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Abstract—This paper presents iDO, a compiler-directed ap-
proach to failure atomicity with nonvolatile memory. Unlike most
prior work, which instruments each store of persistent data for
redo or undo logging, the iDO compiler identifies idempotent in-
struction sequences, whose re-execution is guaranteed to be side-
effect-free, thereby eliminating the need to log every persistent
store. Using an extension of prior work on JUSTDO logging, the
compiler then arranges, during recovery from failure, to back up
each thread to the beginning of the current idempotent region and
re-execute to the end of the current failure-atomic section. This
extension transforms JUSTDO logging from a technique of value
only on hypothetical future machines with nonvolatile caches into
a technique that also significantly outperforms state-of-the art
lock-based persistence mechanisms on current hardware during
normal execution, while preserving very fast recovery times.

I. INTRODUCTION

With the emergence of fast, byte-addressable nonvolatile
memory such as commercial 3D XPoint, ReRAM, and STT-
MRAM, we can now conceive of systems in which main
memory, accessed with ordinary loads and stores, is simply
“always available,” and need not be flushed to the file system
to survive a crash. The obvious use case of such a technology,
and the one we focus on here, is to allow programmers to store
heap objects persistently in memory, bypassing the expensive
serialization of those objects onto traditional storage devices.
This use case is widely applicable: we envision applications
using persistent heap objects as an alternative to disk-resident
local databases or as a way (e.g., on energy-harvesting devices
with frequent crashes) to enable fast restarts.

Unfortunately, from the perspective of crash recovery, non-
volatile main memory is compromised by the fact that tradi-
tional caches can write data back to memory in arbitrary order,
leading to inconsistent values in the wake of a crash [1], [2].
A failure in the middle of a linked-list insertion, for example,
may lead to a post-crash dangling reference if the next
pointer of the predecessor node is written back to memory
before the inserted node itself. Moreover even in the absence
of reordering, failure during an operation that is meant to be
atomic can leave the contents of memory in an inconsistent
intermediate state, rendering it unusable.

In order to avoid such errors and ensure post-crash con-
sistency of persistent data, researchers have developed failure-

atomicity systems that allow programmers to delineate failure-
atomic operations on the persistent data—typically in the
form of transactions [2]–[6] or failure-atomic sections (FASEs)
protected by outermost locks [7]–[9]. Given knowledge of
where operations start and end, the failure-atomicity system
can ensure, via logging or some other approach, that all oper-
ations within the code region happen atomically with respect
to failure and maintain the consistency of the persistent data.
Transactions have potential advantages with respect to ease
of programming and (potentially) performance during normal
operation (at least in comparison to coarse-grain locking),
but can be difficult to retrofit into existing code, due to
idioms like hand-over-hand locking and limitations on the
use of condition synchronization or irreversible operations.
Transactions also tend to perform more poorly than well tuned
fine-grain locking. Our own work is based on locking.

The principal challenge of FASE-based recovery, compared
to transactional recovery, stems from the lack of isolation
in critical sections. In a lock-based program, FASEs that
involve more than one lock, even when data-race free, may
be able to see each other’s changes while both are still in
progress; in fact, correct execution may depend on them seeing
each other’s changes (e.g., for condition synchronization).
UNDO logging, which makes updates “in place,” avoids hiding
the FASE’s updates, but must address the possibility that
a completed FASE will depend on values written in some
other FASE that was interrupted by a crash. Systems like
Atlas [7], which incorporate UNDO logging, must therefore
track cross-FASE dependences and be prepared to roll back
even completed FASEs during post-crash recovery. A similar
problem arises with REDO logging for FASEs, as in the
NVThreads system [8]: if an incomplete FASE releases a lock,
it must share its locally buffered changes with any thread
that subsequently acquires the lock; it must also track the
dependence. If the earlier FASE fails, the dependent must fail
as well. This implies that when a thread reaches the end of a
dependent FASE during normal execution, it must wait until
the earlier FASE has completed before replaying its own log
and proceeding.

To simplify the management of logs for FASE-based per-
sistence, and, in particular, to avoid the need for dependence
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tracking, Izraelevitz et al. introduced the notion of JUSTDO
logging [9]. Rather than rolling back a FASE during recovery
(as one would with UNDO logging) or replaying a FASE’s
writes (as one would with REDO logging), the JUSTDO system
logs enough information to resume a FASE during recovery
and execute it to completion (“recovery via resumption”).
Immediately prior to each store instruction in a FASE, the
JUSTDO system logs (in persistent memory) the program
counter, the to-be-updated address, and the value to be written.
During recovery, the system uses the code of the crashed
program to complete the remainder of each interrupted FASE,
beginning with the most recent log entry. Future program runs
can then be assured that the recovered data is consistent, much
as conventional programs can be ensured of the integrity of
data in a journaled file system.

The problem with JUSTDO logging is its requirement that
the log be written and made persistent before the related
store—a requirement that is very expensive to fulfill on
conventional machines with volatile caches. Current ISAs
provide limited support for ordering write-back from cache
to persistent memory, and these limitations seem likely to
continue into the foreseeable future [10]. To ensure that writes
reach memory in a particular order, the program must typically
employ a sequence of instructions referred to as a persist fence.
On an Intel x86, the sequence is 〈sfence, clwb, clwb,
..., sfence〉. This sequence initiates and waits for the
write-back of a set of cache lines, ensuring that they will
be persistent before any future writes. Unfortunately, the wait
incurs the cost of round-trip communication with the memory
controller.

Given the cost of persistence ordering, JUSTDO assumes—
unlike Atlas and NVThreads—that it will run on a machine
in which caches are persistent, due either to implementation
in STT-MRAM or to capacitor-driven flushing in the event of
power failure. On a more conventional machine with persist
fences, JUSTDO is 2–3× slower than Atlas [8], [9].

JUSTDO logging also imposes a restricted programming
model within FASEs, with no use of volatile data and no
caching of values in registers [8], [9]. These restrictions
would seem to preclude the use of SIMD instructions, widely
regarded as essential to data-intensive applications [11], [12]
and in-memory databases [13], [14].

The key contribution of our work is to demonstrate that
recovery via resumption can in fact be made efficient on
conventional machines, with volatile caches and expensive
persist fences. The key is to arrange for each log operation
(and in particular each persist fence) to cover multiple store
instructions of the original application. We achieve this cover-
age via compiler-based identification of idempotent instruction
sequences. Because an idempotent region of code can safely
be re-executed an arbitrary number of times without changing
its output, the recovery procedure in the wake of a crash
can resume execution at the beginning of the current region,
eliminating the need to log each individual store instruction
of the original program.

This paper presents iDO, a practical compiler-directed

failure-atomicity system. Like JUSTDO logging, iDO sup-
ports fine-grained concurrency through lock-based FASEs, and
avoids the need to track dependences by executing forward
to the end of each FASE during post-crash recovery. Unlike
JUSTDO, iDO allows the use of registers in FASEs, and per-
sists its stores at coarser granularity. While these advantages
should allow iDO to outperform prior systems on hypothetical
machines with nonvolatile caches, experiments confirm that
it can also outperform them—by substantial margins—on
conventional machines with volatile caches.

Instead of logging information at every store instruction,
iDO logs (and persists) a slightly larger amount of program
state (registers, live stack variables, and the program counter)
at the beginning of every idempotent code region within the
overall FASE. In practice, idempotent sequences tend to be sig-
nificantly longer than the span between consecutive stores—
tens of instructions in our benchmarks; hundreds or even
thousands of instructions in larger applications [15]. As iDO is
implemented in the LLVM tool chain [16], our implementation
is also able to implement a variety of important optimizations,
logging significantly less information—and packing it into
fewer cache lines—than one might naively expect. We also
introduce a new implementation for FASE-boundary locks
that requires only a single memory fence, rather than the two
employed in JUSTDO.

Our principal contributions can be summarized as follows:
• We introduce iDO logging, a lightweight strategy that

leverages idempotence to ensure both the atomicity of
FASEs and the consistency of persistent memory in
the wake of a system crash. Rather than log individual
memory stores, iDO logs a lightweight summary of live
program state at the beginning of each idempotent region.

• We compare the performance of iDO to that of several
existing systems, demonstrating up to an order of magni-
tude improvement over Atlas in run-time speed, and better
scaling than transactional systems like Mnemosyne [2].

• We verify that recovery time in iDO is also very fast—
one to two orders of magnitude faster than Atlas in long-
running programs.

Our paper is organized as follows. Section II gives ad-
ditional background on failure-atomicity systems and idem-
potence. Section III discusses the high-level design of iDO
logging; Section IV delves into system details. Performance
results are presented in Section V. We discuss related work in
Section VI and conclude in Section VII.

II. BACKGROUND

A. System Model
iDO assumes a near-term hybrid architecture (Fig. 1), in

which some of main memory has been replaced with non-
volatile memory, but the rest of main memory, the caches,
and the processor registers remain volatile. Data in the core
and caches are therefore transient and will be lost on system
failure.1 Portions of main memory are likely to continue to be

1In general, we refer to physical memory as volatile or nonvolatile, and to
program memory (data) as transient or persistent.
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Fig. 1: Hybrid architecture model in which a portion of
memory is nonvolatile, but the core, caches, and DRAM are
volatile.

(a) FASE with nested locks:
mutex _lock (lock 1)
    ...
    mutex _lock (lock 2)
    ...
    mutex _unlock (lock 2)
    ...
mutex _unlock (lock 1)

(b) FASE with cross locks:
mutex _lock (lock 1)
    ...
mutex _lock (lock 2)
    …
mutex _unlock (lock 1)
    ...
mutex _unlock (lock 2)

Fig. 2: FASEs with different interleaved lock patterns.

implemented with DRAM in the short term, due to density,
cost, and/or endurance issues with some NVM technologies.
As in other recent work, we assume that read and write
latencies of NVM are similar to those of DRAM [7], [8] and
that writes are atomic at 8-byte granularity [17]. Our failure
model encompasses (only) fail-stop errors that arise outside
the running application. These include kernel panics, power
outages, and various kinds of hardware failure.

B. Programming Model

As noted in Section I, iDO employs a programming model
based on lock-delineated failure-atomic sections (FASEs), pri-
marily because of their ubiquity in existing code. A FASE is
defined as a maximal-length region of code beginning with a
lock (mutex) acquire operation and ending with a lock release,
in which at least one lock is always held [7]–[9], [18]. Note
that the outermost lock and unlock pairs do not necessarily
need to be the same. Figure 2 shows examples of FASEs
with two possible interleaved lock patterns. The left-hand side
shows nested locks; the right has a cross-locking (hand-over-
hand locking) pattern.

For each FASE, iDO provides a variant of the classic ACID
transaction properties [19]:
Atomicity means that updates to persistent data performed in

a FASE complete in an “all or nothing” manner. A FASE
that is interrupted by a crash is completed as part of the
recovery procedure.

Consistency is typically defined by program semantics. We
assume that every FASE transitions memory from a state
in which all program invariants hold to another in which
they still hold. By completing an interrupted FASE during
recovery, we preserve consistency even in the presence of
failures by pushing persistent data to a state in which no
locks are held.

Isolation requires that a transaction never see other threads’
changes during its execution and, likewise, that its own
changes be invisible until commit time. In a FASE-based
programming model, isolation is a consequence of mutual
exclusion, but only for properly-nested FASEs (Fig. 2(a))
with the same outermost locks.

Durability (persistence) means that the results of FASEs
survive crashes. More specifically, if the results of one
FASE are visible to a second, and the second survives a
crash, the first survives as well.

For single-threaded programs or code that accesses pri-
vatized variables, iDO also supports programmer-delineated
durable code regions. These code regions are defined by
the programmer to be failure atomic but lack the isolation
guarantees of lock-delineated FASEs. From here on, we use
the term “FASE” to denote both lock- and programmer-
delineated failure atomic code regions.

FASE-based failure-atomicity systems based on UNDO and
REDO logging typically prohibit thread communication out-
side of critical sections [7], [8]. This prohibition prevents
a happens-before dependence between critical sections from
being created without the system’s knowledge. An advan-
tage we gain from recovery via resumption is that thread
communication outside of critical sections can occur without
compromising correctness.

Despite its strengths, recovery via resumption has some
pitfalls. In order for recovery to succeed, the failure atomic
code region must be allowed to be run to completion. For this
reason, resumption is infeasible for speculative transactions,
which must be able to abort and roll back all updates made so
far when a conflict is detected late in their execution (possibly
during recovery). Consequently, iDO logging is vulnerable to
software bugs within FASEs—on recovery, reexecuting the
buggy code will not restore consistency.

In this work, we assume a programming model that ex-
pects all writes to persistent locations to occur within lock-
or programmer-delineated FASEs. This model ensures that
program state after a crash corresponds to a cut across the
store order aligned with either a lock release or the end of a
durable code region in every thread. Like other FASE-based
systems [7]–[9], we disallow not only conventional data races
within FASEs but also races on atomic variables, to avoid the
possibility that the order in which the race is resolved may be
inverted at recovery time. Provided they do not cause a race,
persistent reads are allowed outside FASEs.

C. Idempotence

An idempotent region is a single-entry, (possibly) multiple-
exit subgraph of the control flow graph of the program. In
keeping with standard terminology, we use the term inputs to
refer to variables that are live-in to a region and used there.
That is, an input has a definition that reaches the region entry
and a use of that definition within the region. Similarly, we
use the term outputs to refer to variables that are updated
in a region and live-out at the end of the region. That is,
an output of a region is a variable written in the region that



serves as an input to some following region. We also use the
term antidependence to refer to a write-after-read dependence,
in which a variable is used and subsequently overwritten. A
region is idempotent if and only if it would generate the same
output if control were to jump back to the region entry from
any execution point within the region (assuming isolation from
other threads). To enable such a jump-back, the region inputs
must not be overwritten—i.e., there must be no antidependence
on the inputs—during the execution of the region.

Idempotent regions have been used for a variety of purposes
in the literature, including recovery from exceptions, failed
speculation, and various kinds of hardware faults [15], [20]–
[22]. For any of these purposes—and for iDO—inputs must
be preserved to enable re-execution.

III. IDO FAILURE ATOMICITY SYSTEM

Unlike UNDO or REDO logging, iDO logging provides fail-
ure atomicity via resumption and requires no log for individual
memory stores. Once a thread enters a FASE, iDO must ensure
that it completes the FASE, even in the presence of failures.
At the beginning of each idempotent code region in the body
of a FASE, all inputs to the region are known to have been
logged in persistent memory. Since the region is idempotent,
the thread never overwrites the region’s inputs before the next
log event. Consequently, if a crash interrupts the execution
of the idempotent region, iDO can re-execute the idempotent
region from the beginning using the persistent inputs.

More precisely, at the end of each (compiler-delineated)
idempotent region, iDO logs the output data of the region—the
data that were modified by the region and that serve as input
to some following region. In data flow terms, we define the
output of region r as the live-out data defined in the region—
the values that are written and downward-exposed [23]:

OutputSetr = Defr
⋂

LiveOutr (1)

where Defr is the set of values defined in r and LiveOutr is
the set of live-out values of r. The iDO compiler persists the
values in OutputSetr at the end of region r.

Successful recovery requires additional care. In particular,
if we re-execute a FASE using a recovery thread, this thread
must hold the same locks as the original crashed thread.
Tracking this information is the responsibility of the thread’s
local lock array (Sec. III-A), which is updated at every lock
acquisition and release.

The following subsections consider the structure of the
iDO log, the implementation of FASE-boundary locks, and
the recovery procedure. Additional compiler details—and in
particular, the steps required to identify FASEs and transform
the FASEs into a series of idempotent regions—are deferred
to Section IV.

A. The iDO Log

For each thread, the iDO runtime creates a structure called
the iDO_Log. We manage the per-thread iDO logs using a
global linked list whose iDO_head is placed in a persistent

iDO

iDO_Log {
uint64      *recovery_pc;
uint64      *intRF;
float128   *floatRF;
void          *lock_array;

_Log  *next;
}

iDO_Log1

iDO_head

iDO_Log2

iDO_LogN

Fig. 3: iDO log structure and management: the number of iDO
logs matches the number of threads created.

memory location to be found by the recovery procedure
(Sec. IV-C). Log structures are added to the list at thread
creation. As shown in Figure 3, each iDO_log structure
comprises four key fields. The recovery_pc field points
to the initial instruction of the current idempotent region. The
intRF and floatRF fields hold live-out register values; each
register has a fixed location in its array. The lock_array
field holds indirect lock addresses for the mutexes owned by
the thread—more on this in Section III-B.

Here then is the series of steps required, within a FASE, to
complete the execution of idempotent region r and begin the
execution of region s:

1) Issue write-back instructions for all output registers of r
(saving them to intRF and floatRF) and for all output
values in the stack. Together, these comprise OutputSetr.
Note that live-out values that were not written in r are
already sure to have persisted; no additional action is
required for them.

2) Update recovery_pc to point to the beginning of s.
Once this step is finished, s can be re-executed to recover
from failures that occur during its execution.

3) Execute the code of s, generating the values in
OutputSets. These values will be persisted at the end of
s—i.e., at the boundary between s and its own successor
t, as described in step 1. Note that by definition an
idempotent region will never overwrite its own input.

iDO continues in this fashion until the end of the FASE. To
enforce the order of these steps, the iDO compiler inserts a
single persist fence between the first step and the second, and
again between the second and the third. After completing the
steps, a thread moves on to the next idempotent region. Output
registers are written to intRF and floatRF immediately
after their final modification in the current region. Writes-back
of output values in the stack are likewise initiated immediately
after the final write of the current region, though we do not
wait for completion until the fence between steps 1 and 2.
In the absence of precise pointer analysis, we cannot always
identify the final writes to variables accessed via pointers;
these are therefore tracked at run time and then written back
at the end of each idempotent region.

Recovery in the wake of a crash is described in Sec-
tion III-C.



B. Indirect Locking

Our discussion thus far has talked mostly about idempotent
regions. To obtain failure atomicity for entire FASEs, we must
introduce lock recovery. In particular, in the wake of a crash,
we must reassign locks that were held at the time of the crash
to the correct recovery threads, ensure that those locks are held
before re-executing the interrupted FASEs, and guarantee that
no other locks are accidentally left locked from the previous
program execution (else deadlock might occur). Previous
approaches [3], [9] persist each mutex. Then, during recovery,
they unlock each held mutex to release it from a failed thread
before assigning it to a recovery thread. In JUSTDO logging,
this task requires updating a lock intention log and a lock
ownership log before and after the lock operation. Each lock
or unlock operation then entails two persist fence sequences—
a significant expense.

iDO introduces a novel approach that avoids the need to
make mutexes persistent. The key insight is that all mutexes
must be unlocked after a system failure, so their values are
not really needed. We can therefore minimize persistence
overhead by introducing an indirect lock holder for each lock.
The lock holder resides in persistent memory and holds the
(immutable) address of the (transient) lock. During normal
execution, immediately after acquiring a lock, a thread records
the address of the lock holder in one of the lock_array
entries of the iDO_Log. It also sets a bit in an initial
index slot in the array to indicate which array slots are live.
Immediately before releasing a lock, the thread clears both the
lock_array entry and the bit. Finally, the iDO compiler
inserts an idempotent region boundary immediately after each
lock acquire and before each lock release.

Upon system failure, each transient mutex will be lost. The
recovery procedure, however, will allocate a new transient lock
for every indirect lock holder, and arrange for each recovery
thread to acquire the (new) locks identified by lock holders
in its lock_array. An interesting side effect of this scheme
(also present in JUSTDO logging), is that if one thread acquires
a lock and, before recording the indirect lock holder, the
system crashes, another thread may steal the lock in recovery!
This effect turns out to be harmless: the region boundaries after
lock acquire ensure that the robbed thread failed to execute any
instructions under the lock.

C. iDO Recovery

Building on the preceding subsections, we can now sum-
marize the entire recovery procedure:

1) On process restart, iDO detects the crash and retrieves
the iDO_Log linked list.

2) iDO initializes and creates a recovery thread for each
entry in the log list.

3) Each recovery thread reacquires the locks in its
lock_array and executes a barrier with respect to
other threads.

4) Each recovery thread restores its registers (including
the stack pointer) from its iDO log, and jumps to the
beginning of its interrupted idempotent region.

5) Each thread executes to the end of its current FASE, at
which point no thread holds a lock, recovery is complete,
and the recovery process can terminate.

It should be emphasized that, as with all failure atomicity
systems, iDO logging does not implement full checkpointing
of an executing program, nor does it provide a means of
restarting execution or of continuing beyond the end of in-
terrupted FASEs. Once the crashed program’s persistent data
is consistent, further recovery (if any) is fully application
specific.

IV. IMPLEMENTATION DETAILS

A. Compiler Implementation

Figure 4 shows an overview of the iDO compiler, which
is built on top of LLVM. It takes the generated LLVM-IR
from the front end as input. It then performs three phases of
instrumentation and generates the executable. We discuss the
three phases in the paragraphs below.

a) FASE Inference and Lock Ownership Preservation:
In its first instrumentation phase, the iDO compiler infers
FASE boundaries in lock-based code, and then instruments
lock and unlock operations with iDO library calls, on the
assumption that each FASE is confined to a single function.
As in the technical specification for transactions in C++ [24],
one might prefer in a production-quality system to have
language extensions with which to mark FASE boundaries in
the program source, and to identify functions and function
pointers that might be called from within a FASE.

b) Idempotent Region Formation: In its second instru-
mentation phase, the iDO compiler identifies idempotent re-
gions. Previous idempotence-based recovery schemes have
developed a simple region partition algorithm to guarantee the
absence of memory antidependences, making the preservation
of live-in variables the only run-time cost. We use the specific
scheme developed by De Kruijf et al. [15]. The iDO compiler
first computes a set of cutting points for antidependent pairs
of memory accesses using LLVM’s basicAA alias analysis,
then applies a hitting set algorithm to select the best cutting
strategy. We report region characteristics in Section V-C.

c) Preserving Inputs and Persisting Outputs: In its third
and final instrumentation phase, the iDO compiler performs
two key analyses. First, it guarantees that the inputs to each
idempotent region are not overwritten during the region’s
execution. For registers, we artificially extend the live interval
of each live-in register to the end of the region [25], thereby
preventing the register allocator from assigning other live
intervals in the region to the same register and reintroducing
an antidependence. For stack variables, we perform a similar
live interval extension, preventing them from being shared in
LLVM’s stack coloring phase [16].

In a second, related analysis, the iDO compiler ensures that
outputs of the current idempotent region have persisted at the
end of the region. As noted in Section III-A, registers that
are live-out but were not written in the region (i.e., are being
passed through from a previous region) are already known
to have persisted. If a register is written multiple times, only
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Fig. 4: iDO compiler overview. Starting with LLVM IR from dragonegg/clang, the compiler performs three iDO phases
(indicated in bold) and then generates an executable.

the final value is logged. The log entries are then persisted
(written back) at the end of the idempotent region. Similarly,
writes-back of output values in the stack are initiated at the
final write of the idempotent region. Writes-back of variables
accessed via pointers (e.g., in the heap) are tracked at run time
and then written back at the end of the region.

B. Persist Coalescing

As a further optimization, the iDO compiler takes advantage
of the fact that register values are small, and do not need to
persist in any particular order. A system like Atlas, which
logs 32 bytes of information for every store, can persist at
most two contiguous log entries in a single 64-byte cache line
write-back. In iDO, as many as eight register values can be
persisted with a single write-back (clflush). This persist
coalescing [1] is always safe in iDO, even though registers
are grouped by name rather than by order of update at run
time, because the registers logged in the current region are
used only in later regions. If, for example, a running program
updates registers A, C, and B, in that order, it is still safe to
persist the logged values of A and B together, followed by C.

C. Persistent Region Support

iDO requires mechanisms to enable processes to allocate
regions of persistent memory and make those regions visible
to the program. We leverage Atlas’s implementation for this
purpose. Atlas’s region manager represents persistent memory
regions as files, which processes incorporate into their address
space via mmap. The mapped regions then support memory
allocation methods such as nv_malloc and nv_calloc.

V. EVALUATION

For our evaluation of iDO logging we compared against
several alternative failure atomicity runtimes. We employ real-
world applications to explore iDO logging’s performance
impact during normal (crash-free) execution. We also employ
microbenchmarks to measure scalability. For all our bench-
marks, we report statistics on the idempotent regions as a
guide to understanding performance. Separately, we measure
recovery time. Finally, we assess the sensitivity of our results
to changes in NVM latency.

Where applicable, we compare against the following failure
atomic runtimes, which guarantee crash consistency on a
persistent memory machine.
Atlas [7] is an UNDO-logging system that uses locks for

synchronization. Like iDO logging, Atlas equates failure-
atomic regions with outermost critical sections. The use

of UNDO logging allows Atlas to delay a FASE’s writes-
back (though not those of its UNDO log) until the end
of the FASE. At the same time, the lack of isolation,
combined with the rollback-based recovery model, forces
Atlas to track dependences across critical sections and
to be prepared to roll back even a completed FASE if
it depends on some other FASE that failed to complete
before a crash.

Mnemosyne [2] is a REDO-based transactional system inte-
grated into the language-level transactions of C and C++.
We used the updated version included in the recently pub-
lished WHISPER benchmark suite [26], but fixed a scal-
ing bug accidentally introduced in that version. Specifi-
cally, we removed the call to __pm_trace_print at
line 139 of pm_instr.h.

JUSTDO [9] is a recovery-via-resumption system, originally
designed for machines with persistent caches, that logs re-
covery information at every store. Unlike the version from
the original paper, our JUSTDO implementation adopts the
iDO strategy of placing the program stack in nonvolatile
memory. This change leads to a significant performance
improvement by avoiding the need to manually copy
stack variables into the heap on FASE initialization.

NVML [4] is Intel’s UNDO-logging system. It tracks informa-
tion on persistent objects and separates persistence from
synchronization using programmer delineated FASEs. A
library-based system, NVML requires the programmer to
annotate persistent accesses in each FASE.

NVThreads [8] is a REDO-logging, lock-based system that
operates at the granularity of pages using OS page pro-
tections. Critical sections maintain copies of dirty pages
and release them upon lock release.

Origin indicates the uninstrumented (and thus crash-
vulnerable) code, used as a performance baseline.

Atlas, iDO, and JUSTDO use the LLVM [16] back end.
Mnemosyne uses the gcc 4.8 back end due to its reliance on
C++ transactions, a feature not yet implemented in LLVM. For
all experiments, all runtimes use the same FASEs (but Mnem-
osyne, as a transactional system, treats them as critical sections
on a single global lock, with a speculative implementation).

For testing, we used an otherwise-idle machine with four
AMD Opteron 6276 processors, each of which has 16 single-
threaded cores, for a total of 64 hardware threads. Each core
has access to private L1 and shared L2 caches (totaling 1 MB
per core); the L3 cache (12 MB) is shared across all cores of a
single processor. The machine runs CentOS 7.4. In the absence
of actual nonvolatile DIMMs, we placed our “persistent”
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Fig. 5: Memcached throughput (millions of data structure operations per second) as a function of thread count.
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Fig. 6: Redis throughput for databases with 10K, 100K, and
1M-element key ranges.

data structures in ordinary memory (DRAM). We assume
that clflush instructions followed by an sfence roughly
approximate the overhead of persistence on machines (e.g.,
those with Intel’s ADR [27]) in which the on-chip memory
controller is part of the persistence domain. We explore the
sensitivity of our results to this assumption in Section V-E.

A. Performance Overhead

To understand iDO’s performance on real-world bench-
marks, we integrated it, along with several other failure
atomicity libraries, with Memcached [28] and Redis [29], two
production-quality key-value stores.

Memcached [28] is used—typically to cache query
results—by a wide variety of commercial enterprises, includ-
ing Facebook, Wikipedia, and Flickr. It has been in active
development since 2003. We took advantage of the fact that
Mnemosyne was already integrated into an older version of the
software (1.2.4) in the WHISPER benchmark [26] and further
integrated iDO, Atlas, and JUSTDO into that same, lock-based
code. For our experiments, we ran both a Memcached server
and client on our AMD Opteron server and followed the
methodology of Dice et al. [30] to maximize throughput. We
used the tool memaslap [31] as the client to generate a stream
of Memcached requests according to a desired distribution.
We used 32 client threads, which generated requests with
uniformly distributed 16-byte keys and 8-byte values.2 We

2Memaslap accompanies Memcached in the WHISPER suite [26]. We also
tried to use YCSB [32], but Mnemosyne crashed on this workload with 32
client threads.

experimented with two types of workloads: insertion-intensive
(50% insertion / 50% search) and search-intensive (10% inser-
tion / 90% search).

Throughput appears in Figure 5. In general, iDO logging
outperforms all other FASE-based competitors by a factor
of two or more. At its peak, iDO throughput reaches 25–
33% of that of the original code, imposing significant but
arguably tolerable overhead in return for persistence and crash
consistency. Notably, none of the systems manages to scale
particularly well, and even the original version scales only to
eight threads. Older versions of Memcached were notorious
for exhibiting poor scaling due to coarse-grain locking [30]
and the synchronization framework has been reworked since
1.2.4. Because of the coarse-grain locking in Memcached,
Mnemosyne enjoys better performance than iDO. Given the
scalability problems common to transactional systems (shown
in Sec. V-B), we believe that iDO will outperform Mnemosyne
in later versions of Memcached.

Redis [29] is an object-based key-value store that supports
a wide variety of data structures as values. Unlike Mem-
cached, Redis is single threaded, so we relied on programmer-
annotated FASEs (rather than outermost locks) to delineate
failure-atomic regions. As in our Memcached experiments, we
took advantage of the fact that Redis has already been adapted
for persistent memory [26]—in this case using NVML. Build-
ing on this prior work, we integrated iDO, JUSTDO, and Atlas
into the code base. We ran both server and client on our
AMD Opteron machine, using Redis’s included lru test as
the client. This client queries the server with a mix of 80%
gets and 20% puts, with a power-law key distribution over
a fixed key range (10K, 100K, or 1M) for one minute.

As shown in Figure 6, iDO outperforms existing persistence
systems on Redis by significant margins for all key ranges,
with overhead of 30–50% relative to the crash-vulnerable code.
As Redis has rather long FASEs with relatively few persistent
writes, iDO can take significant advantage of idempotent re-
gions. Notably, as the database grows, the performance differ-
ence between iDO and the uninstrumented code shrinks. This
effect occurs because the benchmark spends more time search-
ing for keys in the larger database, and iDO logging imposes
minimal costs on read paths, since they are idempotent. Also
of note is the performance of the two UNDO logging systems—
Atlas and NVML. While both provide UNDO logging, NVML



has neither compiler integration nor synchronization; program-
mers must manually annotate every persistent store in a FASE
and insert necessary synchronization. Atlas, on the other hand,
achieves substantially greater ease of use (for multithreaded
code) through compiler-based detection of persistent accesses
and automatic tracking of cross-FASE dependences. These
additional features in Atlas become performance overheads
in a single-threaded benchmark like Redis.

B. Scalability

For scalability experiments, we used the same data structure
microbenchmarks used in the evaluation of JUSTDO log-
ging [9]. These microbenchmarks perform repeated accesses
to a shared data structure across a varying number of threads.
The data structures we implemented were:
Stack A locking variation on the Treiber Stack [33].
Queue The two-lock version of the M&S queue [34].
Ordered List A sorted list traversed using hand-over-hand

locking. This implementation allows for concurrent ac-
cesses within the list, but threads cannot pass one another.

Map A fixed-size hash map that uses the ordered list imple-
mentation for each bucket, obviating the need for per-
bucket locks.

These data structures allow varying degrees of parallelism.
The stack, for example, serializes accesses in a very small
critical section. At the other extreme, the hash map allows
concurrent accesses both across and within buckets. We expect
low-parallelism data structures to scale poorly with worker
thread count whereas high-parallelism data structures should
exhibit nearly linear scaling. Our performance results are
conservative in that they present the maximum possible stress-
test throughput of the structure. In real code, these data
structures may not be the overall bottleneck.

At each thread count, tests are run for a fixed time interval
using a low overhead hardware timer, and total operations are
aggregated at the end. For the duration of microbenchmark
execution, each thread repeatedly chooses a random operation
to execute on the structure. For our evaluations of the queues
and stacks, threads choose randomly between insert or
remove. For the ordered list and hash maps, threads choose
randomly between get or put on a random key within a
fixed range. Threads were pinned to cores in a consistent order
for all experiments: we entirely fill a single 16-core processor
before moving to the next.

During each test, threads synchronize only through the
tested data structure. Variables within the data structures
are appropriately padded to avoid false sharing. To gener-
ate random numbers, threads use thread-local generators to
avoid contention. To smooth performance curves, pages are
prefaulted to prevent soft page faults. Performance of the
microbenchmarks is up to 10× better without persistence; we
elided this result for clarity.

Scalability results appear in Figure 7. As in Memcached
and Redis, iDO logging matches or outperforms other FASE-
based schemes in all configurations, especially at higher
thread counts. In general, iDO logging also scales better than

Mnemosyne, showing near perfect speedup on the hash map.
This scaling demonstrates the absolute lack of synchronization
between threads in the iDO runtime—all thread synchroniza-
tion is handled through the locks of the original program.
In contrast, both Atlas and Mnemosyne quickly saturate their
runtime’s synchronization and throttle performance.

Mnemosyne performs better when the applications have
little inherent concurrency or when the number of worker
threads is low. Since both iDO and Atlas require ordered
writes to persistent memory at every lock acquisition and
release in order to track lock ownership, their per-thread
execution is slowed relative to Mnemosyne, which employs
a speculative implementation. Conversely, both iDO and Atlas
support hand-over-hand locking, as used in the ordered list.
Mnemosyne, with its transactional API, does not support this
idiom, so the entire traversal is done in a single transaction
and data is written to persistent memory only once. iDO and
Atlas extract more concurrency from the benchmark, but per-
thread execution is slower than Mnemosyne. Consequently, at
very high thread counts, iDO outperforms Mnemosyne due
to extracted parallelism, despite its single thread performance
being about 4× slower.

C. Region Characteristics

To better understand performance differences, we used
Intel’s Pin tool [35] to collect statistics on idempotent regions.
For each of our applications and microbenchmarks, the upper
half of Figure 8 displays the cumulative dynamic distribution
of stores per idempotent region. Any number larger than one
indicates a savings in logging operations relative to REDO,
UNDO, or JUSTDO logging.

In the microbenchmarks, most regions contain zero or one
stores. The Ordered List, in particular, spends much of its time
searching with hand-over-hand locking and no data updates.
This allows Mnemosyne, which avoids logging lock opera-
tions, to outperform all other schemes in this microbenchmark
for low and moderate thread counts. Even with very small
regions, iDO still outperforms JUSTDO by substantial margins,
largely because of its indirect locking mechanism.

For more realistic applications, we observe that roughly
30% (Memcached) to 50% (Redis) of all regions have multiple
stores, allowing iDO to consolidate log operations, leading
to higher throughput even at low thread counts. We believe
the average region size could be improved with better alias
analysis in the compiler. We currently rely on LLVM’s basic-
AA algorithm, which is quite conservative.

The lower half of Figure 8 displays the cumulative dynamic
distribution of live-in registers per idempotent region. Sig-
nificantly, more than 99% of the dynamic regions in all the
benchmarks have fewer than five live-in registers, indicating
that the typical log operation requires only a single cache line
flush for the register inputs.

D. Recovery Overheads

We evaluate the speed and correctness of recovery by
running the microbenchmarks of Section V-B and killing the
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Fig. 7: Throughput (millions of data structure operations per second) as a function of thread count.
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Fig. 8: Benchmark region characteristics: cumulative distribu-
tion of stores (top) and live-in registers (bottom) per dynamic
region.

process. We interrupt the applications by sending an external
SIGKILL signal after the applications have run for 1, 10, 20,
30, 40 and 50 seconds. For the recovery, iDO follows the re-
covery procedure in Section III-C. As summarized before, iDO
needs to first initialize the recovery threads. Then iDO recovers
the live-in variables for the interrupted region, jumps back to

Kill Time 1 s 10 s 20 s 30 s 40 s 50 s
Stack 0.7 6.6 14.0 20.7 28.7 34.9
Queue 0.8 9.0 20.1 31.6 43.3 56.1
OrderedList 4.1 72.1 162.2 260.9 301.8 424.8
HashMap 0.3 1.5 2.7 4.2 5.2 6.2

TABLE I: Recovery time ratio (ATLAS/iDO) at different kill
times.

the entry of the interrupted region, and continues execution
until the end of the FASE. Interestingly, the recovery time for
iDO with 64 threads is always about one second. Since most
of the FASEs in the benchmarks are short (generally on the
order of a microsecond), the main overhead for iDO recovery
comes from mapping the persistent region into the process’s
virtual address space and creating the recovery threads—all of
which is essentially constant overhead. In contrast, for Atlas,
recovery needs to first traverse the logs and compute a global
consistent state following the happens-before order recorded
in the logs, then undo any stores in the interrupted FASEs.

Table I shows the ratio of recovery times for ATLAS
and iDO. When the applications run for only a short time
(1 second) before “crashing,” ATLAS can quickly traverse the
small number of logs and compute a consistent state, while
iDO still has to pay the overhead of creating and initializing
recovery threads. However, when the applications run for a
longer time (> 10 seconds), ATLAS must traverse a much
larger number of logs and compute a consistent state. We can
observe up to 400× faster recovery for iDO in this case.



20 100 500 1000 2000
0

1

2

3

4
T

hr
ou

gh
pu

t
(o

ps
/s

ec
) ⇥104

(a) Memcached

ATLAS

JUSTDO

IDO

20 100 500 1000 2000
0

2

4

6

8

T
hr

ou
gh

pu
t

(o
ps

/s
ec

) ⇥104

(b) Redis

ATLAS

JUSTDO

IDO
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E. Sensitivity to NVM Latency

In the experiments of Sections V-A through V-D, we relied
on sfence instructions to capture the cost of waiting for
previous writes-back (clflushes) to reach the on-chip mem-
ory controller. Given that some machines may implement this
controller with, say, STT-MRAM instead of capacitor-backed
SRAM, while others may require a handshake across the
memory bus, we re-ran our Memcached and Redis experiments
with additional delays to emulate the cost of nonvolatile
writes (which are typically more expensive than reads) or
of traversing a long data path. As in Mnemosyne [2], we
inserted a configurable delay (looping with nops) after each
non-cacheable store to nonvolatile memory, and after each
clflush that follows cacheable stores to such memory. We
also leveraged a similar capability in Atlas. Results, for delays
ranging from 20–2000 ns, appear in Figure 9. The Memcached
result reprises the 32-server, insertion-intensive data point of
Figure 5(a); the Redis result reprises the “large” data point of
Figure 6.

Both iDO logging and Atlas maintain their performance up
to a delay of around 100 ns; beyond this point, significant
slowdown occurs. JUSTDO logging, by contrast, sees signifi-
cant (1.5–2×) slowdown relative to Figures 5 and 6 with even
20 ns of additional delay. We attribute this difference to the
relatively frequent logging of JUSTDO relative to Atlas and
iDO. While very preliminary, we take these results both as a
strong endorsement of Intel’s ADR [27] (asynchronous DRAM
refresh on power fail) and as a suggestion that it may be
reasonable, with an appropriate runtime, to replace capacitor-
backed SRAM with physically nonvolatile memory in an ADR
memory controller.

VI. RELATED WORK

A. Nonvolatile Memory

With the impending end of DRAM scaling, several device
technologies are competing to provide inexpensive, dense, and
nonvolatile storage in the hopes of becoming the next domi-
nant main memory technology. Candidates include PCM [36],
[37], Memristors [38], and spin-transfer torque magnetic
memory (STT-MRAM) [39]. In building these technologies,
researchers are attempting to maximize density, endurance,
economy, and speed, resulting in various compromises across
these variables.

At the level of the microarchitecture, architects are trying
to give programmers fast and fine-grained control over the
ordering and timing of writes-back from volatile caches into
nonvolatile main memory; the semantics surrounding this
ordering comprise the memory persistency model [1] analo-
gous to traditional memory consistency [40]. While existing
processors provide rough control over write back (e.g., Intel’s
clflush and nontemporal stores), future designs may track
thread-local orderings and buffering to reduce the penalty of
ordering writes into persistence. Various schemes and their
hardware include epoch persistence [36], buffered epoch per-
sistence [1], [41], explicit epoch persistence [42], DPO [43],
and HOPS [26]. Intel has also released ISA extensions for
its persistency model [10] including the new clwb and
clflushopt instructions.

On top of these persistency models, several research groups
have built high performance software for persistent appli-
cations. Example projects include concurrent data struc-
tures [44]–[47] transactional key-value stores [6], [48]–[50],
file systems [17], and databases [51]–[53].

In contrast with these high-performance and specialized
applications, a growing body of work, of which iDO logging is
a member, addresses run-time libraries and compiler support to
enable programmers to more easily write crash-resistant code.
Table II summarizes the differences among several of these
systems. Mnemosyne [2], NV-Heaps [3], SoftWrAP [55], and
NVML [54] extend transactional memory to provide durability
guarantees on nonvolatile memory. Mnemosyne emphasizes
performance; its use of REDO logs postpones the need to flush
data to persistence until a transaction commits. SoftWrAP, also
a REDO system, uses shadow paging and Intel’s now depre-
cated pcommit instruction [10] to batch updates from DRAM
to NVM. NV-heaps, an UNDO log system, emphasizes pro-
grammer convenience, providing garbage collection and strong
type checking to help avoid pitfalls unique to persistence—
e.g., pointers to transient data inadvertently stored in persistent
memory. NVML, Intel’s persistent memory transaction system,
uses UNDO logging on persistent objects and implements
several highly optimized procedures that bypass transactional
tracking for common functions.

Other failure atomic run-time systems [7]–[9], like iDO
logging, use locks for synchronization and delineate failure
atomic regions as outermost critical sections, as discussed in
Section I.



TABLE II: Failure Atomic Systems and their Properties

System
Failure-atomic

region semantics
Recovery
Method

Logging
Granularity

Dependency
tracking needed?

Designed for
transient caches?

iDO Logging Lock-inferred FASE Resumption Idempotent Region No Yes
Atlas [7] Lock-inferred FASE UNDO Store Yes Yes
Mnemosyne [2] C++ Transactions REDO Store No Yes
NVThreads [8] Lock-inferred FASE REDO Page Yes Yes
JUSTDO [9] Lock-inferred FASE Resumption Store No No
NVHeaps [3] Transactions UNDO Object No Yes
NVML [54] Programmer Delineated UNDO Object No Yes
SoftWrAP [55] Programmer Delineated REDO Contiguous data blocks No Yes

Extensions to several of these systems explore how to
compose operations on concurrent persistent data structures
into larger failure atomic sections, thereby eliminating fine-
grained write tracking within the persistent data structure. For
data structures that meet detectable execution [56], query-
based logging [57] allows UNDO and JUSTDO based systems to
support this optimized composition (analogous to “boosting”
in software transactional memory [58]). It seems clear that
similar optimizations could work in iDO logging.

All of these specialized persistent applications and runtimes
can be seen as nonvolatile memory analogues of traditional
failure atomic systems for disk/flash, and they borrow many
techniques from the literature. Disk-based database systems
have traditionally used write-ahead logging to ensure consis-
tent recoverability [59]. Transactional file updates have been
explored in research prototypes [60], [61] and commercial im-
plementations [62]. User-space implementations of persistent
heaps supporting failure-atomic updates have been explored
in research [63]. Logging-based systems have historically
ensured consistency by discarding changes from any update
interrupted by failure (even in the REDO case, an update will
not be completed on recovery unless it recorded everything
it wanted to do before the failure occurred). In contrast,
for idempotent updates, an update cut short by failure can
simply be re-executed rather than discarding changes, reducing
required logging [64], [65].

B. Idempotence

Over the years, many researchers have leveraged idempo-
tence for various purposes. Mahlke et al. were the first to ex-
ploit the idea, which they used to recover from exceptions dur-
ing speculative execution in a VLIW processor [66]. Around
the same time, Bershad et al. proposed restartable atomic
sequences for a uniprocessor based on idempotence [65].

Kim et al. leveraged idempotence to reduce the hardware
storage required to buffer data in their compiler-assisted specu-
lative execution model [67]. Hampton et al. used idempotence
to support fast and precise exceptions in a vector processor
with virtual memory [68]. Tseng et al. used idempotent regions
for data-triggered thread execution [69].

Recently, researchers have leveraged idempotence for re-
covery from soft errors—e.g., ECC faults [15], [70]. Also,

Liu et al. [20] advanced the state of the art with checkpoint
pruning, which serves to remove logging operations that can
be reconstructed from other logs in the event of a soft run-time
error. Liu et al. [21], [22], [71], [72] also extended idempotent
processing in the context of sensor-based soft error detectors
to ensure complete recovery.

More recently, the energy-harvesting system community
has started using idempotent processing to recover from the
frequent power failures that occur in systems without batteries.
Xie et al. [73] use idempotence-based recovery and heuristics
to approximate minimal checkpoints (logs) to survive power
failures. Their design revolves around the idea of severing
anti-dependences by placing a checkpoint between a load-store
pair, in a manner reminiscent of Feng et al. [70] and de Kruijf
et al. [15]. Lately, their techniques were used by Woude et
al. [74] to highlight both the promise and the limitations of
using idempotence to ensure forward progress when multiple
power failures occur within a span of microseconds. In a
similar vein, Liu et al. [75] highlight the limitations of anti-
dependence based idempotence analysis in terms of additional
power consumption due to unnecessary checkpoints. Signif-
icantly, all of these projects target embedded processors in
which out-of-order execution and caches do not exist.

Despite this wealth of related work, iDO is, to the best of
our knowledge, the first system to use idempotence to achieve
lightweight, fault-tolerant execution of failure-atomic sections
in general-purpose programs.

VII. CONCLUSION

Fault tolerance is one of the most exciting applications
of emerging nonvolatile memory technologies. Existing ap-
proaches to persistence, however, suffer from problems with
both performance and usability. Transactional approaches are
generally incompatible with existing lock-based code, and
tend not to scale to high levels of concurrency. Failure-
atomic regions (FASEs), by contrast, are compatible with
most common locking idioms and introduce no new barriers
to scalability. Unfortunately, prior FASE-based approaches to
persistence incur significant run-time overhead.

To address these limitations, we have introduced iDO
logging, a compiler-directed approach to failure atomicity.
The iDO compiler divides each FASE into idempotent re-
gions, arranging on failure recovery to restart any interrupted



idempotent region and execute forward to the end of the
FASE. Unlike systems based on UNDO or REDO logging,
iDO avoids the need to log individual program stores, thereby
achieving a significant reduction in instrumentation overhead.
Across a variety of benchmark applications, iDO significantly
outperforms the fastest existing lock-based persistent systems
during normal execution, even on machines with conventional
volatile caches, while preserving very fast recovery times.
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