing schemes to time-slicing have been proposed in

order to avoid the adverse effect of time-slicing on the performance of synchro­

nization operations. However, each has limited applicability and/or reduces the

utilization of the multiprocessor. Coscheduling [67], ensures that all processes of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an application ran together. It has the disadvantage of reducing the utilization

of the multiprocessor if applications have a variable amount of parallelism, or if

processes cannot be evenly assigned to time-slices of the multiprocessor. Another

alternative is hardware partitioning [87], under which no two applications share

a processor. However, fixed size partitions have the disadvantage of resulting

in poor response time when the number of processes is larger than the number

of processors, and adjustable size partitions have the disadvantage of requiring

applications to be able to adjust their number of processes as new applications

join the system. Otherwise, processes from the same application might have to

share the same processor, allowing one to be preempted while holding a mutual

exclusion lock. Traditional time-slicing remains the most widely used scheme of

multiprogramming on multiprocessor systems.

For time-sliced systems, researchers have proposed two principal strategies to

avoid inopportune preemption: preemption safe locking and non-blocking algo­

rithms. Most preemption-safe locking techniques require a widening of the kernel

interface, to facilitate cooperation between the application and the kernel. Gen­

erally, these techniques try either to recover from the preemption of lock-holding

processes (or processes waiting on queued locks), or to avoid preempting processes

while holding locks.

An implementation of a data structure is non-blocking (also known as lock-free)

if it guarantees that at least one process of those trying to concurrently update the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

II

data structure will succeed in completing its operation within a bounded amount

of time, assuming that at least one process is active, regardless of the state of other

processes. Non-blocking algorithms do not require any communication with the

kernel and by definition they cannot use mutual exclusion. Rather, they generally

rely on hardware support for a universal atomic primitive such as compare_and_

swap or the pair loacLIinked and sto re_cond itiona l, while mutual exclusion

locks can be implemented using weaker atomic primitives such as test_and_set,

f etch_and_increment, or fetch_and_store.

Few of the above mentioned techniques have been evaluated experimentally,

and then only in comparison to ordinary (preemption-oblivious) mutual exclusion

locks. We evaluate the relative performance of preemption-safe and non-blocking

atomic update techniques on multiprogrammed (time-sliced) as well as dedicated

multiprocessor systems. We focus on four important data structures: queues,

stacks, heaps, and counters. Our experimental results, employing both micro­

benchmarks and real applications, on a 12-processor Silicon Graphics Challenge

multiprocessor, indicate that fast data-structure-specific non-blocking algorithms

outperform both ordinary and preemption-safe lock-based alternatives, not only

on time-sliced systems, but on dedicated machines as well [62]. At the same time,

preemption-safe algorithms outperform ordinary locks on time-sliced systems, and

should therefore be supported by multiprocessor operating systems. We do not ex­

amine general-purpose non-blocking techniques in detail; previous work indicates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!
48

that they are highly inefficient, though they provide a level of fault tolerance

unavailable with locks.

The rest of this chapter is organized as follows. We discuss preemption-safe

locking in Section 3.2, and non-blocking algorithms in Section 3.3. We describe

our experimental methodology and results in Section 3.4. Finally, we summarize

our conclusions and recommendations in Section 3.5.

3.2 Preemption-Safe Locking

For simple mutual exclusion locks (e.g. test_and_set), preemption-safe locking

techniques allow the system either to avoid or to recover from the adverse effect

of the preemption of processes holding locks. Edler et al's Symunix system [15]

employs an avoidance technique: a process may set a flag requesting that the

kernel not preempt it because it is holding a lock. The kernel will honor the

request up to a pre-defined time limit, setting a second flag to indicate that it did

so, and deducting any extra execution time from the beginning of the process’s

next quantum. A process should yield the processor if it finds, upon leaving a

critical section, that it was granted an extension.

The first-class threads of Marsh et al.’s Psyche system [53] employ a different

avoidance technique: they require the kernel to warn an application process a fixed

amount of time in advance of preemption, by setting a flag that is visible in user

;i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

space. If a process verifies that the flag is unset before entering a critical section

(and if critical sections are short), then it is guaranteed to be able to complete

its operation in the current quantum. If it finds the flag is set, it can voluntarily

yield the processor.

Recovery-based preemption-safe locking techniques include the spin-then-block

locks of Ousterhout [67] which let a waiting process spin for a certain period

of time and then—if unsuccessful in entering the critical section—block, thus

minimizing the adverse effect of waiting for a lock held by a descheduled process.

Karlin et al. [39] present a set of spin-then-block alternatives that adjust the spin

time based on past experience. Black’s work on Mach [11] introduced another

recovery technique: a process may suggest to the kernel tha t it be descheduled in

favor of some specific other process (presumably the one that is holding a desired

lock). The scheduler activations of Anderson et al. [7] also support recovery:

when a processor is taken from an application, another processor belonging to

the same application is informed via software interrupt. If the preempted process

was holding a lock, the interrupted processor can perform a context switch to the

preempted process and push it through the critical section.

Simple preemption-safe techniques rely on the fact tha t processes acquire a

test_and_set lock in non-detenninistic order. Unfortunately, test_and_set locks

do not scale well to large machines. Queue-based locks scale well, but impose a

deterministic order on lock acquisitions, forcing a preemption-safe technique to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

deal with, preemption not only of the process holding a lock, but of processes

waiting in the lock’s queue as well. Preempting and scheduling processes in an

order inconsistent with their order in the lock’s queue can degrade performance

dramatically. Kontothanassis et al. [41] present preemption-safe (or “scheduler­

conscious”) versions of the ticket lock, the MCS lock [56], and Krieger et al.’s

reader-writer lock [42]. These algorithms detect the descheduling of critical pro­

cesses using handshaking and/or a widened kemel-user interface, and use this

information to avoid handing the lock to a preempted process.

The proposals of Black and of Anderson et al. require the application to rec­

ognize the preemption of lock-holding processes and to deal with the problem. By

performing recovery on a processor other than the one on which the preempted

process last ran, they also sacrifice cache footprint. The proposal of Marsh et

al. requires the application to estimate the maximum duration of a critical sec­

tion, which is not always possible. To represent the preemption-safe approach in

our experiments, we employ test-and-test_and_set locks with exponential back­

off, based on the kernel interface of Edler et al. For machines the size of ours

(12 processors), the results of Kontothanassis et al. indicate that these will out­

perform queue-based locks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

3.3 Non-Blocking Algorithms

Several non-blocking implementations of widely used data structures as well

as general methodologies for developing such implementations systematically have

been proposed in the literature. These implementations and methodologies were

motivated in large part by the performance degradation of mutual exclusion locks

as a result of arbitrary process delays, particularly those due to preemption on a

multiprogrammed system.

3.3.1 General Non-Blocking Methodologies

Herlihy [30] presented a general methodology for transforming sequential im­

plementations of data structures into concurrent non-blocking implementations us­

ing compare_and_swap or load_ linked /sto re_cond itional. The basic method­

ology requires copying the entire data structure on every update. Herlihy also

proposed an optimization by which the programmer can avoid some fraction

of the copying for certain data structures; he illustrated this optimization in a

non-blocking implementation of a skew-heap-based priority queue. Alemany and

Felten [3] and LaMarca [45] proposed techniques to reduce unnecessary copy­

ing and useless parallelism associated with Herlihy’s methodologies using extra

communication between the operating system kernel and application processes.

Barnes [9] presented a general methodology in which processes record and times-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

tamp their modifications to the shared object, and cooperate whenever conflicts

arise. Shavit and Touitou [77] presented software transactional memory, which

implements a fc-word compare_and_swap using load .lin k ed /sto re -co n d itio n a l.

Also, Anderson and Moir [8] presented non-blocking methodologies for large ob­

jects that rely on techniques for implementing multiple-word compare_and_swap

using lo ad -lin k ed /s to re_ co n d itio n a l and vice versa. Turek et al. [88] and

Prakash et al. [69] presented methodologies for transforming multiple lock con­

current objects into lock-free concurrent objects. Unfortunately, the performance

of non-blocking algorithms resulting from general methodologies is acknowledged

to be significantly inferior to that of the corresponding lock-based algorithms [30;

45; 77].

Two proposals for hardware support for general non-blocking data structures

have been presented: transactional memory by Herlihy and Moss [31] and the

Oklahoma update by Stone et al. [85]. Neither of these techniques has been imple­

mented on a real machine. The simulation-based experimental results of Herlihy

and Moss show performance significantly inferior to that of spin locks. Stone et

al. did not present experimental results.

3.3.2 Data-Structure-Specific Non-Blocking Algorithms

Treiber [86] proposed a non-blocking implementation of concurrent link-based

stacks. It represents the stack as a singly-linked list with a Top pointer. It uses

;i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

rec o rd pointers
re c o rd node-t
re c o rd stack-t

{ptr; p o in te r to node-t, count: unsigned in teger}
{value: data type, next: pointer-t}
{Top: pointer-t}

Initial ize(S: p o in te r to stack-t)
S—►Top.ptr — NULL # Empty stack. Top points to NULL

Push(S: p o in te r t o stack-t, value: data type)
node = new-nodeQ
node—►value := value
re p e a t

Allocate a new node from the free list
Copy stacked value into node
Keep trying until Push is done

top := S-+Top # Read Top.ptr and Top.count together
node—►next.ptr := top.ptr

u n til CAS(&S—►Top, top, [node, top.count+1])
Link new node to head o f list
T ty to swing Top to new node

Pop(S: p o in te r to stack-t, pvalue: p o in te r to data type): boo lean
re p e a t

top := S—►Top
i f top .p tr = NULL

r e tu r n FALSE
e n d if

Keep trying until Pop is done
Read Top
Is the stack empty?
The stack was empty, couldn’t pop

u n til CAS(&S—►Top, top, [top.ptr-tnext.ptr, top.count+1]) # T ry to swing Top to the next node

Figure 3.1: Structure and operation of Treiber’s non-blocking concurrent stack
algorithm [86],

compare_and_swap to modify the value of Top atomically. Commented pseudo­

code of Treiber’s non-blocking stack algorithm is presented in Figure 3.1. No

performance results were reported for non-blocking stacks. However, Treiber’s

stack is very simple and can be expected to be quite fast. We also observe that

a stack derived from Herlihy’s general methodology, with unnecessary copying

removed, seems to be simple enough to compete with lock-based algorithms.

Valois [91] proposed a non-blocking implementation of linked lists. Anderson

and Woil [6] proposed a non-blocking solution to the union-find problem. Simple

non-blocking centralized counters can be implemented trivially using a f etch_

and_add atomic primitive (if supported by hardware), or a read-modify-check-

*pvalue := top.ptr-^-value
free(top.ptr)
r e tu rn TRUE

Pop is done. Read value
It is safe now to free the old node
The stack was not empty, pop succeeded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Add(X: p ointer to integer, value: integer): integer

count := LL(X)
u n til SC(X, count+value)
r e tu r n count

r e p e a t # Keep trying until SC succeeds
Read the current value of X

Add is done, return previous value

Figure 3.2: A non-blocking concurrent counter using lo ad -lin k ed and s to re —
co n d itio n a l.

write cycle using compare_and_swap or load-1 in k ed /sto re -co n d itio n a l. Fig­

ure 3.2 shows a non-blocking counter implementation using lo a d -lin k e d /s to re -

co n d itio n a l.

Massalin and Pu [54] presented non-blocking algorithms for array-based stacks,

array-based queues, and linked lists. Unfortunately, as mentioned in Section 2.2.1,

their algorithms require double_compare_and_swap, a primitive that operates on

two arbitrary memory locations simultaneously, and that appears to be available

only on the Motorola 68020 processor and its direct descendants.1 No practical

non-blocking implementations for array-based stacks or circular queues have been

proposed. The general methodologies can be used, but the resulting algorithms

would be very slow. For these data structures lock-based algorithms seem to be

the only option.

Data-structure-specific non-blocking queue algorithms were discussed in detail

in Section 2.2.1.

1Greenwald and Cheriton use simulation for evaluating the performance of a linked-list im­
plementation based on double_compare-and_swap [22].

M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

3.4 Experimental Results

We use a Silicon Graphics Challenge multiprocessor with twelve 100 MHz

MIPS R4000 processors to compare the performance of the most promising non-

blocking, ordinary lock-based, and preemption-safe lock-based implementations

of counters and of link-based queues, stacks, and skew heaps. We use micro­

benchmarks to compare the performance of the alternative algorithms under var­

ious levels of contention. We also use two versions of a parallel quicksort appli­

cation, together with a parallel solution to the traveling salesman problem, to

compare the performance of the algorithms when used in a real application.

To ensure the accuracy of our results regarding the level of multiprogram-

ming, we prevented other users from accessing the multiprocessor during the ex­

periments. To evaluate the performance of the algorithms under different levels

of multiprogramming, we used a feature of the Challenge’s Irix operating sys­

tem that allows program m ers to pin processes to processors. We then used one

of the processors to serve as a pseudo-scheduler. Whenever a process is due for

preemption, the pseudo-scheduler interrupts it, forcing it into a signal handler.

The handler spins on a flag which the pseudo-scheduler sets when the process can

continue computation. The time spent executing the handler represents the time

during which the processor is taken from the process and handed over to a process

that belongs to some other application. The time quantum is 10 ms.

All ordinary and preemption-safe locks used in the experiments are test-and-

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

TestAndSet(X: poin ter to boolean): boolean
rep ea t # Keep trying SC succeeds or X is TRUE

local := LL(X) # Read the current value of X
i f local = TRUE

return TRUE # TAS should return TRUE
u n til SC(X, TRUE)
retu rn FALSE # TAS is done, indicate that X was FALSE

Co.vcpareAndSwap(X: p ointer to integer, expected: in teger, new: integer): boolean
rep eat # Keep trying until SC succeeds or X expected

local := LL(X) # Read the current value of X
i f local # expected

return FALSE # CAS should fail
u n til SC(X, new)
retu rn TRUE # CAS succeeded

Figure 3.3: Implementations of te s t- a n d - s e t and compare-and-swap using
lo ad -lin k e d and s to re -c o n d itio n a l.

test_and_set locks with bounded exponential backoff. All non-blocking algo­

rithms also use bounded exponential backoff. The effectiveness of backoff in

reducing contention on locks and synchronization data is demonstrated in the

literature [5; 56]. The backoff was chosen to yield good overall performance for

all algorithm s, and not to exceed 30 fjs. We emulate both test_and_set and

compare_and_swap, using load-linked and s to re -c o n d itio n a l instructions, as

shown in Figure 3.3.

In the figures, multiprogram m ing level represents the number of applications

sharing the m achine, with one process per processor per application. A multipro­

gramming level of 1 (the top graph in each figure) therefore represents a dedicated

machine; a multiprogramming level of 3 (the bottom graph in each figure) rep­

resents a system with a process from each of three different applications on each

processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o r

3.4.1 Queues

Figure 3.4 shows performance results for eight queue implementations on a

dedicated system (no multiprogramming), and on multiprogrammed systems with

2 and 3 processes per processor. The eight implementations are: the usual single­

lock algorithm using both ordinary and preemption-safe locks (single o rd in ary

lock and single safe lock); our two-lock algorithm, again using both ordinary

and preemption-safe locks (two o rd in a ry locks and two safe locks); our non-

blocking algorithm (MS non-blocking) and those due to Prakash et al. [70] (P L J

non-blocking) and Valois [89] (Valois non-blocking); and Mellor-Crummey’s

blocking algorithm [55] (M C blocking). We include the algorithm of Prakash

et al. because it appears to be the best of the known non-blocking alternatives.

Mellor-Crummey’s algorithm represents non-lock-based but blocking alternatives;

it is simpler than the code of Prakash et al., and could be expected to display

lower constant overhead in the absence of unpredictable process delays, but is

likely to degenerate on a multiprogrammed system. We include Valois’s algorithm

to demonstrate that on multiprogrammed systems even a comparatively slow non-

blocking algorithm can outperform blocking algorithms.

The horizontal axes of the graphs represent the number of processors. The

vertical axes represent execution time normalized to that of the preemption-safe

single lock algorithm. This algorithm was chosen as the basis of normalization

because it yields the median performance among the set of algorithms. We use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Queues

58

1 . 5

I9
1 1

0.5

<DEv s

I
■S

JV x- -x Valois non—blocking
x- -x single safe lock
x - x single ordinary lock
o— o two ordinary locks
o- -o two safe locks

+- MC blocking
+- PLJ non—blocking

MS non-blocking

4 5 6 7 8
Processors

9 10 11

1.5 -

1 -

o —'■© two ordinary locks
x — -x single ordinary lock
x- -x Valois non—blocking

& . —o— o — -e- • —o---- e> — ©

s
* 0 S

~ x -o

0.5
MC blocking

- x- -x single safe lock
Q- -o two safe locks
-<----•- PLJ non-blocking

MS non-blocking

— t—

-x-
—t—
-*e-

—t-

-x

4 5 6 7 8
Processors

1 0 11

1.5as
E
*3

* «N 1

0.5

.a ■

o — o two ordinary locks x- -x single safe lock
x — -x single ordinary lock ©- -o two safe locks
h 1- MC blocking h-PLJ non-blocldng
x- -x Valois non-blocking x—x MS non-blocking

5 6 7 8
Processors

9 10 11

Figure 3.4: Normalized execution time for one million enqueue/dequeue pairs on
a multiprogrammed system, with multiprogramming levels of 1 (top), 2 (middle),
and 3 (bottom).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

normalized time in order to show the difference in performance between the algo­

rithms uniformly across different numbers of processors. If we were to use absolute

time, the vertical axes would have to be extended to cover the high absolute ex­

ecution time on a single processor, making the graph too small to read for larger

numbers of processors. The absolute times in seconds for the preemption-safe

single-lock algorithm on one and 11 processors, with 1, 2, and 3 processes per

processor, are 18.2 and 15.6, 38.8 and 15.4, and 57.6 and 16.3, respectively.

The execution time is the time taken by all processors to perform one million

pairs of enqueues and dequeues to an initially empty queue (each process performs

1,000,000/p enqueue/dequeue pairs, where p is the number of processors). Every

process spends 6 ps (±10% randomization) spinning in an empty loop after per­

forming every enqueue or dequeue operation (for a total of 12 ps per iteration) -

This time is meant to represent “real” computation. It prevents one process from

dominating the data structure and finishing all its operations while other processes

are starved by caching effects and backoff.

The results show that as the level of multiprogramming increases, the per­

formance of ordinary locks and Mellor-Crummey’s blocking algorithm degrades

significantly, while the performance of preemption-safe locks and non-blocking al­

gorithms remains relatively unchanged. The “bump” at two processors is due

primarily to cache misses, which do not occur on one processor, and to a smaller

amount of overlapped computation, in comparison to larger numbers of proces-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Q u e u e s

Single ordinary lock 16.2
MC blocking 16.2
MS non-blocking 16.3
Two ordinary locks 16.9
Two safe locks 17.7
Single safe lock 18.2
PLJ non-blocking 19.4
Valois non-blocking 23.7

Table 3.1: Execution times in seconds for one million enqueue/dequeue pairs on
a single processor (no contention).

sors. This effect is more obvious in the multiple lock and non-blocking algorithms,

which have a greater potential amount of overlap among concurrent operations.

The two-lock algorithm outperforms the single-lock in the case of high con­

tention since it allows more concurrency, but it suffers more with multiprogram­

ming when using ordinary locks, as the chances are larger that a process will be

preempted while holding a lock needed by other processes. On a dedicated system,

the two-lock algorithm outperforms a single lock when more than 4 processors are

active in our micro-benchmark. W ith multiprogramming levels of 2 and 3, the

cross-over points for the one and two-lock algorithms with preemption-safe locks

occur a t 6 and 8 processors, respectively. The non-blocking algorithms, except for

that of Valois, provide better performance; they enjoy added concurrency without

the overhead of extra locks, and without being vulnerable to interference from

multiprogramming. Valois’s algorithm suffers from the high overhead of the com­

plex memory management technique associated with it.

Table 3.1 shows absolute execution times for the eight queue implementations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 1

Treiber non-blocking 15.4
Ordinary lock 15.8
Herlihy non-blocking 16.4
Preemption-safe lock 19.0

Table 3.2: Execution times in seconds for one million push/pop pairs on a single
processor (no contention).

on a single processor. (They correspond to the left-most points in the top graph of

Figure 3.4.) In the absence of contention, any overhead required to communicate

with the scheduler in a preemption-safe algorithm is “wasted” , but the numbers

indicate that this overhead is low.

Overall, our non-blocking algorithm yields the best performance. It outper­

forms the single-lock preemption-safe algorithm by more than 40% on 11 proces­

sors with various levels of multiprogramming, since it allows more concurrency

and needs to access fewer memory locations. In the case of no contention, it is

essentially tied with the single ordinary lock and with Mellor-Crummey’s queue.

3.4.2 Stacks

Figure 3.5 shows performance results for four stack implementations on a dedi­

cated system, and on multiprogrammed systems with 2 and 3 processes per proces­

sor. Table 3.2 shows performance on a dedicated processor—the left-most points

in the top-most graph. The four stack implementations are: the usual single

lock algorithm using ordinary and preemption-safe locks, Treiber’s non-blocking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Stacks
preemption-safe lock
ordinary lock
Herlihy non-blocking
Treiber non-blocking1 .S

0.5

2 3 4 5 6 7 8 9 10 It1
Processors

*—x ordinary lock
®—© preemption—safe lock
-̂--- 1- Herlihy non—blocking

*—at Treiber non-blocking1.5
a>

-e-IM
13

0.5

2 3 4 5 6 7 8 9 10 111
Processors

•*--- Mt— -M—
x—x ordinary lock * *
©—© preem ption-safe lock
i - ■ + Herlihy non-blocking
at—at Treiber non-blocking

—* ---- * * — —

1 2 3 4 5 6 7 8 9 10 11
Processors

Figure 3.5: Normalized execution time for one million push/pop pairs on a mul­
tiprogrammed system, with multiprogramming levels of 1 (top), 2 (middle), and
3 (bottom).

1
; j _____

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i 63

stack algorithm [86], and an optimized non-blocking algorithm based on Herlihy’s

general methodology [30].

Like Treiber’s non-blocking stack algorithm, the optimized algorithm based on

Herlihy’s methodology uses a singly-linked list to represent the stack with a Top

pointer. However, every process has its own copy of Top and an operation is suc­

cessfully completed only when the process uses load_ linked /sto re_cond itional

to swing a shared pointer to its copy of Top. The shared pointer can be considered

as pointing to the latest version of the stack.

The axes in the graphs have the same semantics as those in the queue graphs.

Execution time is normalized to that of the preemption-safe single lock algorithm.

The absolute times in seconds for the preemption-safe lock-based algorithm on

one and 11 processors, with 1, 2, and 3 processes per processor, are 19.0 and 20.3,

40.8 and 20.7, and 60.2 and 21.6, respectively. Each process executes 1,000,000/p

push/pop pairs on an initially empty stack, with a 6 ps average delay between

successive operations.

As the level of multiprogram m ing increases, the performance of ordinary locks

degrades, while the performance of the preemption-safe and non-blocking algo­

rithms remains relatively unchanged. Treiber’s algorithm outperforms all the

others even on dedicated systems. It outperforms the preemption-safe algorithm

by over 45% on 11 processors with various levels of multiprogramming. This is

mainly due to the fact that a push or a pop in Treiber’s algorithm typically needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Ordinary lock 20.4
Preemption-safe lock 21.0
Herlihy non-blocking to to t-*

Table 3.3: Execution, times in seconds for one million insert/delete_min pairs on.
a single processor (no contention).

to access only two cache lines in the da ta structure, while a lock-based algorithm

has the overhead of accessing lock variables as well. Accordingly, Treiber’s algo­

rithm yields the best performance even with no contention.

3.4.3 Heaps

Figure 3.6 shows performance results for three skew heap implementations2 on

a dedicated system, and on multiprogrammed systems with 2 and 3 processes per

processor. Table 3.3 shows performance on a dedicated processor. The three im­

plementations are: the usual single-lock algorithm using ordinary and preemption-

safe locks, and an optimized non-blocking algorithm due to Herlihy [30].

The optimized non-blocking algorithm due to Herlihy uses a binary tree to

represent the heap with a Root pointer. Every process has its own copy of Root

A process perform ing a heap operation copies the nodes it intends to modify to

local free nodes and finally tries to swing a global shared pointer to its copy of

Root using lo a d -lin k e d /s to re .c o n d itio n a l. If it succeeds, the local copies of

2 Our heap implementation in Section 2.1 is array-based and is not applicable to skew heaps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Heaps

1 . 5 h0
E

1 1
73

Herlihy non-blocking
preemption—safe lock
ordinary lock

a

0.5

1 2 3 4 - 5 6 7 8 9 10 11
Processors

1.5

e x ordinary lock
+■ Herlihy non-blocking
e> preemption—safe lock

0.5

1 2 3 4 5 6 7 8 9 10 11
Processors

1.5

ordinary lock
Herlihy non-blocking
preem ption-safe lock

0.5

2 3 4 5 6 7 8 9 10 111
Processors

Figure 3.6: Normalized execution time for one million insert/ delete_min pairs on
a multiprogrammed system, with multiprogramming levels of 1 (top), 2 (middle),
and 3 (bottom).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 6

the copied nodes become part of the global structure and the copied nodes are

recycled for use in future operations.

The axes in the graphs have the same semantics as those for the queue and

stack graphs. Execution time is normalized to that of the preemption-safe single

lock algorithm. The absolute times in seconds for the preemption-safe lock-based

algorithm on one and 11 processors, with 1, 2, and 3 processes per processor,

are 21.0 and 27.7, 43.1 and 27.4, and 65.0 and 27.6, respectively. Each process

executes 1,000,000/p insert/ delete, min pairs on an initially empty heap with a

6 fis average delay between successive operations. Experiments with non-empty

heaps resulted in relative performance similar to that depicted in the graphs.

As the level of m ultiprogram m ing increases the performance of ordinary locks

degrades, while the performance of the preemption-safe and non-blocking algo­

rithms remains relatively unchanged. The degradation of the ordinary locks is

larger than that suffered by the locks in the queue and stack implementations,

because the heap operations are more complex and result in higher levels of con­

tention. Unlike the case for queues and stacks, the non-blocking implementation of

heaps is quite complex. It cannot match the performance of the preemption-safe

lock implementation on either dedicated or multiprogrammed systems, with or

without contention. Heap implementations resulting from general non-blocking

methodologies (without data-structure-specific elimination of copying) are even

more complex, and could be expected to perform much worse.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

LL/SC 14.6
Ordinary lock 16.0
Preemption-safe lock 17.7

Table 3.4: Execution times in seconds for one million atomic increments on a
single processor (no contention).

3.4.4 Counters

Figure 3.7 shows performance results for three implementations of counters on

a dedicated system, and on multiprogrammed systems with 2 and 3 processes

per processor. Table 3.4 shows performance on a dedicated processor. The

three implementations are: the usual single-lock algorithm using ordinary and

preemption-safe locks, and the non-blocking algorithm using load_ linked /sto re_

cond itional.

The axes in the graphs have the same semantics as those for the previous

graphs. Execution time is normalized to that of the preemption-safe single lock

algorithm. The absolute times in seconds for the preemption-safe lock-based algo­

rithm on one and 11 processors, with 1, 2, and 3 processes per processor, are 17.7

and 10.8, 35.0 and 11.3, and 50.6 and 10.9, respectively. Each process executes

1,000,000/p increments on a shared counter with a 6 /zs average delay between

successive operations.

The results are similar to those observed for queues and stacks, but are even

more pronounced. The non-blocking algorithm outperforms the preemption-safe

lock-based counter by more than 55% on 11 processors with various levels of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Counters

preem ption-safe lock
ordinary lock
LL/SC non—blocking1.5o

0.5

2 3 4 5 6 7 8 9 10 111
Processors

-*----1- ordinary lock
x —x preemption—safe lock
* —* LL/SC non-blocking1.5

0.5

2 3 4 5 6 7 8 9 10 111
Processors

<----► ordinary lock
x—x preemption—safe lock
a—x LL/SC non-blocking1.5

0.5

2 3 4 5 6 7 8 9 10 111
Processors

Figure 3.7: Normalized execution time for one million atomic increments on a
multiprogrammed system, with multiprogramming levels of 1 (top), 2 (middle),
and 3 (bottom).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Q u ic k so r t - q u e u e

MS non-blocking 3.6
Single ordinary lock 4.0
Single safe lock 4.0

Table 3.5: Execution times in seconds for quicksort of 500,000 items using a shared
queue on a single processor (no contention).

Q u ic k so r t - sta ck

Treiber non-blocking 3.0
Single ordinary lock 3.3
Single safe lock 3.4

Table 3.6: Execution times in seconds for quicksort o f500,000 items using a shared
stack on a single processor (no contention).

multiprogramming. The performance of a f etch_and_add atomic primitive would

be even better as we show in Chapter 4.

3.4.5 Quicksort Application

We performed experiments on two versions of a parallel quicksort application,

one that uses a link-based queue, and another that uses a link-based stack to

distribute items to be sorted among the cooperating processes. We used three

implementations for each of the queue and the stack: the usual single lock algo­

rithm using ordinary and preemption-safe locks, and our non-blocking queue and

Treiber’s stack, respectively. In each execution, the processes cooperate in sorting

an array of 500,000 pseudo-random numbers using quicksort for intervals of more

than 20 elements, and insertion sort for smaller intervals.

Figure 3.8 and Table 3.5 show performance results for the three queue-based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Quicksort - queue

preem ption-safe lock
ordinary lock
MS non—blocking1.5

0.5 -

2 3 4 - 5 6 7 8 9 10 111
Processors

x —x ordinary lock
o —o preem ption-safe lock
•*— k MS non-blocking1.5

0.5

1 2 3 4 5 6 7 8 9 10 11
Processors

2

ordinary lock
preem ption-safe lock
MS non-blocking1.5

1

0.5

1 2 3 4 5 6 7 8 9 10 11
Processors

Figure 3.8: Normalized execution time for quicksort of 500,000 items using a
shared queue on a multiprogrammed system, with multiprogramming levels of 1
(top), 2 (middle), and 3 (bottom).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Quicksort - stack

preem ption-safe lock
ordinary lock
Treiber non-blocking1 .S

I
73

0.5

1 2 3 4 5 6 7 8 9 10 11
Processors

x—k ordinary lock
o—o preemption—safe lock
h •- Treiber non-blocking1.5

<D

-& ■

0.5

2 3 4 5 6 7 8 9 10 111
Processors

ordinary lock
preemption—safe lock
Treiber non-blocking1.5

0.5

2 3 4 5 6 7 8 9 10 111
Processors

Figure 3.9: Normalized execution time for quicksort of 500,000 items using a
shared stack on a multiprogrammed system, with multiprogramming levels of 1
(top), 2 (middle), and 3 (bottom).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Ordinary locks 32.8
Hybrid 33.7
Non-blocking 34.3
Safe locks 34.9

Table 3.7: Execution times in seconds for a 17-city traveling salesman problem
using a shared priority queue, stack and counters on a single processor (no con­
tention).

versions; Figure 3.9 and Table 3.6 show results for the three stack-based ver­

sions. Execution times are normalized to those of the preemption-safe lock-based

algorithms. The absolute times in seconds for the preemption-safe lock-based al­

gorithm on one and 11 processors, with 1, 2, and 3 processes per processor, are

4.0 and 1.6, 7.9 and 2.3, and 11.6 and 3.3, respectively for a shared queue, and

3.4 and 1.5, 7.0 and 2.3, and 10.2 and 3.1, respectively for a shared stack.

The results confirm our observations from experiments on micro-benchmarks.

Performance with ordinary locks degrades under multiprogramming, though not

as severely as before, since more work is being done between atomic operations.

Simple non-blocking algorithms yield superior performance even on dedicated sys­

tems, making them the strategy of choice under any level of contention or multi­

programming.

3.4.6 Traveling Salesman Application

We performed experiments on a parallel implementation of a solution to the

traveling salesman problem. The program uses a shared heap, stack, and counters.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

TSP

x —x preemption—safe lock
g—© ordinary lock
-t 1- non-blocking
* — m hybrid

1.5

£4
13

e
0.5

2 3 4 5 6 7 8 9 10 111
Processors

© ordinary lock
x preemption—safe lock
+■ non-blocking
« hybrid

1.5a>

oc
0.5

2 3 4 5 6 7 8 9 10 111
Processors

1.5

ordinary lock
preemption-safe lock
non-blocldng
hybrid

0.5

2 3 4 5 6 7 8 9 10 111
Processors

Figure 3.10: Normalized execution time for a 17-city traveling salesman problem
using a shared priority queue, stack and counters on a multiprogrammed system,
with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).

, !

'I
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

We used three implementations for each of the heap, stack, and counters: the

usual single lock algorithm using ordinary and preemption-safe locks, and the

best respective non-blocking algorithms (Herlihy-optimized, Treiber, and loacL

lin k ed /sto re_ co n d itio n a l). In each execution, the processes cooperate to find

the shortest tour in a 17-city graph. The processes use the priority queue heap

to share information about the most promising tours, and the stack to keep track

of the tours tha t are yet to be computed. We ran experiments with each of the

three implementations of the data structures. In addition, we ran experiments

with a “hybrid" program that uses the version of each data structure that ran

the fastest for the micro-benchmarks: non-blocking stacks and counters, and a

preemption-safe priority queue.

Figure 3.10 and Table 3.7 show performance results for the four different exper­

iments. Execution times are normalized to those of the preemption-safe lock-based

experiment. The absolute times in seconds for the preemption-safe lock-based ex­

periment on one and 11 processors, with 1, 2, and 3 processes per processor, are

34.9 and 14.3, 71.7 and 15.7, and 108.0 and 18.5, respectively. Confirming our

results with micro-benchmarks, the experiment based on ordinary locks suffers

under m ultiprogram m ing. The hybrid experiment yields the best performance,

since it uses the best implementation of each of the data structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Summary

For atomic update of a shared data structure, the programmer may ensure

consistency using (1) a single lock, (2) multiple locks, (3) a general-purpose non-

blocking technique, or (4) a special-purpose (data-structure-specific) non-blocking

algorithm. The locks in (1) and (2) may or may not be preemption-safe.

Options (1) and (3) are easy to generate, given code for a sequential version of

the data structure, but options (2) and (4) must be developed individually for each

different da ta structure. Good data-structure-specific multi-lock and non-blocking

algorithms are sufficiently tricky to devise that each has tended to constitute an

individual publishable result.

Our experiments indicate that for simple data structures, special-purpose non-

blocking atomic update algorithms will outperform all alternatives, not only on

multiprogrammed systems, but on dedicated machines as well. Given the avail­

ability of a universal atomic hardware primitive, there seems to be no reason to use

any other version of a link-based stack, a link-based queue, or a small, fixed-sized

object like a counter.

For more complex data structures, however, or for machines without universal

atomic primitives, preemption-safe locks are clearly important. Preemption-safe

locks impose a modest performance penalty on dedicated systems, but provide

dramatic savings on time-sliced systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

For the designers of future systems, we recommend that kernel interfaces pro­

vide a mechanism for preemption-safe locking. For small-scale machines, the Sy-

nunix interface [15] appears to work well. For larger machines, a more elaborate

interface may be appropriate [41].

Almost all multiprocessors architectures provide support for locks either us­

ing special hardware or by supporting atomic primitives such as test_and_set

or fetch_and_increment. On the other hand, non-blocking implementations re­

quire architectural support for one of the universal primitives compare_ancLswap

or the pair load-linked and s to re -c o n d itio n a l. These primitives are already

supported on several multiprocessor architectures [51; 80]. These primitives can

provide the functionality of other primitives very efficiently, and some mutual ex­

clusion locks such the queue-based MCS lock require compare_and_swap (load-

lin k ed and s to re -c o n d itio n a l can be used) in order to guarantee FIFO order.

Moreover, load-linked and s to re -c o n d itio n a l provide a faster implementa­

tion of a test-and-test_and_set lock than the test_and_set primitive itself, since

a failed s to re -c o n d itio n a l does not invalidate other caches while an unneces­

sary test_and_set does. Therefore we recommend that multiprocessor designers

support these primitives in the instruction set. They are easy to implement on

invalidation-based cache-coherent bus-based machines. In the following chapter

we investigate their implementation on cache-coherent distributed shared memory

machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Atomic Primitives and

Coherence

4.1 Introduction

Several atomic primitives have been proposed and implemented on DSM ar­

chitectures. Most of them are special-purpose primitives that are designed to

support particular synchronization operations. Examples include test_and_set

with special semantics on the DASH multiprocessor [48], the QOLB primitives

on the Wisconsin Multicube [18] and the IEEE Scalable Coherent Interface stan­

dard [23], the full/empty bits on the HEP [81], MIT Alewife [1], and Tera ma­

chines [4], and the primitives for locking and unlocking cache lines on the Kendall

Square KSR1 [40].

While it is possible to implement arbitrary synchronization mechanisms on

top of special-purpose locks, greater concurrency, speed, and fault-tolerance may

be achieved by using more general-purpose primitives. General-purpose primi­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

tives such, as fetch_and_$, compare_and_swap, and the pair load-1 in k ed /s to re -

co n d itio n a l can easily and efficiently implement a wide variety of styles of syn­

chronization (e.g. operations on wait-free and lock-free objects, read-write locks,

priority locks, etc.). These primitives are easy to implement in the snooping pro­

tocols of bus-based multiprocessors, but there are many tradeoffs to be considered

when developing implementations for a DSM machine.

We propose and evaluate several implementations of these general-purpose

atomic primitives on directory-based cache coherent DSM multiprocessors, in an

attem pt to answer the question: which atomic primitives should be provided on

future DSM multiprocessors and how should they be implemented?

Our analysis and experimental results suggest that good overall performance

will be achieved by compare_and_swap, with comparators in the caches, a write-

invalidate coherence policy, and an auxiliary load-exclusive instruction.

In section 4.2 we discuss the differences in functionality and expressive power

among the primitives under consideration. In section 4.3 we present several imple­

mentation options for the primitives under study on DSM multiprocessors. Then

we present our experimental results and discuss their implications in section 4.4,

and conclude with summary and recommendations in section 4.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

4.2 Atomic Prim itives

4.2.1 Functionality

A fetch_and_$ primitive [19] takes (conceptually) two parameters: the ad­

dress of the destination operand, and a value parameter. It atomically reads the

original value of the destination operand, computes the new value as a function

$ of the original value and the value parameter, stores this new value, and re­

turns the original value. Examples of fetch_and_<& primitives include test_and_

s e t , fetch_and.s to r e , fetch.and.add, and fetch_and_or.

The compare_and_swap primitive was first provided on the IBM System/370 [13].

Compare_and_swap takes three parameters: the address of the destination operand,

an expected value, and a new value. If the original value of the destination operand

is equal to the expected value, the former is replaced by the new value (atomi­

cally) and the return value indicates success, otherwise the return value indicates

failure. Compare_and_swap is implemented on the Intel x86, the Sparc V9, and

the Motorola 68000 architectures.

The pair lo ad -lin k ed /sto re -co n d itio n a l, proposed by Jensen et al. [36],

are implemented on the MIPS II [38], the DEC Alpha [80], and the PowerPC [12]

architectures. They must be used together to read, modify, and write a shared

location. Load-linked returns the value stored at the shared location and sets a

reservation associated with the location and the processor. S to re-cond itiona l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 0

checks the reservation. If it is valid a new value is written to the location and

the operation returns success, otherwise it returns failure. Conceptually, for each

shared memory location there is a reservation bit associated with each processor.

Reservations for a shared memory location are invalidated when that location is

written by any processor. Till recently, Load .linked and s to re -c o n d itio n a l

have not been implemented on network-based multiprocessors.1 On bus-based

multiprocessors they can easily be embedded in a snooping cache coherence pro­

tocol, in such a way tha t should s to re -c o n d itio n a l fail, it fails locally without

causing any bus traffic.

In practice, processors are generally limited to one outstanding reservation,

and reservations may be invalidated even if the variable is not written. On the

MIPS R4000 [51], for example, reservations are invalidated on context switches

and TLB exceptions. We can ignore these spurious invalidations with respect to

lock-freedom, so long as we always try again when a s to re -c o n d itio n a l fails,

and so long as we never put any instructions between load..linked and s to re -

co n d itio n a l that may invalidate reservations deterministically. Depending on

the processor, these things may include loads, stores, and incorrectly-predicted

xThe pair load-lin ked/store-con dition al is supprted on the SGI Origin CC-NUMA ar­
chitecture. They are processed in the processor cache controllers, and cache misses on load-
linked and store-con d ition al are handled by the NIJMA coherence protocol as regular loads
and stores, respectively. Our work presented in this chapter predates the production of the
Origin multiprocessors. The NUMA protocol associated with the in-cache implementation pre­
sented in this chapter differs from that of the Origin in that it conytains a potential optimization
that it aborts transfering the data to the requesting node for a store-conditional cache miss
as soon as it determines that the store-cond itional is doomed to fail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

branches.

4.2.2 Expressive Power

Herlihy introduced an impossibility and universality hierarchy [26] that ranks

atomic operations according to their relative power. The hierarchy is based on the

concepts of lock-freedom and wait-freedom. A concurrent object implementation

is lock-free if it always guarantees that some processor will complete an operation

in a finite number of steps, and it is wait-free if it guarantees that each process

will complete an operation in a finite number of steps. Lock-based operations are

neither lock-free nor wait-free. In Herlihy’s hierarchy, it is impossible for an atomic

operation at a lower level of the hierarchy to provide a lock-free implementation

of an atomic operation in a higher level. Atomic load and store are a t level 1. The

primitives fetch_and_store, fetch_and_add, and test_and_set are a t level 2.

Compare_and_swap is a universal primitive—it is at level oo of the hierarchy [29].

L o ad -lin k ed /s to re -co n d itio n a l can also be shown to be universal if we assume

tha t reservations are invalidated i f and only i f the corresponding shared location

is w ritten to.

Thus, according to Herlihy’s hierarchy, compare_and_swap and lo ad -lin k ed /

s to re -c o n d itio n a l can provide lock-free simulations of fetch_and_$ primitives,

and it is impossible for a f etch_and_$ primitive to provide a lock-free simulation of

compare_and_swap or lo ad -lin k e d /s to re -c o n d itio n a l. It should also be noted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 2

that although fetch_and_store and fetch_and_add are at the same level (level

2) in Herlihy’s hierarchy, this does not imply that there are lock-free simulations

of one of these primitives using the other. Similarly, while both compare_and_

swap and the pair load_ linked /sto re_cond itional are universal primitives, it

is possible to provide a simple lock-free simulation of compare_and_swap using

load-linked and s to re -c o n d itio n a l, but not vice versa.

A pair of atom ic-load and comp are _and_s wap cannot simulate load -linked

and s to re -c o n d itio n a l because of the ABA problem, discussed in Section 2.2.

Herlihy presented methodologies for implementing lock-free (and wait-free) im­

plementations of concurrent data objects using compare_and_swap [27] and load-

l in k e d /s to re_ c o n d itio n a l [30]. The compare_and_swap algorithms are less effi­

cient and conceptually more complex than the lo ad -lin k e d /s to re -c o n d itio n a l

algorithms due to the pointer problem [30].

On the other hand, there are several algorithms that need or benefit from

compare_and_swap [41; 54; 56; 57]. A simulation of compare_and_swap using load-

lin k ed and s to re -c o n d itio n a l is less efficient than providing compare_and-svap

in hardware. A successful simulated comp are _and_s wap is likely to cause two cache

misses instead of the one that would occur if compare_and_swap were supported in

hardware. (If load -linked suffers a cache miss, it will generally obtain a shared

(read-only) copy of the line. S to re-cond itiona l will miss again in order to obtain

write permission.) Also, unlike load_linked /sto re_cond itional, compare_and_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

swap is not subject to any restrictions on the loads and stores between atomic_-

load and compare_and_swap. Thus, it is more suitable for implementing atomic

update operations that require memory access between loading and comparing

(e.g. an atomic update operation tha t requires a table lookup based on the original

value).

4.3 Implementations

The main design issues for implementing atomic primitives on cache coherent

DSM multiprocessors are:

1. Where should the computational power to execute the atomic primitives be

located: in the cache controllers, in the memory modules, or both?

2. Which coherence policy should be used for atomically accessed data: no

caching, write-invalidate, or write-update?

3. W hat auxiliary instructions, if any, can be used to enhance performance?

We focus our attention on f etch_and_$, compare_and_swap, and load_linked/store_

c o n d itio n a l because of their generality, their popularity on small-scale ma­

chines, and their prevalence in the literature. We consider three implementations

for fetch_and_<l>, five for compare_ancLsvap, and three for lo a d -lin k e d /s to re ,

co n d itio n a l. The implementations can be grouped into three categories accord­

ing to the coherence policies used:

1
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

1. INV (INValidate): Computational power in the cache controllers, with a

write-invalidate coherence policy. The main advantage of this implementa­

tion is that once the datum is in the cache, subsequent atomic updates are

executed locally, so long as accesses by other processors do not intervene.

2. UPD (UPDate): Computational power in the memory, with a write-update

policy. The main advantage of this implementation is a high read hit rate,

even in the case of alternating accesses by different processors.

3. UNC (UNCached): Computational power in the memory, with caching dis­

abled. The main advantage of this implementation is that it eliminates the

coherence overhead of the other two policies, which may be a win in the

case of high contention or even the case of no contention when accesses by

different processors alternate.

INV and UPD implementations are embedded in the cache coherence proto­

cols. Our protocols are mainly based on the directory-based protocol of the DASH

multiprocessor [48].

For fetch_amd_$ and compare_and_swap, INV obtains an exclusive copy of the

datum and performs the operation locally. UNC sends a request to the memory

to perform the operation on an uncached datum. UPD also sends a request to

the memory to perform the operation, but retains a shared copy of the datum in

the local cache. The memory sends updates to all the caches with copies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, for compare_and_swap we consider two variants of INV: INVd (cd!

for deny) and INVs (‘s’ for share). In these variants, if the line is not already

cached in exclusive mode locally, comparison of the old value with the expected

value takes place in either the home node or the owner node, whichever has the

most up-to-date copy of the line (the home node is the node at which the memory

resides; the owner, if any, is the node that has an exclusive cached copy of the line).

If equality holds, INVd and INVs behave like INV: the requesting node acquires

an exclusive copy. Otherwise, the response to the requesting node indicates tha t

compare_and_swap must fail. In the case of INVd, no cached copy is provided.

In the case of INVs, a read-only copy is provided. The rationale behind these

variants is to prevent a request that will fail from invalidating copies cached in

other nodes.

The implementations of lo ad _ lin k ed /s to re -co n d itio n a l are somewhat more

elaborate, due to the need for reservations. In the INV implementation, each

processing node has a reservation bit and a reservation address register. Load_

linked sets the reservation bit to valid and writes the address of the shared

location to the reservation register. If the cache line is not valid, a shared copy is

acquired, and the value is returned. If the cache line is invalidated and the address

corresponds to the one stored in the reservation register, the reservation bit is set

to invalid. S to re -co n d itio n a l checks the reservation bit. If it is invalid, s to re -

co n d itio n a l fails. If the reservation bit is valid and the line is exclusive, S to re -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 6

c o n d itio n a l succeeds locally. Otherwise, the request is sent to the home node. If

the directory indicates that the line is exclusive or uncached, s to re -c o n d itio n a l

fails, otherwise (the line is shared) s to re -c o n d itio n a l succeeds and invalidations

are sent to holders of other copies.

In the UNC implementation of lo ad -lin k ed / s to re .co n d itio n a l, each mem­

ory location (at least conceptually) has a reservation bit vector of size equal to

the total number of processors. Load-linked reads the value from memory and

sets the appropriate reservation bit. Any write or successful s to re -c o n d itio n a l

to the location clears the reservation vector. S to re-cond itiona l checks the cor­

responding reservation bit and succeeds or fails accordingly. Various space opti­

mizations are conceivable for practical implementations; see section 4.3.1 below.

In the UPD implementation, load -linked requests have to go to memory even

if the datum is cached, in order to set the appropriate reservation bit. Similarly,

s to re -c o n d itio n a l requests have to go to memory to check the reservation bit.

We consider two auxiliary instructions. Load-exclusive reads a datum but

acquires exclusive access. It can be used with INV instead of an ordinary load

when reading a datum that is then accessed by compare-ancLswap. The intent

is to make it more likely that compare_and-swap will not have to go to memory.

Load-exclusive is also useful for ordinary operations on migratory data. Drop_

copy can be used to drop (self-invalidate) a cached line, to reduce the number

of serialized messages required for subsequent accesses by other processors. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

write miss on an uncached datum requires 2 serialized messages (from requesting

node to the home node and back), instead of 4 for a remote exclusive datum

(requesting node to home to owner to home and back to requesting node) and 3

for a remote shared datum (from requesting node to home to sharing nodes, with

acknowledgments sent back to the requesting node).

4.3.1 Hardware Requirements

If the base coherence policy is different from the coherence policy for access

to synchronization variables, the complexity of the cache coherence protocol in­

creases significantly. However, the directory entry size remains the same with any

coherence policy on directory-based multiprocessors (modulo any requirements for

reservation information in the memory for load_linked /sto re_cond itional).

Computational power (e.g. adders or comparators) needs to be added to each

cache controller if the implementation is INV, or to each memory module if the

implementation is UPD or UNC, or to both caches and memory modules if the

implementation for compare.and.swap is INVd or INVs.

If loacLlinked and s to re -c o n d itio n a l are implemented in the caches, one

reservation bit and one reservation address register per cache are needed to main­

tain ideal semantics, assuming that load-linked and s to re -c o n d itio n a l pairs

are not allowed to nest. On the MIPS R4000 processor [51] there is an LLbit

and an on-chip system control processor register LLAddr. The LLAddr register

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 8

is used only for diagnostic purposes, and serves no function during normal op­

eration. Thus, invalidation of any cache line causes the LLbit to be reset. A

s to re -c o n d itio n a l to a valid cache line is not guaranteed to succeed, as the da­

tum might have been written by another process on the same physical processor.

Thus, a reservation bit is needed (at least to be invalidated on a context switch).

If load-linked and s to re .c o n d itio n a l are implemented in the memory, the

hardware requirements are more significant, A reservation bit for each processor

is needed for each memory location. There are several options:

• A bit vector of size equal to the number of processors can be added to each

directory entry. This option limits the scalability of the multiprocessor, as

the (total) directory size increases quadratically with the number of proces­

sors.

• A linked list can be used to hold the ids of the processors holding reservations

on a memory block. The size overhead is reduced to the size of the head of

the list, if the memory block has no reservations associated with it. However,

a free list is needed and it has to be maintained by the cache coherence

protocol.

• A limited number of reservations (e.g. 4) can be maintained. Reservations

beyond the limit will be ignored, so their corresponding s to re .c o n d itio n a l’s

are doomed to fail. If a failure indicator can be returned by beyond-the-limit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

load_linked’s, then the corresponding s to re -c o n d itio n a l’s can fail locally

without causing any network traffic. This option eliminates the need for bit

vectors or a free list. Also, it can help reduce the effect of high contention on

performance. However, it compromises the lock-free semantics of lock-free

objects based on load-linked and s to re -c o n d itio n a l.

• A hardware counter associated with each memory block can be used to in­

dicate a serial number of writes to that block. Load-linked will return

both the datum and the serial number, and s to re -c o n d itio n a l must pro­

vide both the datum and the expected serial number. A s to re -c o n d itio n a l

with a serial number different from that of the counter will fail. The counter

should be large enough (e.g. 32 bits) to eliminate any problems due to

wrap-around. The message sizes associated with load-linked and s to re -

c o n d itio n a l must increase by the counter size.

In each of these options, if the space overhead is too high to accept for all of

memory, atomic operations can, with some loss of convenience, be limited to a

subset of the physical address space.

For the purposes of this study we do not need to fix an implementation for

reservations, but we prefer the last one. It has the potential to provide the advan­

tages of both compare_and_svap and lo ad -lin k ed /s to re -co n d itio n a l. Load-

lin k ed resembles a load that returns a longer datum; s to re -c o n d itio n a l re­

sembles a compare_and_swap that provides a longer datum. The serial number

>

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

portion, of the datum eliminates the pointer problem mentioned in section 4.2.2.

In addition, the lack of an explicit reservation means that s to re .c o n d itio n a l

does not have to be preceded closely in time by load-linked; a process that ex­

pects a particular value (and serial number) in memory can issue a bare s to re -

c o n d itio n a l, just as it can issue a bare compare_and_swap. This capability is

useful for algorithms such as the MCS queue-based spin lock [56], in which it re­

duces by one the number of memory accesses required to relinquish the lock. It is

not even necessary that the serial number reside in special memory: load -linked

and s to re -c o n d itio n a l could be designed to work on doubles. The catch is that

“ordinary5’ stores to synchronization variables would need to update the serial

number. If this number were simply kept in half of a double, special instructions

would need to be used instead of ordinary stores.

4.4 Experimental Results

4.4.1 M ethodology

The experimental results were collected using an execution driven cycle-by-

cycle simulator. The simulator uses MINT (Mips INTerpreter) [92], which simu­

lates MIPS R4000 object code, as a front end. The back end simulates a 64-node

multiprocessor with directory-based caches, 32-byte blocks, queued memory, and

a 2-D worm-hole mesh network. The simulator supports directory-based cache co-

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

91

herence protocols with write-invalidate and write-update coherence policies. The

base cache coherence protocol—used for all data not accessed by atomic primitives

in all experiments—is a write-invalidate protocol. In order to provide accurate

simulations of programs with race conditions, the simulator keeps track of the

values of cached copies of atomically accessed data in the cache of each process­

ing node. In addition to the MIPS R4000 instruction set (which includes load-

lin k ed and s to re -co n d itio n a l), the simulated multiprocessor supports fe tc h -

and_$, compare_and_swap. load-exclusive, and drop-copy. Memory and net­

work latencies reflect the effect of memory contention and of contention at the

entry and exit of the network (though not at internal nodes).

We used two sets of applications, real and synthetic, to achieve different goals.

We began by studying two lock-based applications from the SPLASH suite [78]—

LocusRoute and Cholesky—and an application that computes the transitive clo­

sure of a directed graph—based on the Floyd-Warshall algorithm [14]—that uses

a lock-free counter to distribute variable-size input-dependent jobs among the

processors (Figure 4.1). From these real applications we identified typical shar­

ing patterns of atomically accessed data (see Section 4.4.2. In LocusRoute and

Cholesky, we replaced the library locks with an assembly language implementation

of the test-and-test_and_set lock [75] with bounded exponential backoff imple­

mented using the atomic primitives and auxiliary instructions under study. In

Transitive Closure, we used different versions of a lock-free counter using fe tc h -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fj
92

private p id , procs, size;
shared counter, f la g , E;

tclosureC)
i
lo ca l i , j , k , row, rows, work, p iv o t, cur ;

f or (i= 0 ; i< s iz e ; i++)

i f (pid=0)-C counter=0; flag=0; >
row=0; rows=0;
b arrier();
whileCIflag)
■C

rows=((size-row-rows-1) » 1) /procs+1 ;
row=fetch_and_add (fccount, rows);
i f (row>=sizeK flag= l; break;>
work=Crows<size-row) ? rows : size-row ;
pivot=E[i] ;
f or (j=row;j $<$row+work;j ++)
£

cur=E[j] ;
i f ((cur [i] —TRUE) kk (i != j))

for (k=0; k<s iz e ; k++)
i f (pivot [k] =TRUE) cur Ck] =TRUE ;

>
>
barrier ();

>
>

Figure 4.1: Transitive closure program for process pid.

ancLadd, compare.and_swap, and lo ad -lin k ed /s to re .co n d itio n a l, and with a

scalable tree barrier [56] for barrier synchronization.

Our three synthetic applications served to explore the parameter space and

to provide controlled performance measurements. The first uses a lock-free con-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

current counter to cover the case in which lo ad -lin k e d /s to re -c o n d itio n a l and

compare_and_swap simulate fetch_and_<5 (specifically f e t ch_and_add). The sec­

ond uses a counter protected by a test-and-te s t _and_s e t lock with bounded expo­

nential backoff to cover the case in which all three primitives (lo ad -lin k e d /s to re ,

c o n d itio n a l, compare.and.svap and fetch_and_$) are used in a similar manner

(i.e. spinning). The third uses a counter protected by an MCS lock [56] to cover

the case in which lo acL lin k ed /sto re .co n d itio n a l simulates compare_and_swap.

4.4.2 Sharing Patterns

Performance of atomic primitives is affected by contention and average write-

run length [16]. We define the level of contention to be the number of processors

that concurrently try to access an atomically accessed shared location. Average

write-run length is the average number of consecutive writes (including atomic

updates) by a processor to an atomically accessed shared location without inter­

vening accesses (reads or writes) by any other processors.

The average write-run length of atomically accessed data in simulated runs

of LocusRoute and Cholesky on 64 processors with different coherence policies

was found to range from 1.70 to 1.83, and from 1.59 to 1.62, respectively. This

indicates that in these applications lock variables are unlikely to be written more

than two consecutive times by the same processor without intervening accesses by

other processors. In other words, a processor usually acquires and releases a lock

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

without intervening accesses by other processors, but it is unlikely to re-acquire

it without intervention. In Transitive Closure, the average write-run length was

found to be always slightly above 1.00, suggesting a very high level of contention

as shown in the next paragraph.

As a measure of contention, we plot the number of processors contending to

access a shared location at the beginning of each access (we found a line graph to

be more readable than a bar graph, though the results are discrete, not continu­

ous). Figure 4.2 shows the contention histograms for the real applications, with

different coherence policies. The figures for LocusRoute and Cholesky indicate

that the no-contention case is the common one, for which performance should be

optimized. At the same time, they indicate that the low and moderate contention

cases do arise, so that performance for them needs also to be good. High con­

tention is rare: reasonable differences in performance among the primitives can be

tolerated in this case. However, the figure for Transitive Closure—which achieves

an acceptable efficiency of 45% on 64 processors—indicates a common case of very

high contention, implying tha t differences in performance among the primitives

are more important in this case. The contention can be attributed to the frequent

use of barrier synchronization in the application, which increases the likelihood

tha t all or most of the processors will try to access the counter concurrently.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LocusRoute p=64

INV
UNC
UPD

o 40 o
S 30
1 20
510

Level of Contention

Cholesky p=64

INV
UNC
UPD

$ 80
CO
® 70
1 60
o 5 0
§>40<g
c 30 a>a 20
®CL 10

Level of Contention

Transitive Closure p=64

INV
UNC
UPD

§10

Level of Contention

Figure 4.2: Histograms of the level of contention in LocusRoute, Cholesky, and
Transitive Closure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

4.4.3 R elative Performance of Implementations

We collected performance results of the synthetic applications with various

levels of contention and write-run length. We used artificial constant-time barriers

supported by MINT to control the level of contention. Because these barriers are

constant-time, they have no effect on the results other than enforcing the intended

sharing patterns. In these applications, each processor executes a tight loop, in

each iteration of which it either updates the counter or not, depending on the

desired level of contention. Depending on the desired average write-run length,

every one or more iterations are separated by a constant-time barrier.

Figures 4.3, 4.4, and 4.5 show the performance results for the synthetic ap­

plications. The bars represent the elapsed time averaged over a large number of

counter updates. In each figure, the graphs to the left represent the no-contention

case with different numbers of consecutive accesses by each processor without in­

tervention from the other processors. The graphs to the right represent different

levels of contention. The bars in each graph are categorized according to the three

coherence policies used in the implementation of atomic primitives. In INV and

UPD, there are two subsets of bars. The bars to the right represent the results

with the drop_copy instruction; those to the left represent the results without it.

In each of the two subsets in the INV category, there are 4 bars for compare_and_

swap. These represent, from left to right, the results for the INV, INVd, INVs,

and INV with load-exclusive implementations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Figure 4.6 shows the performance results for LocusRoute, Cholesky, and Tran­

sitive Closure. Time is measured from the beginning to the end of execution of

the parallel part of the applications. The order of bars in the graph is the same

as in the previous figures.

We base our analysis on the results of the synthetic applications, where we

have control over the parameter space. The results for the real applications serve

only to validate the results of the synthetic applications. LocusRoute and Tran­

sitive Closure use dynamic scheduling, which explains the difference in relative

performance between primitives in these applications and in the corresponding

synthetic applications. With dynamic scheduling slight changes in t imings allow

processors to obtain work from the central work pool in different orders, causing

changes in control flow and load balancing.

Coherence Policy

In the case of no contention with short write runs, UNC implementations

of the three primitives are competitive with, and sometimes better than, the

corresponding cached implementations, even with an average write-run length as

large as 2. There are two reasons for these results. First, a write miss on an

uncached line takes two serialized messages, which is always the case with UNC,

while a write miss on a remote exclusive or remote shared line takes 4 or 3 serialized

messages respectively (see table 4.1). Second, UNC implementations do not incur

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

800
p=64c=1 a=1 p=64c=2

<0
a
£
o
o 400O)s
S< .

800

UNC INV UPD
p=64 c=1 a=1.5

IFAP
ILLSC

CAS
® 400

INV
p=64 C=1 a=2

UNC INV UPD
p=64c=1 a=3

® 400

UNC

800

INV UPD
p=64c=1 a=!0

® 400

400

p=64 C=4

IFAP
ILLSC

CAS

p=64c=8

® 400

IFAP
ILLSC

CAS
® 400

® 400

UPD

Figure 4.3: Average time per counter update for the lock-free counter application.
P denotes processors, c contention, and a the average number of non-interleaved
counter updates by each processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99
i

<o 3000
®

§2000
®

2 1000 o
5 0

*3000
o
§2000
o
2 1000 o

5 o

(a 3000
o
§2000
®

21000®
5 0

p=64 c=1 a=1

A
UNC INV UPD

p=64 c=1 a=1.5

t l
UNC INV UPD

p=64 c=1 a=2

UNC

CO
©o>»O

3000

.! 0 1G a i ' j g
INV UPD

p=64 C=1 a=3

2000
o
21000o
5 o

1

UNC
t m

3000

INV UPD
p=64c=1 a=10

0*2000
o
21000
§
« 0

UPD

3000
p=64 C=2

21000

p=64 c=4

21000

21000

p=64 C=16

m

21000

UNC

3000

NV
p=64 C=64

UPD

21000

Figure 4.4: Average time per counter update for the TTS-lock-based counter
application. P denotes processors, c contention, and a the average number of
non-interleaved counter updates by each processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Average Cycles Average Cycles Average CyclesAverage Cycles Average Cycles

<0. 09

2 ?

8 8

Average Cycles Average Cycles Average Cycles Average Cycles Average Cycles
gj o in

o 8 S §
2 P 5

“ o ’

oo

2=
o*

9=
d

l=B

i=
o^

9=
d

1 0 1

x10 LocusRoute p=64

UPD

x10 Cholesky p=64

F 'r:i
-?r

e- v
u

I F * . . :

UPD

,x10 Transitive Closure p=64

Figure 4.6: Total elapsed time for LocusRoute, Cholesky, and Transitive Closure
with different implementations of atomic primitives.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 2

UNC 2
INV to cached exclusive 0
INV to remote exclusive 4
INV to remote shared 3
INV to uncached 2
UPD to cached 3
UPD to uncached 2

Table 4.1: Serialized network messages for stores to shared memory with different
coherence policies.

the overhead of invalidations and updates as INV and UPD implementations do.

Furthermore, with contention (even very low), UNC outperforms the other

policies (with the exception of INV compare_and_swap/load_exclusive when

simulating fetch~and_$), as the effect of avoiding excess serialized messages, and

invalidations or updates, is more evident as ownership of data changes hands

more frequently. The INV compare_and_swap/load_exclusive combination for

simulating fetch_and_4> is an exception as the timing window between the read

and the write in the read-modify-write cycle is narrowed substantially, thereby

diminishing the effect of contention by other processors. Also, in the INV im­

plementation, successful compare_and_swap’s after loacLexclusive’s are mostly

hits, while by definition, all UNC accesses are misses.

On the other hand, as write-run length increases, INV increasingly outperforms

UNC and UPD, because subsequent accesses in a run are all hits.

Comparing UPD to INV, we find that INV is better in most cases. This is

due to the excessive number of useless updates incurred by UPD. INV is much

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

better in the case of long write runs, as it benefits from caching. In the case of

high contention with the test-and-test_ancLset lock, UPD is better, since every

time the lock is released almost all processors try to acquire it by writing to it.

With INV all these processors acquire exclusive copies although only one will

eventually succeed in acquiring the lock, while in the case of UPD, only successful

writes cause updates. However this is not the common case with locks, in which

backoff serves to greatly reduce contention.

Atomic Prim itives

In the case of the lock-free counter, UNC f etch_and_add yields superior perfor­

mance over the other primitives and implementations, especially with contention.

The exception is the case of long write runs, which are not the common case,

and may well represent bad programs (e.g. a shared counter should be updated

only when necessary, instead of being repeatedly incremented). We conclude that

UNC f e t ch_and_add is a useful primitive to provide for supporting shared coun­

ters. The f etciuand_clear_then_add primitive supported on the BBN Butterfly

provides f etch_and_add’s capability and the ability to write a datum and update

an adjacent counter. However, since fetch_and_clear_then_add is not universal,

we recommend implementing it only in addition to a universal primitive.

Among the INV universal primitives, comp a re _and_s wap almost always ben­

efits from load-exclusive, because compare_and_swap’s are hits in the case of

.!i ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

no contention and, as mentioned earlier, load-exclusive helps minimize the fail­

ure rate of compare_and_svap as contention increases. In contrast, load -linked

cannot be exclusive: otherwise livelock is likely to occur.

The performance of the INVd and INVs implementations of compare_and_swap

is almost always equal to or worse than that of compare_and_svap or compare.

and_swap/load_exclusive. The cost of extra hardware to make comparisons

both in memory and in the caches does not appear to be warranted.

As for UPD universal primitives, compare_and_svap is always better than

load_ linked /sto re_cond itional, as most of the time compare_and_swap is pre­

ceded by an ordinary read which is most likely to be a hit with UPD. Load-

lin k ed requests have to go to memory even if the datum is cached locally, as the

reservation has to be set in a unique place that has the most up-to-date version

of data—in memory in the case of UPD.

W ith an INV policy and an average write-run length of one with no con­

tention, drop.copy improves the performance of fetch_and_$ and coopare_and_

sw ap/load_exclusive, because it allows the atomic primitive to obtain the needed

exclusive copy of the data with only 2 serialized messages instead of 4 (no other

processor has the datum cached; they all have dropped their copies). As con­

tention increases, the effect of drop.copy varies with the application. It can in

fact cause an increase in serialized messages and memory and network contention.

For example, an exclusive cache line may be dropped just when its owner is about

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

to receive a remote request for an exclusive copy of the line. The write-back

causes unnecessary memory and network traffic. Moreover, instead of granting

the remote request, the local node replies with a negative acknowledgment, and

the remote node has to repeat its request for exclusive access to the subsequent

owner.

W ith an UPD policy, drop_copy always improves performance, because it

reduces the number of useless updates and in most cases reduces the number of

serialized messages for a write from 3 to 2.

4.5 Summary

Based on the experimental results and the relative power of atomic primitives,

we recommend implementing compare_and_swap in the cache controllers of future

DSM multiprocessors, with a write-invalidate coherence policy for atomically-

accessed data. We also recommend supporting load-exclusive to enhance the

performance of compare_and_swap (as well as assisting in data migration). To

address the pointer problem, we recommend consideration of an implementation

based on serial numbers, as described for the in-memory implementation of load-

lin k ed /sto re_ co n d itio n a l in section 4.3.1.

Although we do not recommend it as the sole atomic primitive, because it is

not universal, we find fetch~and_add to be very efficient for lock-free counters,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

and for many other objects [20]. We recommend implementing it in uncached

memory as an extra atomic primitive.

In this chapter we assume a fixed architecture for the coherence controllers in

the nodes of the DSM system. In the next chapter, we study the performance of

several coherence controller architectures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

5 Coherence Controller

Architectures

5.1 Introduction

Previous research has shown that scalable shared-memory performance can be

achieved on directory-based cache-coherent multiprocessors such as the Stanford

DASH [48] and MIT Alewife [2] machines. A key component of these machines

is the coherence controller on each node tha t provides cache coherent access to

memory that is distributed among the nodes of the multiprocessor. In DASH

and Alewife, the cache coherence protocol is hardwired in custom hardware finite

state machines (FSMs) within the coherence controllers. Instead of hardwiring

protocol handlers, the Sun Microsystems S3.mp [66] multiprocessor uses hardware

sequencers for modularity in implementing protocol handlers.

Subsequent designs for scalable shared-memory multiprocessors, such as the

Stanford FLASH [44] and the Wisconsin Typhoon machines [73], have touted the

I
;i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

use of programmable protocol processors instead of custom hardware FSMs to

implement the coherence protocols. Although a custom hardware design generally

yields better performance than a protocol processor for a particular coherence

protocol, the programmable nature of a protocol processor allows one to tailor the

cache coherence protocol to the application [17; 64], and may lead to shorter design

times since protocol errors may be fixed in software. The study of the performance

advantage of custom protocols is beyond the scope of this dissertation.

Performance simulations of the Stanford FLASH and Wisconsin Typhoon sys­

tems find that the performance penalty of protocol processors is small. Simulations

of the Stanford FLASH, which uses a customized protocol processor optimized for

handling coherence actions, show that the performance penalty of its protocol

processor in comparison to custom hardware controllers is within 12% for most of

the benchmarks considered [24]. Simulations of the Wisconsin Typhoon Simple-

COMA system, which uses a protocol processor integrated with the other com­

ponents of the coherence controller, also show competitive performance—within

30% of custom-hardware CC-NUMA controllers [73] and within 20% of custom-

hardware Simple-COMA controllers [74].

Even so, the choice between custom hardware and protocol processors for

implementing coherence protocols remains a key design issue for scalable shared-

memory multiprocessors. In this chapter we examine in detail the performance

tradeoffs between these two alternatives in designing a CC-NUMA multiprocessor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

coherence controller. We consider symmetric multiprocessor (SMP) nodes as well

as uniprocessor nodes as the building blocks for a multiprocessor. The availability

of cost-effective SMPs, such as those based on the Intel Pentium Pro [35] makes

SMP nodes an attractive choice for CC-NUMA designers [50]. However, the added

load presented to the coherence controller by multiple SMP processors may affect

the choice between custom hardware FSMs and protocol processors.

We base our experimental evaluation of alternative coherence controller archi­

tectures on realistic hardware parameters for state-of-the-art system components.

What distinguishes our work from previous research is that we consider commod­

ity protocol processors on SMP-based CC-NUMA and a wider range of architec­

tural parameters. We simulate eight applications from the SPLASH-2 benchmark

suite [93] to compare the application performance of the architectures. The results

show that for a 64-processor system based on four-processor SMP nodes, protocol

processors result in a performance penalty (increase in execution time relative to

that of custom hardware controllers) of 4% - 93%.

The unexpectedly high penalty of protocol processors occurs for applications

that have high-bandwidth communication requirements, such as Ocean, Radix,

and FFT. The use of SMP nodes exacerbates the penalty. Previous research did

not encounter such high penalties because the investigators were either compar­

ing customized protocol processors in uniprocessor nodes, or they did not consider

such high-bandwidth applications. We find that under high bandwidth require­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 0

ments, the high occupancy of the protocol processor significantly degrades perfor­

mance relative to custom hardware.

We also study the performance of coherence controllers with a pair protocol

engines. Our results show that for applications with high communication require­

ments on a 4x16 CC-NUMA system, a two-engine hardware controller improves

performance by up to 18% over a one-engine hardware controller, and a controller

with two protocol processors improves performance by up to 30% over a controller

with a single protocol processor

This study makes the following contributions:

• It provides an in-depth comparison of the performance tradeoffs between

using custom hardware and protocol processors, and demonstrates situations

where protocol processors suffer a significant penalty.

• It characterizes the communication requirements for eight applications from

SPLASH-2 and shows the impact of those requirements on the performance

penalty of protocol processors over custom hardware, and provides an under­

standing of application requirements and limitations of protocol processors.

• It evaluates the performance gains of using two protocol engines for custom

hardware and protocol-processor-based coherence controllers.

• It introduces a methodology for predicting the impact of protocol engine

implementation on the performance of important large applications through

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1II
1 1 1

the detailed simulation, of simpler applications.

The rest of this chapter is organized as follows. Section 5.2 presents the mul­

tiprocessor system and details the controller design alternatives and parameters.

Section 5.3 describes our experimental methodology and presents the experimen­

tal results. It demonstrates the performance tradeoffs and provides analysis of

the causes of the performance differences between the architectures. Section 5.4

discusses related work. Finally, Section 5.5 presents the summary and conclu­

sions drawn from this study and gives recommendations for custom hardware and

protocol processor designs in future multiprocessors.

5.2 System Description

To put our results in the context of the architectures we studied, this sec­

tion details these architectures and their key parameters. First we describe the

organization and the key parameters of the common system components for the

architectures. Then, we describe the details of the alternative coherence controller

architectures. Finally, we present key protocol and coherence controller latencies

and occupancies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 2

SMP bos

to network

cachecachecache cache

compote CPUcompote CPUcompote CPU compote CPU

memory coherence controQer

Figure 5.1: A node in a SMP-based CC-NUMA system.

5.2.1 General System Organization and Parameters

The base system configuration is a CC-NUMA multiprocessor composed of 16

SMP nodes connected by a 32 byte-wide fast state-of-the-art IBM switch. Each

SMP node includes four 200 MHz PowerPC compute processors with 16 Kbyte

LI and 1 Mbyte L2 4-way-associative LRU caches, with 128 byte cache lines. The

SMP bus is a 100 MHz 16 byte-wide fully-pipelined split-transaction separate-

address-and-data bus. The memory is interleaved and the memory controller is

a separate bus agent from the coherence controller. Figure 5.1 shows a block

diagram of an SMP node. Table 5.1 shows the no-contention latencies of key

system components. These latencies correspond to those of existing state-of-the-

art components. Note tha t memory and cache-to-cache data transfers drive the

critical quad-word first on the bus to minimize latency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Event Latency
LI to processor 1
LI to L2 8
L2 to LI 4
L2 miss to address strobe on bus 4
Bus address strobe to bus response 14
Bus address strobe to start of cache-to-cache data
response

18

Bus address strobe to next address strobe 4
Bus address strobe to start of data transfer from
memory

20

Network point-to-point 14

Table 5.1: Base system no-contention latencies in compute processor cycles (5
ns.).

5.2.2 Coherence Controller Architectures

We consider two main coherence controller designs: a custom hardware coher­

ence controller similar to that in the DASH [48] and Alewife [2] systems, and a

coherence controller based on commodity protocol processors similar to those in

the Typhoon [73] system and its prototypes [74].

The two designs share some common components and features (see Figures 5.2

and 5.3). Both designs use duplicate directories to allow fast response to com­

mon requests on the pipelined SMP bus (one directory lookup per 2 bus cycles).

The bus-side copy is abbreviated (2-bit state per cache line) and uses fast SRAM

memory. The controller-side copy is full-bit-map and uses DRAM memory. Both

designs use write-through directory caches for reducing directory read latency.

Each directory cache holds up to 8K full-bit-map directory entries (e.g. approxi­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

mately 16 Kbytes for a 16 node CC-NUMA system). The hardware-based design

uses a custom on-chip cache, while the protocol-processor-based design uses the

commodity processor’s on-chip data caches.1 We assume perfect instruction caches

in the protocol processors, as the total size of all protocol handlers in our protocol

is less than 16 Kbytes.

Both designs include a custom directory access controller for keeping the bus-

side copy of the directory consistent with the controller-side copy, and a custom

protocol dispatch controller for arbitration between the request queues from the

local bus and the network. There are 3 input queues for protocol requests: bus-

side requests, network-side requests, and network-side responses. The arbitration

strategy between these queues is to let the network transaction nearest to comple­

tion be handled first. Thus, the arbitration policy is that network-side responses

have the highest priority, then network-side requests, and finally bus-side requests.

In order to avoid live-lock, the only exception to this policy is to allow bus-side re­

quests which have been waiting for a long time (e.g. four subsequent network-side

requests) to proceed before handling any more network-side requests.

Figure 5.2 shows a block diagram of a custom hardware coherence controller

design (HWC). The controller runs at 100 MHz, the same frequency as the SMP

bus. All the coherence controller components are on the same chip except the

directories. Figure 5.3 shows a block diagram of a protocol-processor-based co-

1 Although most processors use write-back caches, current processors (e.g. Pentium Pro [35])
allow users to designate regions of memory to be cached write-through.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

to SMP bus

to network

protocol
dispatch
controlle;

bus-side fast
directory

controller-side
directory

protocol FSM

network interface

directory
access

controller

directory
cache

bus interface

Figure 5.2: A custom-hardware-based coherence controller design (HWC).

to SMP bus

to network

instr.
cache

protocol
dispatch

controlle]

bus-side fast
directory directory

access
controller

controller-side
directory network interface

bus interface

Figure 5.3: A commodity PP-based coherence controller design (PPC).

herence controller (PPC). The protocol processor (PP) is a PowerPC running at

200 MHz. The other controller components run at 100 MHz. The protocol pro­

cessor communicates with the other components of the controller through loads

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

and stores on the local (coherence controller) bus to memory-mapped off-chip

registers in the other components. The protocol processor access to the protocol

dispatch controller register is read-only. Its access to the network interface regis­

ters is write-only (for sending network messages and starting direct data transfer

from the bus interface), since reading the headers of incoming network messages

is performed only by the protocol dispatch controller.

Both HWC and PPC have a direct data path between the bus interface and

the network interface. The direct data path is used to forward write-backs of dirty

remote data from the SMP bus directly to the network interface to be sent to the

home node without waiting for protocol handler dispatch. Also, in the case of

PPC, the PP only needs to perform a single write to a special register on either

the bus interface or the network interface to invoke direct data transfer, without

the need for the PP to read and write the data to perform the transfer.

In order to increase the bandwidth of the coherence controller we also consider

the use of two protocol processors in the PPC implementation and two protocol

FSMs in the HWC implementation. We use the term “protocol engine” to refer to

both the protocol processor in the PPC design and the protocol FSM in the HWC

design. For distributing the protocol requests between the two engines, we use a

policy similar to that used in the S3.mp system [66], where protocol requests for

memory addresses on the local node are handled by one protocol engine (LPE) and

protocol requests for memory addresses on remote nodes are handled by the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

to SMP bus

to network

LPE RPE
protocol
dispatch -

controlle

bus-side fast
directory

controller-side
directory network interface

directory
access

controller

directory
cache

bus interface

Figure 5.4: A custom hardware coherence controller design with local and remote
protocol FSMs (2HWC).

to SMP bus

to network

local remote protocol
dispatch
controlle

bus-side fast
directory directory

access
controller

controller-side
directory network interface

bus interface

Figure 5.5: A commodity PP-based coherence controller design with local and
remote protocol processors (2PPC).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Sub-operation HWC PPC
Issue request to bus 2 8
Detect response from bus 2 8
Issue network message 2 9
Read special bus interface associative registers 4 10
Write special bus interface registers 2 4
Directory read (cache hit) 2 2
Directory read (cache miss) 22 22
Directory write 2 2
Handler dispatch 2 12
Condition 2 2
Loop (per iteration) 2 5
Clear bit field - 3
Extract bit field - 2
Other bit operations - 1

Table 5.2: Protocol engine sub-operation occupancies for HWC and PPC in com­
pute processor cycles (5 ns.).

protocol engine (RPE). Only the LPE needs to access the directory. Figures 5.4

and 5.5 show the two-engine HWC design (2HWC), and the two PP controller

design (2PPC), respectively.

5.2.3 Controller Latencies and Occupancies

We modeled HWC and PPC accurately with realistic parameters. Table 5.2

lists protocol engine sub-operations and their occupancies2 for each of the HWC

and PPC coherence controller designs, assuming a 100 MHz HWC and a 100

MHz PPC with a 200 MHz off-the-shelf protocol processor. The occupancies in

2 Occupancy of sub-operations is the tune a protocol engine is occupied by the sub-operation
and cannot service other requests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Step HWC PPC
detect L2 miss 8 8
issue bus read request 4 4
bus response 14 14
dispatch handler 2 12
extract home id - 2
send message to home node 2 9
network latency 14 14
dispatch handler 2 12
read directory entry (cache hit) 2 2
conditions 2 6
issue bus read request 6 12
memory latency 20 20
detect bus response 2 8
extract requester’s id - 2
send message to the requester 2 9
network latency 14 14
dispatch handler 2 12
issue response to bus 6 12
L2 reissues read request 18 18
bus response 14 14
bus interface issues data 4 4
LI fill 4 4
total 142 212

Table 5.3: Breakdown of the no-contention latency of a read miss to a remote line
clean a t home in compute processor cycles (5 ns.).

the table assume no contention on the SMP bus, memory, and network, and all

directory reads hit in the protocol engine data cache. The other assumptions used

in deriving these numbers are:

• Accesses to on-chip registers for HWC take one system cycle (2 CPU cycles).

• Bit operations on HWC are combined with other actions, such as conditions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
I

1 2 0

and accesses to special registers.

• PP reads to off-chip registers on the local PPC bus take 4 system cycles (8

CPU cycles). Searching a set of associative registers takes an extra system

cycle (2 CPU cycles).

• PP writes to off-chip registers on the local PPC bus take 2 system cycles (4

CPU cycles) before the PP can proceed.

• PP compute cycles are based on the PowerPC instruction cycle counts pro­

duced by the IBM XLC C compiler.

• HWC can decide multiple conditions in one cycle.

To gain insight into the effect of these occupancies and delays on the latency

of a typical remote memory transaction, Table 5.3 presents the no-contention

latency breakdown of a read miss horn a remote node to a Clean shared line at

the home node. The relative increase in latency from HWC to PPC is only 49%,

which is consistent with the 33% increase reported for Typhoon [74], taking into

account that we consider a more decoupled coherence controller design and we

use a faster network than th a t used in the Typhoon study. It is worth noting that

in Table 5.3 there is no entry for updating the directory state at the home node.

The reason is that updating the directory state can be performed after sending

the response from the home node, thus m inim izing the read miss latency. In our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 1

protocol handlers, we postpone any protocol operations that are not essential for

responding to requests until after issuing responses.

Finally, in order to gain insight into the relative occupancy times of the HWC

and PPC coherence controller designs, Table 5.4 presents the no-contention proto­

col handler occupancies for the most frequently used handlers. Handler occupancy

times include: handler dispatch time, directory reference time, access time to spe­

cial registers, SMP bus and local memory access times, and bit field manipulation

for PPC. Note tha t we use the same full-map directory, invalidation-based, write­

back protocol, for both HWC and PPC. In our protocol, we allow remote owners

to respond directly to remote requesters with data, but invalidation acknowledg­

ments are collected only a t the home node.

5.3 Experimental Results

In this section, we present simulation results of the relative performance of the

different coherence controller architectures with several variations of communication-

related architectural parameters. Then, we present analysis of the key statistics

and communication measures collected from these simulations, and we conclude

this section by presenting statistics and analysis of the utilization and workload

distribution on two-protocol-engine coherence controllers. We start with the ex­

perimental methodology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Handler HWC PPC
bus read remote 4 23
bus read exclusive remote 4 23
bus read local (dirty remote) 10 33
bus read excl. local (cached remote) 10 -f 4/inv. 32 -f- 16/inv.
remote read to home (clean) 38 73
remote read to home (dirty remote) 10 29
remote read excl. to home (uncached remote) 38 73
remote read excl. to home (shared remote) 10 + 4/inv. 32 4- 16/inv.
remote read excl. to home (dirty remote) 10 30
read from remote owner (request from home) 32 81
read from remote owner (remote requester) 34 90
read excl. from remote owner (request from
home)

32 81

read excl. from remote owner (remote requester) 34 90
data response from owner to a read request from
home

8 21

write back from owner to home in response to a
read req. from remote node

8 24

data response from owner to a read excl. request
from home

6 16

ack. from owner to home in response to a read
excl. request from remote node

4 17

invalidation request from home to sharer 26 49
inv. acknowledgment (more expected) 8 23
inv. ack. (last ack, local request) 10 33
inv. ack. (last ack, remote request) 36 75
data in response to a remote read request 4 16
data in response to a remote read excl. request 6 20

Table 5.4: Protocol engine occupancies in compute processor cycles (5 ns.).

5.3.1 Experimental M ethodology

We use execution-driven simulation (based on a version of the Augmint simu­

lation toolkit [65] that runs on the PowerPC architecture) to evaluate the perfor­

mance of the four coherence controller designs, HWC, PPC, 2HWC, and 2PPC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Our simulator includes detailed contention models for SMP buses, memory con­

trollers, interleaved memory banks, protocol engines, directory DRAM, and ex­

ternal point contention for the interconnection network. Protocol handlers are

simulated at the granularity of the sub-operations in Table 5.2, in addition to

accurate timing of the interaction between the coherence controller and the SMP

bus, memory, directory, and network interface. All coherence controller imple­

mentations use the same cache coherence protocol.

We use eight benchmarks from the SPLASH-2 suite [93], (Table 5.5) to eval­

uate the performance of the four coherence controller implementations. All the

benchmarks are written in C and compiled using IBM XLC C compiler with op­

timization level -02. All experimental results reported in this study are for the

parallel phase only of these applications. We use a round-robin page placement

policy except for FFT where we use an optimized version with programmer hints

for optimal page placement. We observed slightly inferior performance for most

applications when we used a first-touch-after-initialization page placement policy,

due to load imbalance, and memory and coherence controller contention as a re­

sult of uneven memory distribution. LU and Cholesky are run on 32-processor

systems (8 nodes x 4 processors each) as they suffer from load imbalance on 64

processors with the data sets used [93]. We ran all the applications with data

sizes and systems sizes for which they achieve acceptable speedups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

1

| Application Type Problem size
LU Blocked dense linear algebra 512x512

matrix, 16x16
blocks

Water-Spatial Study of forces and potentials of water
molecules in a 3-D grid

512 molecules

Barnes Hierarchical N-body 8K particles
Cholesky Blocked sparse linear algebra tk l5 .0
Water-Nsquared 0 (n 2) study of forces and potentials in

water molecules
512 molecules

Radix Radix sort 1M integer
keys, radix IK

FFT FFT computation 64K complex
doubles

Ocean Study of ocean movements 258x258
ocean grid

Table 5.5: Benchmark types and data sets.

5.3.2 Performance Results

In order to capture the main factors influencing PP performance penalty (the

increase in execution time on PPC relative to the execution time on HWC), we ran

experiments on the base system configuration with the four coherence controller

architectures. We then varied some key system parameters to investigate their

effect on the PP performance penalty.

Base Case

Figure 5.6 shows the execution times for the four coherence controller archi­

tectures on the base system configuration normalized by the execution time of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

HWC. We notice that the PP penalty can be as high as 93% for Ocean and 52%

for Radix, and as low as 4% for LU. The significant PP penalties for Ocean,

Radix and FFT indicate that commodity PP-based coherence controllers can be

the bottleneck when running communication-intensive applications. This result

is in contrast to the results of previous research, which showed the cases where

custom PP-based coherence controllers suffer small performance penalties relative

to custom hardware.

Also, we observe that for applications with high bandwidth requirements, us­

ing two protocol engines improves performance significantly relative to the corre­

sponding single engine implementation, up to 18% on HWC and 30% on PPC, for

Ocean.

We varied other system and application parameters that are expected to have

a big impact on the communication requirements of the applications. We start

with the cache line size.

Smaller cache line size

W ith 32 byte cache lines, we expect the PP penalty to increase from that

experienced with 128 byte cache lines, especially for applications with high spatial

locality, due to the increase in the rate of requests to the coherence controller.

Figure 5.7 shows the execution times normalized to the execution time of HWC

on the base configuration. We notice a significant increase in execution time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•^ jT * © -F S M 1 0 O .M K * W W
J H o n * - F S M - 1 0 0 M H £ HW
’̂ VTV>o400-MHsPP«-
■Hon*-SOO.M

LU W -S p B a rn w GNafcy R a d i O w n

Figure 5.6: Normalized execution time on the base system configuration

» JTwo-lfSM 100. MMX HVV
Om 'W M 10OMHXHW

200M H zP P b
Ona-SOO-MHz PP

LU W -S p B « w CM p ry W -N »q FFT Rodbr O o w

Figure 5.7: Normalized execution time for system with smaller (32 byte) cache
lines.

(regardless of the coherence controller architecture) relative to the corresponding

execution times on the base system, for FFT, Cholesky, Radix, and LU, which

have high spatial locality [93], and a minor increase in execution time for the other

benchmarks.

Also, we notice a significant increase in the PP penalty (compared to the PP

penalty on the base system) for applications with high spatial locality, due to the

increase in the number of requests to the coherence controllers, which increases

the demand on PP occupancy. For example, the PP penalty for FFT increases

from 45% to 68%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iI
127

ZM
2*
2.4

2A.
2

1.9
1.6
1.4
t.2

1

W -N aq FFT Radbc Qm m

Figure 5.8: Normalized execution time for system with higher (1 fjs.) network
latency.

2 ------------------------------
1.9
1.9
1.7
1 .6
1.5
1.4 U
1.2
1 .1

0.®
0 9

FFT Oe—n

Figure 5.9: Normalized execution time for base system with base and large data
sizes.

Slower network

To determine the impact of network speed on the PP performance penalty, we

simulated the four applications with the largest PP penalties on a system with a

slower network (1 / j s . latency). Figure 5.8 shows the execution times normalized

to the execution time of HWC on the base configuration. We notice a significant

decrease in the PP penalty from that for the base system. The PP penalty for

Ocean drops from 93% to 28%. Accordingly, systems designs with slow networks

can afford to use commodity protocol processors instead of custom hardware,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

without significant impact on performance, when cache line size is large.

Also, we notice a significant increase in execution time (regardless of the co­

herence controller architecture) relative to the corresponding execution times on

the base system, for Ocean and Radix, due to their high communication rates.

Larger data size

To determine the effect of data size on the PP penalty, we simulated Ocean and

FFT on the base system with larger data sizes, 256K complex doubles for FFT, and

a 514x514 grid for Ocean. Figure 5.9 shows the execution times normalized by the

execution time of HWC for each data size. We notice a decrease in the P P penalty

in comparison to the penalty with the base data sizes, since the communication-

to-computation ratios for Ocean and FFT decrease with the increase of the data

size.3 The PP penalty for FFT drops from 46% to 33%, and for Ocean from 93%

to 67%.

However, since communication rates for applications like Ocean increase with

the number of processors at the same rate that they decrease with larger data

sizes, we can think of high PP performance penalties as limiting the scalability of

such applications on systems with commodity PP-based coherence controllers.

3 Applications like Radix maintain a constant communication rate with different data
sizes [93].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129
i

i
Num ber o f processors per SM P node

Varying the number of processors per SMP node (i.e. per coherence controller),

proportionally varies the demand on the coherence controller occupancy, and thus

is expected to impact the PP performance penally. Figure 5.10 shows the execu­

tion times on 64-processor systems (32 for LU and Cholesky) with 1, 2, 4, and 8

processors per SMP node, normalized to the execution time of HWC on the base

configuration (4 processors/node).

We notice that for applications with low communication rates, the increase in

the number of processors per node has only a minor effect on the PP performance

penalty. For applications with high communication rates, the increase in the

number of processors increases the PP performance penalty (e.g. the PP penalty

increases from 93% for Ocean on 4 processors per node to 106% on 8 processors

per node). However, the PP penalty can be as high as 79% (for Ocean) even on

systems with one processor per node.

For each of the coherence controller architectures, performance of applications

with high communication rates degrades with more processors per node, due to the

increase in occupancy per coherence controller, which are already critical resources

on systems with fewer processors per node.

Also, we observe that for applications with high communication rates (except

FFT), the use of two protocol engines in the coherence controllers achieves similar

or better performance than controllers with one protocol engine with half the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

-lOQ-MHx H W ---------
f lO n « - * 8 M lOO M M x H W ---------
■ T w o SOOMHx P P *

d

B»w—
zr

1.8 -
1.8 -
1 .7 -

Figure 5.10: Normalized execution time with. 1,2,4, and 8 processors per SMP
node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

A pplication PP
Penalty

1000
X
RCCPI

PPC/HW C
occupancy

HWC
utilization

PPC
utilization

HWC
queu­
ing de­
lay
(ns.)

PPC
queu­
ing de­
lay
(ns.)

Average
re­
quests
to
HWC
p e r us.

Average
re­
quests
to PPC
per (is.

LU 4.37% 1.3 2.37 4.21% 9.58% 101 305 0.41 0.40
W ater-Sp 11.69% 1.8 2.65 10.95% 25.99% 100 375 1.19 1.06
Barnes 15.81% 2.3 2.52 13.26% 28.88% 67 266 1.26 1.09
Cholesky 24.38% 4.1 2.23 26.38% 47.37% 113 365 2.34 1.86
W ater-N sq 30.15% 3.3 2.69 17.86% 36.87% 157 626 1.85 1.43
FFT-256K 33.44% 3.7 2.38 22.13% 39.54% 289 837 1.83 1.38
FFT-64K 45.59% 6.3 2.31 29.61% 46.96% 340 864 2.58 1.77
R adix 52.83% 9.8 2.36 36.82% 56.75% 229 [640 3.66 2.33
Ocean-514 67.26% 14.0 2.29 47.54% 65.07% 226 648 3.87 2.31
Ocean-258 92.88% 23.2 2.47 52.89% 67.72% 232 720 4.69 2.41

Table 5.6: Communication statistics on the base system configuration.

number of processors per nodes. In other words, using two protocol engines in

the coherence controllers, allows integrating twice as many processors per SMP

node, thus saving the cost of half the SMP buses, memory controllers, coherence

controllers, and I/O controllers.

5.3.3 Communication Statistics and Measures

In order to gain more insight into quantifying the application characteristics

that affect PP performance penalty, we present some of the statistics generated by

our simulations. Table 5.6 shows communication statistics collected from simula­

tions of HWC and PPC on the base system configuration (except th a t Cholesky

and LU are run on 32 processors). The statistics are:

• PP penalty: The increase in the execution time of PPC relative to the

execution time of HWC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

• RCCPI (Requests to Coherence Controller Per Instruction): The total num­

ber of requests to the coherence controllers divided by the total number of

instructions.

• Relative occupancy: The total of the occupancies of all coherence controllers

for PPC divided by that for HWC.

• Average HWC (PPC) utilization: The average HWC (PPC) occupancy di­

vided by execution time.

• Average HWC (PPC) queuing delay: The average time a request to the

coherence controller waits in a queue while the controller is occupied by

other requests.

• Arrival rate of requests to HWC (PPC) per //s. (200 CPU cycles): Derived

from the reciprocal of the mean inter-arrival time of requests to each of the

coherence controllers.

In Table 5.6 we notice that as RCCPI increases, the PP performance penalty

increases proportionally except for Cholesky. In the case of Cholesky, the high

load imbalance inflates the execution time with both HWC and PPC. Therefore,

the PP penalty which is measured relative to the execution time with HWC is less

than the PP penalty of other applications with similar RCCPI but with better

load balance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

Also, as RCCPI increases, the arrival rate of requests to the coherence con­

troller per cycle for PPC diverges from that of HWC, indicating that the PPC

has satinrated, and that the coherence controller is the bottleneck for the base

system configuration. This is also supported by the observation of the high uti­

lization rates of HWC with Ocean, and of PPC with Ocean, Radix, and FFT,

indicating that the coherence controller has saturated these cases, and it is the

main bottleneck.

However, we notice that the queuing delays do not increase proportionally

with the increase in RCCPI, since the queuing effect of the coherence controller

behaves like a negative feedback system where the increase in RCCPI (the input)

increases the queuing delay in proportion to the difference between the queuing

delay and a saturation value, thus limiting the increase in queuing delay. Note

that the high queuing delay for FFT is attributed to its bursty communication

pattern [93].

Also, we observe that the ratio between the occupancy of PPC and the oc­

cupancy of HWC is more or less constant for the different applications, approxi­

mately 2.5.

Figure 5.11 plots the arrival rate of requests to each of the coherence controller

architectures against RCCPI for all the applications on the base system config­

uration (except Cholesky and LU as they were run on 32 processors) including

Ocean and FFT with large data sizes. The dotted lines show the trend for each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

5

3

rI®

t 2
i

o
O S 10 15 20 25

1000 X RCCPI

Figure 5.11: Coherence controller bandwidth limitations.

architecture. The figure shows clearly the saturation levels of the different co­

herence controller architectures. The divergence in the arrival rates demonstrates

that the coherence architecture is the performance bottleneck of the base system.

Figure 5.12 shows the effect of RCCPI on the PP penalty for the same ex­

periments as those in Figure 5.11. Figure 5.13 shows the effect of RCCPI on

the relative performance of PPC vs. 2PPC with the same system configuration.

Figures 5.14 and 5.15 show the effect of RCCPI on PP penalty for systems with

8 and 2 processors per node, respectively. We notice a clear proportional effect of

RCCPI on the PP penalty. The gradual slope of the curve can be explained by

the fact tha t the queuing model of the coherence controller resembles a negative

feedback system. Without the negative feedback, the PP penalty would increase

exponentially with the increase in RCCPI. The lower PP penalty for applications

with low RCCPI such as Barnes and Water-Spatial is due to the fact that in those

* Two-FSM lOO MHzHW Ocean-258
One-FSM 100 MHz HW

>c Two 200 MHz PPs _ '
o One 200 MHz PP Ocean-51*

■ m ______ ____
Radix —-------—

FFT-84K ^

Water—Nsq / ' /••X X

* £ .- FFT-256K
® Barnes

Water—Sp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

1

0.9

_ 0.8

h ,
! « -

Ocean—258

Ocean—514

Radix

£
‘ 0-5 -

0-4

0-3

0.2

0-1

0.

FFT-64K

FFT-256K
* Water—Nsq

at Barnes

* Water—Sp

— - i
10 15

1000x RCCPI
20 25

Figure 5.12: Effect of communication rate on PP penalty on the base system.
4 processors / node

0.5

0.4

> 0.35

Radix

,20.15

0.1

0 .0 5

15lO 20 2S
1000 x RCCPI

Figure 5.13: Effect of communication rate on the relative performance of PPC vs.
2PPC.

cases the coherence controller is under-utilized.

The previous analysis can help system designers predict the relative perfor­

mance of alternative coherence controller designs. They can obtain the RCCPI

measure for important large applications using simple simulators (e.g. PRAM)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

8 processors / node

~ o.a

£
T5

: 0.6

ro.e

o .z

Ocsan—258

Radix

FFT—6AK

w— "
Water—Naq

m Barnes

* Water—Sp

■
5 lO 15

1000 x RCCPI
20 25

Figure 5.14: Effect of communication rate on PP penalty on a 8 processor/node
system.

2 processors / node

0.9

7 0.8
O'
£ 0.7

0.8

e 0.5

Radix

W-Nsq

0.1

2010 2515
1000 X RCCPI

Figure 5.15: Effect of communication rate on PP penalty on a 2 processor/node
system.

and relate that RCCPI to a graph similar to that in Figure 5.12 that can be ob­

tained through the detailed simulation of simpler applications covering a range of

communication rates similar to that of the large application. Although RCCPI is

not necessarily independent of the implementation of the coherence controller, for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

Application Arch. Utilization Request
distribution

Queuing delay
(ns.)

LPE RPE LPE RPE LPE RPE
LU 2HWC 3.20% 1.09% 35.67% 64.33% 182 2

2PPC 5.66% 3.92% 35.74% 64.26% 501 14
Water-Sp 2HWC 6.82% 4.29% 38.09% 61.91% 60 40

2PPC 14.66% 12.38% 38.08% 61.92% 263 78
Barnes 2HWC 8.43% 5.22% 39.38% 60.62% 67 11

2PPC 16.64% 13.85% 39.41% 60.59% 237 53
Cholesky 2HWC 20.26% 7.48% 38.27% 61.73% 128 8

2PPC 30.34% 19.99% 38.27% 61.73% 348 36
Water-Nsq 2HWC 11.30% 7.89% 39.26% 60.74% 82 49

2PPC 22.87% 19.81% 39.22% 60.78% 384 167
FFT-256K 2HWC 17.93% 5.92% 46.33% 53.67% 378 10

2PPC 30.64% 15.05% 46.33% 53.67% 934 38
FFT-64K 2HWC 25.63% 7.45% 41.40% 58.60% 478 8

2PPC 36.35% 19.17% 41.40% 58.60% 1137 39
Radix 2HWC 21.63% 21.32% 39.95% 60.05% 138 91

2PPC 30.70% 40.86% 39.94% 60.06% 243 366
Ocean-514 2HWC 38.10% 18.33% 41.03% 58.97% 210 35

2PPC 50.42% 36.59% 41.02% 58.98% 480 138
Ocean-258 2HWC 40.02% 25.97% 40.45% 59.55% 173 48

2PPC 52.60% 44.19% 40.39% 59.61% 476 185

Table 5.7: Communication statistics for controllers with two protocol engines on
the base system configuration.

practical purposes the effect of the architecture on RCCPI can be ignored. In our

experiments the difference in RCCPI between the four implementations (HWC,

PPC, 2HWC, and 2PPC) is less than 1% for all applications.

5.3.4 Utilization of Two-Engine Controllers

For coherence controller architectures with two protocol engines, there is more

than one way to split the workload between the two protocol engines. In this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

study, we use a policy where protocol requests for memory addresses on the local

node are handled by one protocol engine (LPE) and protocol requests for memory

addresses on remote nodes are handled by the other protocol engine (RPE). In

order to quantify the effectiveness of this policy, Table 5.7 shows the communica­

tion statistics collected from simulations of 2HWC and 2PPC on the base system

configuration (except Cholesky and LU are run on 32 processors).

We observe that although most requests are handled by RPE (53-63%), the

occupancy of LPE is up to 3 times that of RPE for 2HWC, and up to 2 times

for 2PPC (derived from the utilization numbers). This is because the average

occupancy of protocol handlers performed on LPE have higher average occupancy

than those on RPE, since the former are more likely to access the directory and

main memory. Also, we observe that the sum of the average utilization numbers

for LPE and RPE is more than the average utilization for the corresponding one-

engine coherence controller (Table 5.6). This is due to the fact that the sum of

the occupancies of LPE and RPE is almost the same as that for the one-engine

controller, but the execution time decreases with the use of two protocol engines.

Due to the imbalance between the utilization figures of LPE and RPE, the

queuing delays for RPE are lower than those for the corresponding one-engine

controllers, while those for LPE are higher for most applications despite the de­

crease in demand, due to the exclusion of the requests to RPE, which typically

have low occupancy requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

The large unbalance in the distribution of occupancy between LPE and RPE

(derived from the utilization statistics) for most applications indicates that there

is potential for further improvement in performance by using a more even policy

for distributing the workload on the two (or possibly more) protocol engines.

However, it is worth noting tha t in the design used in this study, only one protocol

engine, LPE, needs to access the directory. Furthermore, in the case of custom

hardware, none of the handlers in the LPE FSM needs to be duplicated in the

RPE FSM, and vice versa, thus minimizing the hardware overhead of two-engine

HWC over one-engine HWC. Alternative distribution policies, such as splitting

the workload dynamically or based on whether the request is from the local bus

or another node, might lead to a more balanced distribution of protocol workloads

on the protocol engines, but would also require allowing multiple protocol engines

to access the directory, which increases the cost and complexity of coherence

controllers.

5.4 Related Work

The proponents of protocol processors argue that the performance penalty of

protocol processors is minimal, and that the additional flexibility is worth the

performance penalty. The Stanford FLASH designers find th a t the performance

penalty of using a protocol processor is less than 12% for the applications that

they simulated, including Ocean and Radix [24]. Their measured penalties are

; i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

significantly lower than ours for the following reasons: 1) FLASH uses a protocol

processor that is highly customized for executing protocol handlers, 2) they con­

sider only uniprocessor nodes in their experiments, and 3) they assume a slower

network latency of 220 ns., as opposed to 70 ns. in our base parameters.

In [73], Reinhardt et al. introduce the Wisconsin Typhoon architecture that

relies on a SPARC processor core integrated with the other components of the co­

herence controller to execute coherence handlers that implement a Simple COMA

protocol. Their simulations show that Simple COMA on Typhoon is less than

30% slower than a custom hardware CC-NUMA system. I t is hard to compare

our results to theirs because of the difficulty in determining what fraction of the

performance difference is due to Simple COMA vs. CC-NUMA, and what fraction

is due to custom hardware vs. protocol processors.

In [74], Reinhardt et al. compare the Wisconsin Typhoon and its first-generation

prototypes with an idealized Simple COMA system. Here, their results show that

the performance penalty of using integrated protocol processors is less than 20%.

In contrast, we find larger performance penalties of up to 106%. There are two

main reasons for this difference: 1) we are considering a more decoupled design

than Typhoon, and 2) the application set used in the studies. Our results largely

agree with theirs for Barnes, the only application in common between the two

studies. However, we also consider applications with higher bandwidth require­

ments, such as Ocean, Radix, and FFT. Other differences between the two studies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

axe: a) they compare Simple COMA systems, while we compare CC-NUMA sys­

tems, b) they assume a slower network with a latency of 500 ns., which mitigates

the penalty of protocol processors, and c) they consider only uniprocessor nodes.

Holt et al. [32] perform a study similar to ours. They also find that the oc­

cupancy of coherence controllers is critical to the performance of high-bandwidth

applications. However, their work uses abstract parameters to model coherence

controller performance, whereas our work considers practical, state-of-the-art con­

troller designs. Also, our work provides strong insight into coherence controller

bottlenecks, and we study the effect of having multiple processors per node and

two protocol engines per coherence controller.

5.5 Summary

The major focus of this chapter has been to characterize the performance trade­

offs between using custom hardware versus protocol processors to implement cache

coherence protocols. By comparing designs that differ only in features specific to

either approach and keeping the rest of the architectural parameters identical, we

were able to perform a systematic comparison of both approaches. We find that

for applications with high bandwidth requirements, like Ocean, Radix, and FFT,

the occupancy of off-the-shelf protocol processors significantly degrades perfor­

mance by up to 106%. On the other hand, the programmable nature of protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

processors allows one to tailor the cache coherence protocol to the application, and

may lead to shorter design times since protocol errors may be fixed in software.

We also find that using a slow network or large data sizes results in tolerable

protocol processor performance, and that for communication-intensive applica­

tions, performance degrades with the increase in the number of processors per

node, as a result of the decrease in the number of coherence controllers in the

system.

Our results also demonstrate the benefit of using two protocol engines in im­

proving performance or maintaining the same performance of systems with larger

number of coherence controllers. We are investigating other optimizations such

as using more protocol engines for different regions of memory, and using custom

hardware to implement accelerated data paths and handler paths for simple pro­

tocol handlers, which usually incur the highest penalties on protocol processors

relative to custom hardware.

Our analysis of the application characteristics captures the communication

requirements of the applications and their impact on performance penalty. Our

characterization—RCCPI—can help system designers predict the performance of

coherence controllers with other applications.

The results of our research imply that it is crucial to reduce protocol processor

occupancy in order to support high-bandwidth applications. One approach is

to custom design a protocol processor that is optimized for executing protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

handlers, as in the Stanford FLASH multiprocessor. Another approach is to

customize coherence protocols to the communication requirements of particular

applications. We are currently investigating an alternative approach: to add

incremental custom hardware to a protocol-processor-based design to accelerate

common protocol handler actions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

6 Conclusions

6.1 Contributions

This dissertation, contributes to improving the performance of shared mem­

ory multiprocessors, through characterizing and reducing the two main sources of

overhead on shared memory multiprocessors: synchronization and cache coher­

ence.

In more detail the contributions presented in this dissertation are:

• Presenting new algorithms:

— An array-based priority queue heap that uses multiple mutual exclu­

sion locks to allow consistent concurrent access [33]. The algorithm

avoids deadlock among concurrent accesses without forcing insertions

to proceed top-down. Bottom-up insertions reduce contention for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

topmost nodes of the heap, and avoid the need for a full-height traversal

in many cases. The new algorithm also uses bit-reversal to increase con­

currency among consecutive insertions, allowing them to follow mostly-

disjoint paths. The new algorithm provides reasonable performance on

small heaps, and significantly superior performance on large heaps un­

der high levels of contention.

— A non-blocking shared link-based queue algorithm [60]. The algo­

rithm is simple, practical, and fast. It seems to be the algorithm of

choice for any queue-based application on a multiprocessor with univer­

sal atomic primitives (e.g. compare_and_swap or lo a d -lin k e d /s to re -

cond itiona l).

— A shared link-based queue algorithm with separate head and tail pointer

locks [60]. The structure of the algorithm is similar to that of the non-

blocking queue, but it allows only one enqueue and one dequeue to

proceed at a given time. Because it is based on locks, however, it will

work on machines with such simple atomic primitives as test_and_set.

We recommend it for heavily-utilized queues on such machines.

• A demonstration that for simple data structures, special-purpose non-blocking

atomic update algorithms will outperform all alternatives, not only on mul­

tiprogrammed systems, but on dedicated machines as well. Given the avail­

ability of a universal atomic hardware primitive, there seems to be no reason

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

to use any other version of a link-based stack, a link-based queue, or a small,

fixed-sized object like a counter. For more complex data structures, how­

ever, or for machines without universal atomic primitives, preemption-safe

locks are clearly important. Preemption-safe locks impose a modest per­

formance penalty on dedicated systems, but provide dramatic savings on

time-sliced systems. For the designers of future systems, we recommend

(1) that hardware always include a universal atomic primitive, and (2) that

kernel interfaces provide a mechanism for preemption-safe locking. [62]

• Implementation of the atomic primitives: fetch_and_<f>, compare.and.swap,

and loacL linked /sto re .cond itiona lin the context of directory-based cache

coherence protocols on D SM multiprocessors [59]. This study recommends

implementing compare_and_swap with a write-invalidate cache coherence

protocol in combination with a load exclusive primitive and supporting

fetch_and.clear _then_add or fetch.and.add as an auxiliary primitive.

• Characterizing the performance tradeoffs between using custom hardware

versus protocol processors to implement cache coherence protocols. [61] We

find that for applications with high bandwidth requirements, the occupancy

of off-the-shelf protocol processors significantly degrades performance by

up to 106% for the applications we studied. On the other hand, the pro­

grammable nature of protocol processors allows one to tailor the cache co­

herence protocol to the application, and may lead to shorter design times

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

since protocol errors may be fixed in software. We also find that using a

slow network or large data sizes results in tolerable protocol processor per­

formance, and that for communication-intensive applications, performance

degrades with the increase in the number of processors per node, as a re­

sult of the decrease in. the number of coherence controllers in the system.

Our results also demonstrate the benefit of using two protocol engines in

improving performance or maintaining the same performance in systems

with larger numbers of coherence controllers. Our analysis of application

characteristics captures the communication requirements of the applications

and their impact on the performance penalty of programmable controllers.

Our characterization—RCCPI—can help system designers predict the per­

formance of coherence controllers with other applications. Our results imply

that it is crucial to reduce protocol processor occupancy in order to support

high-bandwidth applications. One approach is to custom design a protocol

processor that is optimized for executing protocol handlers, as in the Stan­

ford FLASH multiprocessor. Another approach is to customize coherence

protocols to the communication requirements of particular applications.

6.2 Future Directions

The double_compare_and_swap atomic primitive is very useful for implement­

ing simple and fast non-blocking implementations of more complex data structures—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

than those we presented in this dissertation—such as double-ended queues and

doubly linked lists, or more efficient non-blocking data structures such circular

queues [22; 54}. Extensive study of the design issues and alternatives of hardware

implementations of double_compare_and_swap is required.

In coherence controller architectures with programmable protocol engines, the

protocol processor can be some times underutilized. Executing application code,

especially short critical sections, on protocol processors not only exploits underuti­

lized protocol processors, but also might reduce the communication—and hence

the demand on overutilized protocol processors—required for updating a shared

data structure.

The performance measure, RCCPI, presented in Chapter 5 promises accurate

prediction of large applications. Further study is needed for determining the appli­

cability of this measure to different classes of applications than the scientific codes

used in this dissertation. Also, it is important to develop mathematical models to

capture the most significant factors in allowing RCCPI to predict performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Bibliography

[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April: A Processor

Architecture for Multiprocessing. In Proceedings of the Seventeenth Interna­

tional Symposium on Computer Architecture, pages 104-114, Seattle, WA,

May 1990.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatow­

icz, B.-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife Machine:

Architecture and Performance. In Proceedings of the Twenty-Second Inter­

national Symposium on Computer Architecture, Santa Margherita Ligure,

Italy, June 1995.

[3] J. Alemany and E. W. Felten. Performance Issues in Non-blocking Synchro­

nization on Shared-Memory Multiprocessors. In Proceedings of the Eleventh

AC M Symposium on Principles of Distributed Computing, Vancouver, BC,

Canada, August 1992.

[4] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B.

Smith. The Tera Computer System. In 1990 ACM International Conference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

on Supercomputing, pages 1-6, Amsterdam, The Netherlands, June 1990. In

ACM SIGARCH Computer Architecture News 18:3.

[5] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-

Memory Multiprocessors. IEEE Transactions on Parallel and Distributed

Systems, 1(1):6-16, January 1990.

[6] R. J. Anderson and H. Woll. Wait-Free Parallel Algorithms for the Union-

Find Problem. In Proceedings of the Twenty-Third AC M Symposium on

Theory of Computing, pages 370-380, May 1991.

[7] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler

Activations: Effective Kernel Support for the User-Level Management of

Parallelism. ACM Transactions on Computer Systems, 10(l):53-79, Febru­

ary 1992.

[8] J. H. Anderson and M. Moir. Universal Constructions for Multi-Object

Operations. In Proceedings of the Fourteenth ACM Symposium on Principles

of Distributed Computing, pages 184-194, Ottawa, Ontario, Canada, August

1995.

[9] G. Barnes. A Method for Implementing Lock-Free Data Structures. In

Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms

and Architectures, pages 261-270, Velen, Germany, Ju n e -Ju ly 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

[10] J. Biswas and J. C. Browne. Simultaneous Update of Priority Structures.

In Proceedings of the 1987 International Conference on Parallel Processing,

pages 124-131, St. Charles, IL, August 1987.

[11] D. L. Black. Scheduling Support for Concurrency and Parallelism in the

Mach Operating System. Computer, 23(5):35-43, May 1990.

[12] S. Bunch, R. Hochsprung, and T. Moore. The PowerPC Common Hardware

Reference Platform: A System Architecture. In Proceedings of the IEEE

COMPCON ’96, Santa Clara, CA, February 1996.

[13] R. P. Case and A. Padegs. Architecture of the IBM System 370. Commu­

nications o f the ACM, 21(l):73-96, January 1978.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press, Cambridge, Massachusetts, 1990.

[15] J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly

Parallel UNDC Systems. In Proceedings of the USENIX Workshop on Unix

and Supercomputers, Pittsburgh, PA, September 1988.

[16] S. J. Eggers and R. H. Katz. The Effect of Sharing on the Cache and Bus

Performance of Parallel Program s. In Proceedings of the Third International

Conference on Architectural Support for Programming Languages and Op­

erating Systems, pages 257-270, Boston, MA, April 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

I
t

[17] B. Falsafi, A. R. Lebeck, S. K. Reinhardt, I. Schoinas, M. D. Hill, J. R.

Larus, A. Rogers, and D. A. Wood. Application-Specific Protocols for User-

Level Shared Memory. In Proceedings, Supercomputing’94, Washington, DC,

November 1994.

[18] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient Synchronization

Primitives for Large-Scale Cache-Coherent Multiprocessors. In Proceedings

of the Third International Conference on Architectural Support for Program­

ming Languages and Operating Systems, pages 64-75, Boston, MA, April

1989.

[19] A. Gottlieb and C. P. Kruskal. Coordinating Parallel Procesors: A Paral­

lel Unification. ACM SIGARCH Computer Architecture News, 9(6):16-24,

October 1981.

[20] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic Techniques for the

Efficient Coordination of Very Large Numbers of Cooperating Sequential

Processors. ACM Transactions on Programming Languages and Systems,

5(2):164—189, April 1983.

[21] G. Graunke and S. Thakkar. Synchronization Algorithms for Shared-

Memory Multiprocessors. Computer, 23(6):60-69, June 1990.

[22] M. Greenwald and D. Cheriton. Practical Non-Blocking Synchronization

Techinques for Operating System Software. In Proceedings of the Second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

Symposium on Operating Systems Design and Implementation, Seattle, WA,

October 1996.

[23] D. B. Gustavson. The Scalable Coherent Interface and Related Standards

Projects. IE EE Micro, 12(2):10-22, February 1992.

[24] M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. P. Singh, R. Simoni, K.

Gharachorloo, J. Baxter, D. Nakahira, M. Horowitz, A. Gupta, M. Rosem-

blum, and J. Hennessy. The Performance Impact of Flexibility in the Stan­

ford FLASH Multiprocessor. In Proceedings of the Sixth International Con­

ference on Architectural Support for Programming Languages and Operating

Systems, pages 274-285, San Jose, CA, October 1994.

[25] M. P. Herlihy and J. M. Wing. Axioms for Concurrent Objects. In Pro­

ceedings of the Fourteenth ACM Symposium on Principles of Programming

Languages, pages 13-26, January 1987.

[26] M. P. Herlihy. Impossibility and Universality Results for Wait-Free Synchro­

nization. In Proceedings of the Seventh ACM Symposium on Principles of

Distributed Computing, pages 276-290, Toronto, Ontario, Canada, August

1988.

[27] M. Herlihy. A Methodology for Implementing Highly Concurrent Data

Structures. In Proceedings of the Second ACM Symposium on Principles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

and Practice of Parallel Programming, pages 197-206, Seattle, WA, March

1990.

[28] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for

Concurrent Objects. ACM Transactions on Programming Languages and

Systems, 12(3):463-492, July 1990.

[29] M. Herlihy. Wait-Free Synchronization. ACM Transactions on Programming

Languages and Systems, 13(1):124-149, January 1991.

[30] M. Herlihy. A Methodology for Implementing Highly Concurrent Data

Objects. ACM Transactions on Programming Languages and Systems,

15(5):745-770, November 1993.

[31] M. Herlihy and J. E. Moss. Transactional Memory: Architectural Support

for Lock-Free Data Structures. In Proceedings of the Twentieth International

Symposium on Computer Architecture, pages 289—300, San Diego, CA, May

1993. Expanded version available as CRL 92/07, December Cambridge Re­

search Laboratory, December 1992.

[32] C. Holt, M. Heinrich, J. P. Singh, E. Rothberg, and J. Hennessy. The Ef­

fects o f Latency, Occupance, and Bandwidth in Distributed Shared Memory

Multiprocessors. Stanford University, January 1995.

[33] G. C. Hunt, M. M. Michael, S. Parthasarathy, and M. L. Scott. An Efficient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

Algorithm for Concurrent Priority Queue Heaps. Information Processing

Letters, 60(3):151-157, November 1996.

[34] K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing.

McGraw-Hill, 1984.

[35] Pentium Pro Family Developer’s Manual. Intel Corporation, 1996.

[36] E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A New Approach

to Exclusive Data Access in Shared Memory Multiprocessors. Technical

Report UCRL-97663, Lawrence Livermore National Laboratory, November

1987.

[37] D. W. Jones. Concurrent Operations on Priority Queues. Communications

of the ACM , 32(1):132-137, January 1989.

[38] G. Kane. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs, N.J.,

1989.

[39] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical Studies of

Competitive Spinning for a Shared-Memory Multiprocessor. In Proceedings

o f the Thirteenth ACM Symposium on Operating Systems Principles, pages

41-55, Pacific Grove, CA, October 1991.

[40] Kendall Square Research. KSR1 Principles of Operation. Waltham MA,

1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

[41] L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Scheduler-

Conscious Synchronization. In AC M Transactions on Computer Systems,

15(l):3-40, February 1997.

[42] O. Krieger, M. Stumm, and R. Unrau. A Fair Fast Scalable Reader-Writer

Lock. In Proceedings o f the 1993 International Conference on Parallel Pro­

cessing, pages 11:201-204, St. Charles, IL, August 1993. CRC Press.

[43] H. Kung and P. Lehman. Concurrent Manipulation of Binary Search Trees.

AC M Transactions on Database Systems, 5(3):339-353, 1980.

[44] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,

J. Chapin, D. Nakahira, J . Baxter, M. Horowitz, A. Gupta, M. Rosenblum,

and J. Hennessy. The FLASH Multiprocessor. In Proceedings of the Twenty-

First International Symposium on Computer Architecture, pages 302-313,

Chicago, IL, April 1994.

[45] A. LaMarca. A Performance Evaluation of Lock-free Synchronization Pro­

tocols. In Proceedings of the Thirteenth ACM Symposium on Principles of

Distributed Computing, pages 130-140, Los Angeles, CA, August 1994.

[46] L. Lamport. Specifying Concurrent Program Modules. ACM Transactions

on Programming Languages and Systems, 5(2):190-222, April 1983.

[47] P. L. Lehman and S. B. Yao. Efficient Locking for Concurrent Operations on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

B-Trees. ACM Transactions on Database Systems, 6(4):650-670, December

1981.

[48] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hen-

nessy, M. Horowitz, and M. S. Lam. The Stanford Dash Multiprocessor.

Computer, 25(3):63-79, March 1992.

[49] B.-H. Lim and A. Agarwal. Reactive Synchronization Algorithms for Mul­

tiprocessors. In Proceedings o f the Sixth International Conference on Archi­

tectural Support for Programming Languages and Operating Systems, pages

25-35, San Jose, CA, October 1994.

[50] T. Lovett and R. Clapp. STiNG: A CC-NUMA Computer System for the

Commercial Marketplace. In Proceedings of the Twenty-Third International

Symposium on Computer Architecture, pages 308-317, Philadelphia, PA,

May 1996.

[51] M IPS R4000 Microprocessor User’s Manual. MIPS Computer Systems, Inc.,

1991.

[52] P. Magnussen, A. Landin, and E. Hagersten. Queue Locks on Cache Co­

herent Multiprocessors. In Proceedings of the Eighth International Parallel

Processing Symposium, pages 165-171, Cancun, Mexico, April 1994.

[53] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-Class

User-Level Threads. In Proceedings of the Thirteenth ACM Symposium on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Operating Systems Principles, pages 110-121, Pacific Grove, CA, October

1991.

[54] H. Massalin and C. Pu. A Lock-Free Multiprocessor OS Kernel. Technical

Report CXJCS-005-91, Computer Science Department, Columbia University,

1991.

[55] J. M. Mellor-Crummey. Concurrent Queues: Practical Fetch-and-<£ Algo­

rithms. TR 229, Computer Science Department, University of Rochester,

November 1987.

[56] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchro­

nization on Shared-Memory Multiprocessors. ACM Transactions on Com­

puter Systems, 9(l):21-65, February 1991.

[57] J. M. Mellor-Crummey and M. L. Scott. Scalable Reader-Writer Synchro­

nization for Shared-Memory Multiprocessors. In Proceedings of the Third

A C M Symposium on Principles and Practice of Parallel Programming, pages

106-113, Williamsburg, VA, April 1991.

[58] M. M. Michael and M. L. Scott. Correction of a Memory Management

Method for Lock-Free Data Structures. TR 599, Computer Science Depart­

ment, University of Rochester, December 1995.

[59] M. M. Michael and M. L. Scott. Implementation of Atomic Primitives on

Distributed Shared-Memory Multiprocessors. In Proceedings of the First In-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

temational Symposium on High Performance Computer Architecture, pages

222-231, Raleigh, NC, January 1995.

[60] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking

and Blocking Concurrent Queue Algorithms. In Proceedings o f the Fifteenth

ACM Symposium on Principles of Distributed Computing, pages 267-275,

Philadelphia, PA, May 1996.

[61] M. M. Michael, A. K. Nanda, B.-H. Lim, and M. L. Scott. Coherence

Controller Architectures for SMP-Based CC-NUMA Multiprocessors. In

Proceedings of the Twenty-Fourth International Symposium on Computer

Architecture, pages 219-228, Denver, CO, June 1997.

[62] M. M. Michael and M. L. Scott. Relative Performance of Preemption-Safe

Locking and Non-Blocking Synchronization on Multiprogrammed Shared

Memory Multiprocessors. In Proceedings of the Eleventh International Par­

allel Processing Symposium, Geneva, Switzerland, April 1997.

[63] J. Mohan. Experience with Two Parallel Programs Solving the Travelling

Salesman Problem. In Proceedings of the 1983 International Conference on

Parallel Processing, pages 191-193, 1983.

[64] S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R. Larus, A. Rogers, and J.

Saltz. Efficient Support for Irregular Applications on Distributed-Memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

Machines. In Proceedings of the Fifth ACM Symposium on Principles and

Practice of Parallel Programming, Santa Barbara, CA, July 1995.

[65] A.-T. D. Nguyen, M. M. Michael, A. Sharma, and J. Torrellas. The Aug-

mint Multiprocessor Simulation Toolkit for Intel x86 Architectures. In Pro­

ceedings o f the 1996 IEEE International Conference on Computer Design,

October 1996.

[66] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, B. Radke, and S.

Vishin. The S3.mp Scalable Shared Memory Multiprocessor. In Proceedings

o f the 1995 International Conference on Parallel Processing, Oconomowoc,

WI, August 1995.

[67] J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. In Pro­

ceedings of the Third International Conference on Distributed Computing

Systems, pages 22-30, Miami/Ft. Lauderdale, FL, October 1982.

[68] S. Prakash, Y.-H. Lee, and T. Johnson. A Non-Blocking Algorithm for

Shared Queues using Compare-and-Swap. In Proceedings of the 1991 Inter­

national Conference on Parallel Processing, pages 11:68-75, St. Charles, IL,

August 1991.

[69] S. Prakash, Y. H. Lee, and T. Johnson. Non-Blocking Algorithms for Con­

current Data Structures. Technical Report 91-002, Department of Computer

and Information Sciences, University of Florida, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

[70] S. Prakash, Y. H. Lee, and T. Johnson. A Nonblocking Algorithm for

Shared Queues Using Compare-and-Swap. IEEE Transactions on Com­

puters, 43(5):548-559, May 1994.

[71] M. J. Quinn and N. Deo. Parallel Graph Algorithms. A C M Computing

Surveys, 16(3) *.319-348, September 1984.

[72] V. N. Rao and V. Kumar. Concurrent Access of Priority Queues. IEEE

Transactions on Computers, 37(12):1657—1665, December 1988.

[73] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon:

User-level Shared-Memory. In Proceedings o f the Twenty-First International

Symposium on Computer Architecture, pages 325-336, Chicago, IL, April

1994.

[74] S. K. Reinhardt, R. W. Pfile, and D. A. Wood. Decoupled Hardware Sup­

port for Distributed Shared Memory. In Proceedings of the Twenty-Third

International Symposium on Computer Architecture, Philadelphia, PA, May

1996.

[75] L. Rudolph and Z. Segall. Dynamic Decentralized Cache Schemes for MIMD

Parallel Processors. In Proceedings of the Eleventh International Symposium

on Computer Architecture, pages 340-347, 1984.

[76] B. Samadi. B-Trees in a System with Multiple Users. Information Processing

Letters, 5(4):107-112, October 1976.

i

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

[77] N. Shavit and D. Touitou. Software Transactional Memory. In Proceedings

of the Fourteenth ACM Symposium on Principles o f Distributed Computing,

pages 204-213, Ottawa, Ontario, Canada, August 1995.

[78] J . P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Appli­

cations for Shared-Memory. ACM SIGARCH Computer Architecture News,

20(l):5-44, March 1992.

[79] R. Sites. Operating Systems and Computer Architecture. In H. Stone,

editor, Introduction to Computer Architecture, page chapter 12. Science

Research Associates, second edition, 1980.

[80] R. L. Sites. Alpha AXP Architecture. Communications of the ACM,

36(2):33-44, February 1993.

[81] B. J. Smith. A Pipelined, Shared Resource MIMD Computer. In Proceed­

ings of the 1978 International Conference on Parallel Processing, pages 6-8,

1978.

[82] J. M. Stone. A Simple and Correct Shared-Queue Algorithm Using

Compare-and-Swap. In Proceedings, Supercomputing ’90, New York, NY,

November 1990.

[83] J. M. Stone. A Non-Blocking Compare-and-Swap Algorithm for a Shared

Circular Queue. In S. Txafestas and others, editors, Parallel and Distributed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

Computing in Engineering Systems, pages 147-152. Elsevier Science Pub­

lishers, 1992.

[84] H. S. Stone. High Performance Computer Architecture. Addison-Wesley,

1993.

[85] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple Reserva­

tions and the Oklahoma Update. IEEE Parallel and Distributed Technology,

1(5):58-71, November 1993.

[86] R. K. Treiber. Systems Programming: Coping with Parallelism. R J 5118,

IBM Almaden Research Center, April 1986.

[87] A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multi-

programmed Shared-Memory Multiprocessors. In Proceedings of the Twelfth

A C M Symposium on Operating Systems Principles, pages 159—166, Litch­

field Park, AZ, December 1989.

[88] J. Turek, D. Shasha, and S. Prakash. Locking Without Blocking: Making

Lock Based Concurrent Data Structure Algorithms Nonblocking. In Pro­

ceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 212-222, Vancouver, BC, Canada,

August 1992.

[89] J. D. Valois. Implementing Lock-Free Queues. In Proceedings of the Seventh

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

International Conference on Parallel and Distributed Computing Systems,

Las Vegas, NV, October 1994.

[90] J . D. Valois. Lock-Free Data Structures. Ph.D . dissertation, Rensselaer

Polytechnic Institute, May 1995.

[91] J. D. Valois. Lock-Free Linked Lists Using Compare-and-Swap. In Pro­

ceedings of the Fourteenth ACM Symposium on Principles of Distributed

Computing, pages 214-222, Ottawa, Ontario, Canada, August 1995.

[92] J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Sim­

ulation of Shared-Memory Multiprocessors. In Proceedings o f the Second

International Workshop on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems (M ASCOTS ’94), pages 201-207, Durham,

NC, January-February 1994.

[93] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Methodological

Considerations and Characterization of the SPLASH-2 Parallel Application

Suite. In Proceedings of the Twenty-Second International Symposium on

Computer Architecture, pages 24-36, Santa Margherita Ligure, Italy, June

1995.

[94] J. Zahorjan, E. D. Lazowska, and D. L. Eager. The Effect of Scheduling

Discipline on Spin Overhead in Shared Memory Parallel Systems. IEEE

Transactions on Parallel and Distributed Systems, 2(2):180-198, April 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

