
Hodor: Intra-Process Isolation for High-Throughput Data Plane Libraries

Mohammad Hedayati
University of Rochester

Spyridoula Gravani
University of Rochester

Ethan Johnson
University of Rochester

John Criswell
University of Rochester

Michael L. Scott
University of Rochester

Kai Shen
Google

Mike Marty
Google

Abstract
As network, I/O, accelerator, and NVM devices capable of

a million operations per second make their way into data cen-
ters, the software stack managing such devices has been shift-
ing from implementations within the operating system ker-
nel to more specialized kernel-bypass approaches. While the
in-kernel approach guarantees safety and provides resource
multiplexing, it imposes too much overhead on microsecond-
scale tasks. Kernel-bypass approaches improve throughput
substantially but sacrifice safety and complicate resource man-
agement: if applications are mutually distrusting, then either
each application must have exclusive access to its own device
or else the device itself must implement resource manage-
ment.

This paper shows how to attain both safety and performance
via intra-process isolation for data plane libraries. We propose
protected libraries as a new OS abstraction which provides
separate user-level protection domains for different services
(e.g., network and in-memory database), with performance
approaching that of unprotected kernel bypass. We also show
how this new feature can be utilized to enable sharing of data
plane libraries across distrusting applications. Our proposed
solution uses Intel’s memory protection keys (PKU) in a safe
way to change the permissions associated with subsets of
a single address space. In addition, it uses hardware watch-
points to delay asynchronous event delivery and to guarantee
independent failure of applications sharing a protected library.

We show that our approach can efficiently protect high-
throughput in-memory databases and user-space network
stacks. Our implementation allows up to 2.3 million library
entrances per second per core, outperforming both kernel-
level protection and two alternative implementations that use
system calls and Intel’s VMFUNC switching of user-level
address spaces, respectively.

1 Introduction
A principal task of an operating system (OS) is to multiplex
hardware resources, making them accessible to multiple user-
level applications, and to arbitrate use of those resources to

satisfy system-wide performance and fairness goals. User/
kernel isolation enables the OS to enforce its resource man-
agement decisions in the face of untrusted and potentially
malicious applications. In recent years, however, developers
have begun to move I/O management into user space for the
sake of higher performance, specialization, and rapid devel-
opment. This strategy is often referred to as kernel-bypass
I/O. DPDK [21] and mTCP [24] move packet processing and
transport layer processing into user space; SPDK [22] does
the same for direct access to fast storage devices like Optane
SSDs [19]. Accelerators like Google’s TPU [25] and Nvidia’s
GPUs [34] also rely on kernel-bypass software stacks for
low-latency hardware access and rapid evolution of drivers.

The trend toward kernel bypass has enabled significant
improvements in device throughput and latency [4, 39, 40].
These gains, however, have typically come at the cost of grant-
ing an application exclusive access to a device, trusting other
users of the device, or relying on the existence of a hardware-
level arbitrator that virtualizes or partitions the device (e.g.,
SR-IOV [23]). Unfortunately, device-level resource isolation
is not always available and typically lacks the flexibility to
implement OS-level resource management policies.

The anticipated widespread availability of byte-addressable
non-volatile memory (NVM) DIMMs [45] brings similar chal-
lenges. If NVM is mapped into a process’s address space so
that it can be accessed directly with application load/store
instructions, a memory safety error within the process could
corrupt data structures on the NVM [37]. Relying on OS
kernel mechanisms e.g., a file system interface, to protect ac-
cess to NVM would throw away the performance potential of
direct loads and stores to persistent memory.

One can, of course, implement protection domains within
an address space using a trusted compiler with static [17] or
dynamic [52] checking. The static approach requires a type-
safe language and is thus incompatible with many existing
applications. The dynamic approach incurs overhead that is
significant even in the simplest cases (e.g., when checking
pointers against a single boundary address), and rises steeply
for more complex address space layouts [44].

scott
Text Box
Usenix ATC 2019

What we desire is a mechanism that allows services tra-
ditionally implemented in the kernel to be encapsulated as
protected libraries in user space. Such a mechanism should be
compatible with existing applications (i.e., via re-linking), pro-
vide fast transitions into and out of protected library routines,
impose little or no cost on ordinary code, accommodate mul-
tiple protected code and data segments in a single application,
and support independent failure to allow a protected library
to be shared across distrusting applications. Toward that end,
this paper proposes Hodor, a mechanism for low-overhead
intra-process isolation. Hodor leverages the existence of user
libraries to define protection domains for services previously
offered by the kernel (e.g., file systems, network stack, device
drivers, etc.). Relying on library boundaries, Hodor offers
practical intra-process isolation without requiring any signifi-
cant effort on the part of the application programmer. It allows
multiple mutually distrusting libraries to be loaded into the
same address space, providing each library (and the main
application) with a different “view” of code and data, and
protecting each from failures in the others. (When a failure
occurs, library calls in non-erroneous protection domains are
permitted to complete before the process terminates.) Hodor
employs the standard function call/return interface but inter-
poses a trampoline on each call to change the view of the
address space to that of the library being entered.

Hodor can be used to provide instances of a protected li-
brary in multiple applications with access to shared resources.
Instances of a network library, for example, might provide fast,
user-level access to a NIC while enforcing rate-limiting poli-
cies that require coordination among otherwise uncoordinated
and mutually distrusting applications.

We propose a concrete implementation of Hodor for recent
Intel processors that is based on Intel’s memory protection
keys, called Protection Keys for Userspace (PKU) [20]. We
introduce a novel method that uses hardware watchpoints (i.e.,
debug registers [20]) to efficiently monitor program execution
and ensure the safety of our approach without relying on
a trusted compiler, changes to application source code, or
expensive dynamic binary translation.

We also describe two alternative implementations of
Hodor’s isolation: 1) using a system call to switch between
page tables, and 2) using Intel’s Extended Page Table (EPT)
switching with VM function (VMFUNC) instructions [20].
We compare our PKU-based protection with each of the alter-
native solutions and demonstrate that the PKU approach of-
fers better performance. While none of the implementations is
fast enough to be used for fine-grained intra-process isolation
(e.g., for shadow stacks [7] or code-pointer integrity [50]),
our results show that both PKU- and VMFUNC-based ap-
proaches are able to support on the order of two million calls
per second per core into a protected library.

In summary, our contributions are as follows:
• We introduce Hodor, a mechanism that provides a new

OS abstraction to isolate fast data-plane libraries from

both the calling application and each other.
• We propose a concrete implementation of Hodor for cur-

rent Intel processors based on PKU. We present a novel
method that combines binary inspection and hardware
watchpoints to prevent bypassing of the PKU-based pro-
tection and safely isolate libraries linked in arbitrary x86
applications.

• We quantify the performance benefits of Hodor on real-
world applications with respect to both unprotected ker-
nel bypass and isolation based on kernel-mediated page
table switching and EPT switching via VMFUNC.

• We present two proof-of-concept examples of protected
libraries that share state between library instances in
separate applications (with independent failure modes),
and discuss challenges that must be addressed in such
designs.

The following section describes in more detail the prob-
lem addressed by protected libraries, including the threats
against which we protect, the assumptions we make about
library code, the capabilities we provide to libraries, and the
system components (signal interface, threading libraries, oper-
ating system kernel) that must be modified to ensure isolation.
Sec. 3 then describes our candidate implementations. We
evaluate the performance of these implementations in Sec. 4
using microbenchmarks, the Silo in-memory database [48],
the DPDK data-plane library package [21], and the Redis [42]
NoSQL server. Sec. 5 discusses related work. Sec. 6 summa-
rizes our conclusions.

2 Protected Libraries
Hodor’s protected library mechanism partitions an applica-
tion into multiple domains of executable code. Each domain
is granted access to some parts of the address space and de-
nied access to other parts. Each domain has private stacks
and possibly a private heap, but also shares access to some
pages, allowing efficient communication with other domains.
Domain transitions follow standard calling conventions, me-
diated by trampoline routines that switch to the appropriate
address space view, switch stacks, set up arguments to main-
tain calling conventions, and possibly scrub any remaining
registers to avoid information leaks. Trampolines also switch
back to the caller’s domain when a library call returns.

2.1 Threat Model
With Hodor, an untrusted application uses protected libraries
to access protected resources. A resource might comprise or-
dinary memory, non-volatile memory, or a memory-mapped
device. By default, an application shares its entire memory
space with each protected library, but the library shares only
the trampoline code needed for cross-domain calls. In addi-
tion, an application can optionally be modified to share only
buffers with the library.

Figure 1 shows an example with user-space network and
storage libraries. The storage library has default access to the

Main Application

Protected Storage Library Protected Network Library

Heap

Heap

Heap

Thread Stacks

Thread Stacks Thread Stacks

Trampolines
Trampolines

Shared
Buffers

Domain
Status
Page

Domain
Status
Page

Domain
Status
Page

Nonvolatile Memory Memory-mapped NIC

Figure 1: Protected Library Architecture. The example appli-
cation has, by default, shared its entire memory space with
the storage library. It has opted to share only certain buffers
with the network library.

application; the network library has been given access only
to shared buffers. We assume that applications may be multi-
threaded and that library entry points may accept pointers to
callback functions. Consequently, protected libraries must be
multi-thread safe and re-entrant. When a protected library opts
to share state with instances in other applications (e.g., to track
resource usage and enforce fairness), the library is responsible
for synchronization. We accommodate independent failures
by arranging to complete the execution of any library call
whose process incurs a fault in a different domain (more on
this in Sec. 2.5).

As replacements for traditional kernel services, protected
libraries are assumed to be written with care. Among other
things, they should employ caution when dealing with po-
tentially unsafe arguments (e.g., using methods like copy-
in/copy-out) just as kernel code would. They should also en-
sure that transitions into other domains (e.g., invocation of a
callback or a third-party library function) happen in a safe con-
text. It would be incorrect, for example, to acquire a lock and
then call an outside function, since it might terminate before
returning back to the library. In our implementation, protected
libraries are statically linked with all their dependencies to
ensure that transitions into and out of the library conform to
its API. This does not prevent use of shared libraries by the
rest of the application. A more flexible implementation could
dynamically link a separate instance of shared libraries in
each protection domain that requires them.

A protected library is trusted to enforce security and man-
agement policies for its protected resources but is otherwise
untrusted. The hardware and the operating system are part of
the Trusted Computing Base (TCB), and are assumed to be
correctly implemented. The application and other untrusted
libraries are outside the TCB: they are not trusted to read or
write protected library memory.

In this work, we are primarily interested in preserving the
integrity and confidentiality of protected memory and devices
from direct memory reads and writes. While side-channel
attacks, and in particular those targeting transient execution [8,
27, 30], are out-of-scope, we explain the ramifications of our

implementations on related transient execution attacks.
We assume that an attacker controls the application and

untrusted libraries and can add arbitrary native code to the
application and to untrusted libraries. We assume that the at-
tacker cannot gain direct access to the data within a protected
library’s memory via the library’s own API. We must consider
the possibility, however, that the attacker may attempt to:

• Gain access to protected memory by changing virtual-
to-physical mappings using system calls like mmap.

• Modify, from a compromised thread, local variables or
return addresses in the stack of a thread that is running
in the library.

• Subvert the loading mechanism so that a different library
has access to protected memory.

• Install malicious signal handlers and then arrange for a
signal to be delivered while the library is running.

We consider these issues in turn in the following subsections.

2.2 Virtual Address Space Integrity
In a standard Linux system, a process can change the page
permissions of its own memory with the mprotect system
call, and change the mappings between virtual and physical
addresses with the mmap system call. For any given protected
library L, we must prevent address space changes, when re-
quested by code outside of L, from making L’s code or data
accessible to the application or to another library.

This is the easiest vulnerability to address. We assume
that the static and dynamic loaders are part of the trusted
computing base. When asked to load a protected library, they
inform the operating system of the virtual addresses used by
the protected library’s code and data. On any subsequent call
to mprotect, mmap, etc., the kernel identifies the context in
which the syscall was made (i.e., the value of pkru register for
the PKU-based implementation and the instruction pointer for
page-table switching implementations) and grants requests
to change the mappings or permissions of protected library
space only when made in an appropriate context.

2.3 Local Variables and Protected Stack
Within its protected memory, in addition to code, global vari-
ables, and heap, each protected library also maintains per-
thread private stacks on which to store return addresses and
local variables. When an application creates a new thread,
we must create a new stack for each of the domains in the
application. We embed this logic within the threading library
(e.g., pthreads) so that application developers do not need
to explicitly modify any application code.

When an application calls a function within a protected
library, trampoline code accessible to the application must
arrange for the target function to execute in the library’s pro-
tection domain, where it can access its protected code and data.
In particular, the trampoline must switch the stack pointer to
the local stack of the calling thread. Sec. 3 describes the de-
sign of our trampolines for each intra-process isolation mech-

anism in more detail. If a protected library invokes a callback
function within the application, it will also use trampoline
code to switch back to the application’s domain and stack.

Switching stacks can be challenging when the source or
target distrusts the other. Previous work addressed this is-
sue either by going through a trusted domain like the kernel
[31] or by not supporting mutually distrusting domains [50].
While we could employ a trusted trampoline domain, such an
implementation would double the overhead of transitions by
changing the view first to the trampoline domain and then to
the target domain. We address this challenge by first saving
the state of the source domain (rsp, fs, etc.) in a domain
status page accessible only in the source domain, then switch-
ing the address space view to the target domain, and finally
restoring the state of the target domain from a domain status
page accessible only to the target.

Like stacks, domain status pages are per-thread entities. Un-
fortunately, in the absence of trust, we need to access domain
status pages without relying on registers such as fs (used
for thread local storage). We can address this issue by ar-
ranging for the kernel to support a fast (vDSO-style) gettid
call to acquire the current thread ID. The kernel maintains
a list (readable, but not writable in user space) of currently
running thread IDs for all CPU cores. The fast gettid per-
forms a vDSO getcpu lookup and uses the result to find the
thread ID. This enables trampoline code to access thread-local
storage without relying on fs or performing a system call.

2.4 Program Loading
Hodor employs a trusted loader, running as root (to allow it
to open I/O device files) to start up any application that uses
one or more protected libraries. The trusted loader first maps
all protected libraries into the virtual address space using the
mmap system call. It then calls an initialization function within
each protected library. In this function, a library can open and
map the device files it needs so that it has direct read/write
access to a device’s memory-mapped I/O registers or to a
region of persistent or shared memory. The initialization func-
tion also allocates the first stack, initializes the heap, and calls
constructor functions (e.g., for C++ global variables) for the
protected library.

Once all protected libraries are initialized, the trusted loader
uses a system call to inform the kernel of the location of each
protected library. This allows the kernel to enforce restrictions
on system calls that configure the virtual address space (as
per Sec. 2.2). The trusted loader then loads the application
code and all other pre-loaded dynamic libraries. If inspection
is required (as in the PKU-based version of Hodor that we
introduce in Sec. 3.3), the loader performs it now; the ker-
nel arranges for similar inspection on any additional libraries
that are loaded on demand and on any other pages for which
execute permission is enabled during execution. Finally, the
trusted loader drops root privileges using the setresuid sys-
tem call, runs the constructor functions of the application, and

transfers control to the application’s main routine.

2.5 Asynchronous Events and Termination
To support unmodified applications, Hodor must address asyn-
chronous event delivery via signals—in particular, the possi-
bility that the kernel might invoke a signal handler in a thread
that was executing trampoline or protected library code. Such
a handler might then gain access to protected library state.

In a similar vein, termination of a process while a thread is
executing protected library code could leave data structures
(possibly shared with library instances in other applications)
in an inconsistent state or cause deadlock (by failing to release
a lock). To preclude protection violations in signal handlers
and to accommodate independent failures of processes whose
libraries share state, we modify the kernel so that it never de-
livers a signal or terminates the process while threads are still
running protected library or trampoline code. Instead, it places
a hardware watchpoint (using registers DR0–DR3 on an Intel
machine) in the “boundary trampoline” used to exit protected
libraries (line 37 of Listing 1), and delays signal delivery or
termination until the watchpoint has been triggered.

As noted in Sec. 2.1, we assume that protected libraries are
written with care. In particular, we assume that their opera-
tions take modest, bounded time. If a protected library does
not return in a timely fashion after we install the hardware
watchpoint on the trampoline (detected by expiration of a
timer initiated when we arm the watchpoint), we assume that
the library is defective and terminate the application (having
given any other, non-defective libraries time to finish execu-
tion). We perform a similar summary cleanup if a fatal error
(e.g., a SIGSEGV) is caused by library code.

Our design does not permit signal handlers to be registered
for execution by a protected domain. None of the privileged
library use cases we evaluated need signal handling. If they
did, the kernel’s signal handler API could, in principle, be
extended to allow a protected library to request that a handler
should execute in the library’s domain. Since the kernel knows
the locations of all protected library code segments in memory
(see Sec. 2.4), it could confirm whether a registration request
was made from trusted library code and allow or deny the
request accordingly.

3 Fast Memory Isolation
This section presents three implementations of memory iso-
lation for Hodor. The most straightforward implementation,
described in Sec. 3.1, relies on separate page tables for each
domain, and uses system calls to change the page table root
pointer. Hodor-VMFUNC, described in Sec. 3.2, also uses per-
domain page tables, and switches between them using Intel’s
VM Function (VMFUNC) mechanism. Both the syscall-based
system and Hodor-VMFUNC rely on context identifier tags
(Intel’s PCID and EP4TA, respectively) to avoid flushing the
translation lookaside buffer (TLB) when changing domains.

Hodor-PKU, our preferred solution (described in Sec. 3.3),
uses memory protection keys to provide different access rights
in the same page table. Since the access rights for each domain
can be modified by user code, we need to prevent an appli-
cation from bypassing our PKU-based isolation mechanism.
We present a novel method in Sec. 3.3.1 that combines bi-
nary inspection and the use of hardware monitors for efficient
run-time monitoring to ensure the safety of Hodor-PKU.

In an attempt to capture intuition, we speak of the domains
of an application as having different “views” of a single
address space. That is, conceptually, the application has a
single set of virtual-to-physical mappings within which we
adjust permissions on individual pages. In actuality, Hodor-
VMFUNC and the syscall-based system use separate page
table root pointers for separate views.

3.1 Page Table Switching via Syscalls
A straightforward way to implement protected libraries is to
employ a separate page table for each domain and to use a
system call to change page tables. Executable pages appear
only in the tables of their corresponding domains. Protected
pages rely on protection bits in the page tables of each domain
to prevent undesired accesses. Unprotected application pages
and trampoline pages appear in all page tables. A new sys-
tem call serves to change the page table root pointer (register
CR3 on Intel machines), if and only if the requesting syscall
instruction lies in the appropriate (previously registered) tram-
poline.

Assuming kernel page table isolation (KPTI) [13], every
system call changes CR3 on entry to the kernel. Our new
syscall simply arranges (after appropriate checks) to restore
the target domain’s root pointer, rather than that of the calling
domain, when returning to user space. This limits the over-
head to only slightly more than that of a no-op system call.
There may also be a rise in TLB pressure for certain appli-
cations, given that some pages will appear in the TLB more
than once, with separate context tags. On hardware that has
such tags, however, there is no need to flush the TLB as part
of a domain switch. As a separate issue, syscalls like munmap,
together with the TLB shootdown mechanism, are modified
to remove a mapping under all applicable context tags.

In this approach, each domain of an application has a sep-
arate page table root pointer. Fortunately, the content of the
tables is largely overlapping (generic heap, vDSO, kernel
translations, etc.). We use a separate top-level page for each
table, but many of the lower-level pages are physically shared.
This approach simplifies entry manipulation and minimizes
memory footprint.

3.2 Hodor-VMFUNC
Beginning with its Nehalem generation of processors, Intel
has provided extended page tables (EPT) for virtualized en-
vironments. The traditional page table of a guest OS trans-
lates from “guest virtual” to “guest physical” addresses; the

extended (second-level) page table translates from guest phys-
ical to (host) physical addresses. In the subsequent Haswell
generation, Intel introduced a VM Function (VMFUNC)
mechanism for fast invocation of hypervisor functions in
a paravirtualized guest. This mechanism allows a guest to
pre-register a set of second-level page tables and provides
a (non-privileged) instruction to switch amongst them. Sev-
eral systems (e.g., SeCage [32] and MemSentry [28]) have
used VMFUNC to isolate a sensitive region within an appli-
cation, but, they require source-code analysis and non-trivial
modifications to existing applications.

Hodor-VMFUNC isolates a memory region by setting up a
degenerate traditional page table that implements the identity
function (with all types of access allowed) and employing
a separate extended page table—analogous to the ordinary
page tables of the syscall-based system—for each protection
domain. An application can then switch among views with
no kernel involvement. Compared to the approach of Sec. 3.1,
which uses trusted kernel code to check that a domain switch
is permissible, a new challenge in this approach is that we
must fold the permission check into the VMFUNC instruction
itself. We do so by placing the trampolines of a given library
in their own page(s) and making those the only pages that are
executable in the domains of both the main application and the
library. A VMFUNC instruction that attempts to switch to the
library’s domain but lies anywhere other than an appropriate
trampoline page will find the next instruction non-executable,
resulting in a fault.

While the serialization overhead of an address-space-
changing instruction appears inevitable (absent major archi-
tectural changes e.g., CODOMs [51] and CHERI [55], which
themselves impose new overheads), using VMFUNC avoids
the need for a system call when switching domains. As Sec. 4
shows, this cuts the cost of a switch by more than 50%.

Listing 1 (including the parts to the left of the vertical lines)
shows the trampoline code for Hodor-VMFUNC. Line 2 saves
the stack pointer of the source domain to the source domain’s
status page. As Sec. 2 describes, this step allows the trampo-
line to restore the stack when returning from the protected
library; it also supports callback functions (argument copying
and register scrubbing code is omitted for brevity). Line 7 sets
eax to zero, indicating that an extended page table switch is
desired. Line 8 sets ecx to the index (in a pre-approved table)
of the domain to which to switch; line 9 effects the switch
itself. Line 14 loads the stack pointer of the target domain
from the target domain’s status page into rsp; this is possible
since VMFUNC has just enabled access to the private data of the
target domain. At this point, the trampoline transfers control
to a function in the target domain. Once the function returns,
the trampoline saves the stack pointer of the target domain
in its status page (line 19); it then resets the extended page
table to the source domain (lines 25–27). Finally, it loads the
source domain stack pointer from the source’s status page
into rsp (line 32) and resumes execution (line 37).

Listing 1: Hodor Trampoline: VMFUNC (left), PKU (right).

1 ; Save source domain stack pointer
2 movq %rsp, source_stack
3
4 ; Enable target domain view
5 1:
6 xorl %ecx,%ecx
7 xorl %eax, %eax xorl %edx,%edx
8 movl $TGT_IDX , %ecx movl $TGT_PERM , %eax
9 vmfunc wrpkru

10 cmpl $TGT_PERM , %eax
11 jne 1b ; error
12
13 ; Switch to target domain stack
14 movq target_stack , %rsp
15
16 ; target_domain_func()
17
18 ; Save target domain stack pointer
19 movq %rsp, target_stack
20
21 ; Disable target domain view &
22 ; Enable source domain view
23 2:
24 xorl %ecx,%ecx
25 xorl %eax, %eax xorl %edx,%edx
26 movl $SRC_IDX , %ecx movl $SRC_PERM , %eax
27 vmfunc wrpkru
28 cmpl $SRC_PERM , %eax
29 jne 2b ; error
30
31 ; Switch back to source domain stack
32 movq source_stack , %rsp
33 jmp BOUNDARY_TRAMP
34
35 ; Boundary Trampoline
36 BOUNDARY_TRAMP:
37 ret

As a starting code base, our Hodor-VMFUNC implementa-
tion uses the Dune system of Belay et al. [3], with the appli-
cation running in ring 3 of VMX non-root (VM guest) mode.
Running in virtualized (VMX) mode, with 2-level address
translation, imposes additional overheads that are, in princi-
ple, unneeded. Most system calls, which must be handled by
the operating system, incur the cost of a VM exit that is signif-
icantly more expensive than a (nonvirtualized) syscall. (That
said, system calls are uncommon except during initialization
in applications that use kernel-bypass data-plane libraries.)
TLB refill costs increase as well, due to 2-level translation.

Ideally, we should like a hardware mechanism that allows
a non-privileged instruction to switch among pre-approved
page table root pointers without the need for virtualization. In
the meantime, optimizations are available to mitigate the cost.
First, we use huge pages to reduce the first-level (identity-
function) page tables from four levels to two, eliminating half
the extra cost of a VMX TLB fill. Second, it should be possible
(not yet implemented) to mix virtualized and non-virtualized
threads within a single application. Threads running in VMX
mode will experience faster protected library calls but slower

Main app

Lib 1 Lib 2

A

B C

D E

Figure 2: Address space regions in Hodor-PKU.

system calls; those running natively will have to use syscall-
based page-table switching for library calls, but will not see
additional overhead for system calls.

3.3 Hodor-PKU
In its Skylake generation of processors, Intel introduced a
mechanism it calls memory protection keys for userspace
(PKU). (Similar mechanisms have appeared in previous archi-
tectures from several other vendors.) While PKU is intended
mainly as a memory safety enhancement (e.g., as a means of
reducing vulnerability to stray-pointer bugs), we have realized
that it can, with care, be used for protected libraries as well.

PKU [20] employs previously unused bits in each page
table entry to assign a four-bit protection key to every page,
allowing that page to be associated with one of 16 potential
sets of access restrictions. A new 32-bit pkru register, writable
in user space, then specifies which rights (read and/or write)
should be restricted for each of the 16 key values. On every
user-mode data access, the processor checks access rights in
the TLB or page table as usual, then drops any rights that are
found to be restricted for the PTE’s key value. Since protec-
tion keys have no impact on instruction fetches (executabil-
ity) and make no changes to page tables or TLB entries, the
WRPKRU instruction, which changes the pkru register, does not
have to serialize the pipeline, and can execute very quickly.

Hodor-PKU is based on protection keys. If we think of a
protection domain as comprising a subset of the application’s
address space and we plot those subsets as a Venn diagram,
we can assign a protection key to each separate region of
the diagram and associate with each domain a pkru value
that disables access rights for regions outside its subset of
the address space. In Figure 2, the main application would
disable access to regions D, and E; library 1 would disable
access to regions A, C, and E; library 2 would disable access
to regions A, B, and D.

Listing 1 (including the parts to the right of the vertical
lines) shows the trampoline code for Hodor-PKU. Lines 6
and 7 set ecx and edx to zero; this is a required precondition
of the WRPKRU instruction. Line 8 initializes eax with the
appropriate set of restrictions for the domain to which the
trampoline is transitioning; line 9 sets the pkru register to the
content of eax. The latter change simultaneously disables the
view of the source domain and enables the view of the target
domain. The subsequent comparison (line 28) verifies that
the expected permissions have been set, thereby avoiding an
attack in which a domain puts overly generous permissions

into eax and then jumps on top of the WRPKRU instruction.
Once the target function has returned and we have saved the
stack pointer of the target domain (line 19), the trampoline
resets the pkru register to the restrictions of the source domain
(lines 24–27), and returns as in Hodor-VMFUNC.

3.3.1 Safety of Hodor-PKU

Since the processor allows user-mode code to execute the
WRPKRU instruction, we must prevent a malicious application
from using the instruction to attain access to a protected li-
brary’s memory. One could think of employing static binary
rewriting [50] to replace implicit occurrences of WRPKRU with
equivalent alternatives. Unfortunately, such rewriting (includ-
ing definitive determination of instruction alignment) is unde-
cidable in the general case [41, 54], and seems inapplicable to
any program that mixes read-only data into the text segment.
Dynamic binary rewriting [6, 33] might be a viable alternative,
but would likely incur prohibitive overhead (up to 2.5× for In-
tel Pin and 5× for DynamoRIO [33]). To address the problem,
Hodor-PKU uses a trusted loader to identify all text-segment
occurrences of the WRPKRU opcode outside of trampolines,
and uses hardware watchpoints (debug registers [20]) to vet
their execution at run time.

Binary Inspection The WRPKRU instruction can occur ex-
plicitly (intended by the programmer) or implicitly (unin-
tended occurrence), as a sequence of bytes within an instruc-
tion or across the boundary between instructions. Implicit
instances pose a significant threat: an adversary that seeks to
bypass Hodor-PKU may attempt to corrupt control data and
jump to a point in the program that happens to encode the
WRPKRU instruction. By setting the contents of ecx, edx, and
eax appropriately before subverting execution, the attacker
could set the pkru register to any desired value, rendering
the isolation useless. To address this issue, the trusted loader
scans the application code and makes a list of any untrusted
instances, explicit or implicit. It passes this list to the kernel,
which in turn places the addresses of the potentially problem-
atic opcodes in the debug registers. A hardware watchpoint
will be triggered when any of these instructions is about to be
executed, allowing the kernel to vet the instruction and let the
execution proceed only if deemed safe.

Our current implementation inspects program text when-
ever a library is loaded and whenever execute permission for
a page is enabled during execution. Once a page is marked
as executable, Hodor-PKU prevents further write accesses to
the page. Hodor-PKU could easily be extended to support
JIT compilation by marking the faulting pages as writable but
not executable, allowing JIT code to be emitted. On future
attempts to execute the added code, a page fault would occur,
and Hodor-PKU would reinspect the page and continue as in
the current implementation.

Runtime Vetting Since the debug registers are limited in
number (four—DR0 through DR3—on Intel processors [20]),

we can rely on hardware to vet only a handful of WRPKRU
instances at a time on each thread. Hodor therefore uses hard-
ware watchpoints as an LRU cache for all the required watch-
points. Specifically, Hodor initially marks all executable pages
containing WRPKRU instances as non-executable. Upon first
execution, resulting in a page fault, Hodor reclaims a suffi-
cient number of hardware watchpoints, marks the pages they
formerly watched as non-executable, and uses the debug reg-
isters for the new page. If all WRPKRU instances in the page are
monitored by a hardware watchpoint, Hodor marks the page
as executable. In the extremely rare case of more WRPKRU
instructions in a single page than the number of debug reg-
isters, we resort to single-step execution [20] for that page.
We use per-thread page tables (only the root page must be
unique for each thread; most lower-level pages can be shared
between threads) so that the set of hardware watchpoints can
be different in different threads. When watchpoints have been
inserted at all appropriate locations, we rewire the page tables
leading to the page containing the watchpoint for the current
thread and mark it as executable.

Protection Overhead Under normal circumstances, no im-
plicit WRPKRU will be executed. Moreover, the processor trig-
gers a watchpoint only when a debug register points to the
first byte of the executed instruction [20], so spurious traps
will never occur when correctly aligned execution runs past
an implicit instance.

Experiments confirm that there is no measurable overhead
for this approach as long as the number of “hot” watchpoints
in each thread is smaller than the number of hardware watch-
points. To assess how often this might occur, we inspected
all packages in the Fedora 29 distribution for occurrences of
WRPKRU. Across 58,273 rpm packages, containing about 108K
executable binaries, we found only 111 binaries with a single
instance of WRPKRU, 8 with two, 2 with three, none with four,
and only 2 (less than 0.02%) with five or more. Most of the
occurrences were implicit—typically caused by an instruction
with a byte pattern ending in 0f followed by add %ebp,%edi,
which has a byte pattern of 01 ef. These occurrences could
easily be eliminated by modifying the compiler to insert a
nop before the culprit add instructions. While such a change
would not guarantee that implicit instances never occur (due
to inline assembly and code generated at run time), it would
almost certainly eliminate any practical performance impact.

4 Evaluation
We have evaluated Hodor using microbenchmarks and three
real-world applications in which we isolated a high-through-
put data-plane library or in-memory database from the rest
of the application. We also constructed two proof-of-concept
demonstrations of safe memory sharing among instances of a
protected library in otherwise distrusting applications. We ran
the microbenchmarks and in-memory database experiments
on a Dell PowerEdge R640 server with two Intel Xeon Sil-
ver 4114 (Skylake) 2.20 GHz CPUs with 10 cores each and

16 GB of main memory. We ran the network experiments
on Dell PowerEdge R640 servers equipped with two Intel
Xeon E5-2630 v3 (Haswell) 2.40 GHz CPUs with 8 cores
each and 64 GB of main memory. These machines were con-
nected back-to-back through dual-port Mellanox ConnectX3-
Pro 40 Gbps Host Channel Adapters (HCAs) to isolate their
connection. All servers ran Fedora Linux 4.15 with our mod-
ifications (except for baseline experiments, which used an
unmodified kernel). All machines had hyper-threading and
Turbo Boost enabled.

We emulated the overhead of PKU on Haswell machines
in a manner similar to previous work [28, 50]. We verified
the overhead of the emulation by comparing it with the PKU
transition cost on the Skylake machine.

Graphs in this section are labeled as follows:
• unprotected: baseline system without Hodor—kernel

bypass with no intra-process isolation.
• ptsw: isolation via syscall-initiated page table switching,

as described in Sec. 3.1.
• ptsw-pti: same as ptsw, except with kernel page-table

isolation enabled.
• vmfunc: Hodor-VMFUNC, as described in Sec. 3.2.
• pku: Hodor-PKU, as described in Sec. 3.3.
Unless otherwise noted (shown in legends with -pti),

experiments were conducted with kernel page-table isola-
tion [13] disabled. We ran all experiments 10 times and report
the arithmetic mean. We indicate 95% confidence intervals
in all cases, but these are often so narrow as to be illegible
in the bar graphs. The source code for Hodor is available at
http://github.com/hedayati/hodor.

4.1 Microbenchmarks
We used microbenchmarks to measure the overhead of rele-
vant instructions and basic operations as well as the latency
of different implementations of Hodor on the Skylake ma-
chine, which supports PKU. We also implemented a no-op
system call and a no-op VM call and measure their latencies.
We used rdtscp with proper serialization [38] to measure
the overhead of 1 million executions (again, computing the
arithmetic mean across 10 runs).

Table 1 shows the calculated overhead of a single instance
of each operation. The latency of writing to the CR3 register
impacts the syscall-based version of Hodor; the latency of
VMFUNC and WRPKRU impacts Hodor-VMFUNC and Hodor-
PKU, respectively. The cost of entering and leaving the kernel
also impacts the syscall-based version; this cost itself depends
on whether KPTI [13] is enabled. System calls with virtual-
ization, as used in Hodor-VMFUNC, would experience the
overhead of VM calls.

For reference—and to put the overheads in perspective with
respect to approaches like light-weight contexts (lwC) [31]
which use processes to isolate domains—we also measured
the cost of a context switch caused by a semaphore and of
a user-space context switch using POSIX getcontext and

Table 1: Latency of Basic Operations
Instruction or Operation Cycles∗

write to CR3 with CR3_NOFLUSH 186+− 9
vmfunc 109+− 1
wrpkru 26+− 2
no-op system call w/ KPTI 433+− 12
no-op system call w/o KPTI 96+− 2
no-op VM call 1694+−131
user-space context switch 748+− 8
process context switch using semaphore 4426+− 41
∗ +− half the width of the 95% confidence interval

stacksw ptsw ptsw-pti vmfunc pku
0

200

400

600

800

cy
cl
es

9

577

938

268

105

Figure 3: Transition Microbenchmarks.

setcontext.
Figure 3 compares the transition time from one domain

to another and back again using different isolation imple-
mentations. Additionally, we measured the cost of switching
stacks without providing isolation as it contributes a small
amount to all implementations of Hodor. To do this, we re-
moved the code in Listing 1 that changes domain and calls
the protected library function. Figure 3 denotes the average
stack switch time as stacksw. We also measured the cost of
page table switching with kernel page-table isolation enabled;
Figure 3 denotes this as ptsw-pti. KPTI has no impact on
Hodor-VMFUNC and Hodor-PKU.

Among the implementations of isolation, Hodor-PKU has
the lowest transition cost, followed by Hodor-VMFUNC. This
matches the results in Table 1: changing the pkru register
costs much less than using vmfunc. System calls dominate
the cost of the implementations based on ptsw. Relative to
ptsw, kernel page table isolation in ptsw-pti incurs a penalty
of 62%. Stack switching itself has an almost negligible impact.
As noted in Sec. 3.3, there is no measurable overhead to using
debug registers to vet instances of WRPKRU, so long as there
are no more than four watchpoints in each thread.

4.2 Silo
Silo [48] is a scalable in-memory database. It uses optimistic
concurrency control and periodically-updated epochs to pro-
vide the same guarantees as a serializable database without the
scalability bottlenecks. It is implemented as a library linked to
the benchmark. Each benchmark thread issues transactions (of
YCSB [10] or TPC-C [47]) in a loop. We configured the main
Silo library as a separate domain whose pages are protected
from the benchmark driver. Even in the context of a single

http://github.com/hedayati/hodor

application, Hodor ensures that the database can be accessed
only by library code—never, for example, as the result of a
memory access bug in the main application. This protection
may be helpful even in the course of a single execution. If
the database were kept in nonvolatile memory and retained
across program runs, it might be considered essential. The
benchmark calls (trampolines of) library routines to perform
one domain transition per transaction. All data and metadata
reside in memory, and the workload is CPU intensive.

Figure 4 (i) shows the overhead of isolation for the
YCSB [10] and TPC-C [47] workloads on the Skylake ma-
chine. Both use the synchronous database API in Silo, pre-
cluding batching and necessitating a very high switching rate.
Both workloads were run with 20 threads.

YCSB [10] is a key-value benchmark with tiny transactions.
We first filled the database with 1 million records and then
ran a workload with an 80/20 read/write mix. The unmodified
Silo reaches 2.27 million transactions per second on each
core. Hodor incurs 44%, 54%, 27%, and 9.85% overhead in
the PT-Switch, PT-Switch with KPTI, VMFUNC, and PKU
implementations, respectively.

TPC-C [47] is a relational database benchmark with signifi-
cantly larger transactions [10]. As a result, the maximum num-
ber of transactions per second is reduced to around 600,000
per core on unmodified Silo. With a lower rate of library tran-
sitions, the overhead of Hodor drops to 3%, 4.66%, 13.6%,
and 1.5% for the PT-Switch, PT-Switch with KPTI, VM-
FUNC, and PKU implementations, respectively. While Hodor-
VMFUNC incurs the largest overhead in this experiment, we
discovered that 12% of that overhead is due to running inside
a VM—apparently due to frequent use of the nanosleep sys-
tem call in the benchmark’s epoch-based garbage collector.

While we have not attempted to modify applications to
remove system calls (or to replace them with equivalent func-
tionalities that don’t cause VM exits), we believe that such a
change would be straightforward in this case.

4.3 DPDK TestPMD
Intel’s Data Plane Development Kit (DPDK) [21] is a set
of data-plane libraries that implement kernel bypass, polling
drivers, and a fast packet processing framework. Packet pro-
cessing applications can link against one or more of the DPDK
libraries and use them to access network devices directly.
We evaluate Hodor with a packet-forwarding application,
testpmd, distributed for performance testing as a part of
DPDK. Running on the Haswell machines with dual-port
Mellanox ConnectX-3 HCAs, this benchmark receives raw
packets from one port of the HCA and forwards them di-
rectly to another port without accessing packet contents. We
connected two hosts back-to-back for endless forwarding of
packets in an isolated network. We used Hodor to separate
the packet-forwarding logic from the DPDK library.

Figure 4 (ii) shows the effect of Hodor on testpmd through-
put with different thread counts and batching degrees (packets

per library call / domain transition). We report throughput in
packets forwarded per second as measured by testpmd. As a
worst-case scenario for Hodor overhead, we configured the
benchmark to use only a single thread and to forward packets
one-by-one without batching. (Such a configuration would
not be common in practice.) The unmodified DPDK in this
configuration can forward more than 720,000 packets per
second, and the overhead of Hodor is less than 25% with
VMFUNC and 7% with PKU. As we increase the batch size
(Fig. 4 (ii-a) vs. (ii-b)), the number of processed packets per
transition increases and the overhead of switching becomes a
smaller part of overall run time. As we provide more threads
and therefore more CPUs ((b) vs. (c)), the performances of
all approaches improve but the gaps decrease since the abun-
dance of CPU resources makes the network line rate the new
throughput limiter.

4.4 Redis on DPDK
Redis [42] is a NoSQL store that serves read requests from
an in-memory data structure. Redis can also store data on per-
sistent secondary storage using snapshots; we disabled this
functionality in our experiments to avoid the overhead of sys-
tem calls. The Redis server uses TCP to receive requests from
clients. In our set-up, we use a user-space network stack called
F-Stack [46] on top of the DPDK packet processing frame-
work and driver to provide connections to Redis clients. We
use Hodor to isolate the network and packet processing stack
from the Redis data store logic—i.e., both F-Stack and DPDK
run within the same protection domain. We run YCSB [10]
on a remote client to benchmark the server configuration.
Both the YCSB client and the Redis server are running on
the Haswell machines, connected back-to-back via Mellanox
ConnectX-3 HCAs.

The server here is the bottleneck: Redis is single-threaded;
it runs a loop that waits for request arrival using an epoll-like
call to F-Stack, receives and processes the requests, and then
sends results back with F-Stack’s equivalent of the send sys-
tem call. As a result, there are at least two domain transitions
per transaction.

To measure the impact of Hodor, we first loaded the Re-
dis server with 1 million records each of length 1200 bytes.
We then ran a YCSB workload [10] with a 95%/5% read-
/write mix and measured how many transactions per second
the Redis server supported. Figure 4 (iii) shows the results
as measured and reported by the YCSB client. The unmodi-
fied server can support 220,000 transactions per second. The
PT-Switch, PT-Switch with KPTI, VMFUNC, and PKU im-
plementations of Hodor reduce the throughput of Redis by
12%, 35%, 5%, and 2.78%, respectively.

4.5 Discussion
The preceding subsections reveal significant performance dif-
ferences among the three implementations of Hodor: syscall-
based page table switching, Hodor-VMFUNC, and Hodor-

Linux (unprotected) ptsw ptsw-pti vmfunc pku

0.0

0.5

1.0

1.5

2.0

10
6

tp
s/

co
re

(a) YCSB on Silo

0

2

4

6

10
4

tp
s/

co
re

(b) TPCC on Silo

0

2

4

6

10
5

p
p

s

(a) 1 thread, 1 batch

0

1

2

3

4

5

6

10
6

p
p

s

(b) 1 thread, 32 batch

0

2

4

6

10
6

p
p

s

(c) 6 thread, 32 batch

0.0

0.5

1.0

1.5

2.0

10
5

tp
s

(i) Silo (ii) DPDK (iii) Redis

Figure 4: Hodor Overhead: (i) Silo Benchmarks, (ii) DPDK Raw Packet Forwarding Benchmarks, and (iii) Redis Benchmark.

PKU. These differences must be considered together with the
issues of generality and confidentiality when applying Hodor
in a particular environment.

The overhead of Hodor-PKU is very low, even at millions of
domain switches per second (Fig. 4 (i-a)). With a lower num-
ber of transitions per second (Figs. 4 (i-b), 4 (iii)), possibly
effected via batching or multiple worker threads (Fig. 4 (ii-
b)–(ii-c)), the advantage of PKU over VMFUNC diminishes
substantially. In any case, both Hodor-VMFUNC and Hodor-
PKU remain considerably faster than syscall-based page table
switching in most cases (Figs. 4 (ii-a)–(ii-b), 4 (iii)).

One limitation of Hodor-PKU is that current Intel hard-
ware supports only 16 distinct memory keys. The need for
a separate key for each of the regions of the “protection do-
main Venn diagram” (e.g., Fig. 2) thus limits us to no more
than 7 mutually distrusting protected libraries in any given
application—fewer if they wish to make direct calls to one
another. Hodor-VMFUNC has no similar limitations on gen-
erality. There are 512 distinct function codes on current Intel
machines, and a VM that uses some of these for its own pur-
poses is still compatible with Hodor-VMFUNC. As discussed
in Sec. 3.2, VMFUNC is only available in a virtualized mode.
Hodor-VMFUNC, like MemSentry [28], uses Dune [3] to run
applications inside a virtual machine. This restriction imposes
a significant cost on system calls in the application, which
now incur the latency of a VM exit; we see the impact of this
latency in Figure 4 (i-b). While we don’t expect frequent sys-
tem calls in a data-plane library, an alternative design [32, 35]
avoids VM exits on system calls by running the kernel, in
addition to user programs, inside the virtual machine. Such
a design has a system-wide impact on performance, since
the entire software stack is virtualized, not just the intended
application. Ideally, we should like to see support on future
hardware for a VMFUNC-like mechanism that allows a non-
privileged instruction to switch among pre-approved page
table root pointers without the need for virtualization.

Absent direct access, a malicious program may attempt
to steal information from protected libraries through a side

channel. While such attacks are out of scope, we note that
Hodor-PKU is inherently vulnerable to Meltdown-PK [8], an
attack that defeats the purpose of PKU itself: the protection
key bits are part of the TLB access permissions, which the
processor may check late in the pipeline [8, 26]. While all
Skylake processors are susceptible to this attack, the vulnera-
bility has been fixed in more recent microarchitectures [18].

4.6 Cross-Application Sharing
Because they are protected from their calling applications,
protected libraries in Hodor can, at least in principle, safely
share state among library instances in separate applications.
As proof-of-concept demonstrations, we have used Hodor
to implement sharing in Silo and resource management in
DPDK. The implementations highlight general issues that
must be considered by the library designer.

Sharing in Silo: We wrote a library that uses Silo [48] in-
ternally to implement a TPCC [47]-like database. Our library
provides two different views of the same database: one that
can do NewOrder, Payment, and OrderStatus transactions,
and another that can do Delivery and StockLevel transac-
tions. Both interfaces use the same set of tables, which Silo
maintains in physically shared pages. Silo guarantees consis-
tency of the database and serializability of the transactions,
while Hodor guarantees that the only way for an application
to modify the database is to use the provided interface. When
sharing the database between two separate applications, our
library can control which interface is available to each appli-
cation. More significantly, by preventing access of any kind
when running outside the library, Hodor can ensure that stray
memory references in a buggy application (e.g., due to out-
of-bound array indexing or uninitialized pointer dereference)
never compromise database invariants.

Resource management in shared DPDK: The DPDK En-
vironment Abstraction Layer (EAL) [21] has recently added
multi-process support so that mutually trusting processes can
share DPDK huge-pages, memory buffers, and queues. A
group of DPDK processes can then work together in a simple

transparent manner to perform packet processing or similar
tasks. Using Hodor, we extended this mechanism to allow dis-
trusting processes to share a single NIC. We wrote a simple
library that exports several DPDK APIs (rte_eth_rx_burst,
rte_eth_tx_burst, etc.). Internally, it uses shared memory
to record the rate at which each application sends packets, to
implement proportional share. We link this library, via Hodor,
into two distrusting applications. The protected library in
each application then measures its own traffic, updates shared
statistics (under control of appropriate synchronization), and
periodically adjusts the rate that will be allowed in the next
time period.

While we were able to port the two libraries to use Hodor
for sharing in just a few hundred lines of code, the experience
highlighted several issues that need to be considered when
tying together library instances in separate applications. As a
rule of thumb, developers should think of protected libraries
as extensions to the operating system. Safety-critical argu-
ments passed by applications should be copied into library
space before applying sanity checks (to avoid modification by
other application threads). Libraries should also treat shared
regions as potential attack vectors and should employ con-
ventional defenses (e.g. retpolines to mitigate Spectre-type
attacks [8] when relevant). Significantly, Hodor does not pre-
vent a buggy application from invoking library routines in the
“wrong” sequence, or with the “wrong” arguments. It does,
however, prevent an application from undermining any invari-
ant that is carefully maintained by those routines. It is the
responsibility of the protected library to provide appropriate
synchronization, scalability, and fault tolerance. The latter
may be simplified by using nonblocking data structures, or by
depending on Hodor to execute through to the end of library
routines in the event of process failure.

5 Related Work
Hodor connects to three areas of related work: fast I/O sys-
tems that move device and resource management into user
space, methods to isolate software components sharing the
same virtual address space, and systems that impose security
policies on operating system kernels and hypervisors.

5.1 Fast I/O Systems
Existing kernel-bypass systems do not protect libraries from
untrusted applications. Arrakis [39] uses a library OS with-
out isolation in the same address space as the application
and relies on device-level SR-IOV [23] support. Device-level
resource isolation policies are often rigid—e.g., limited to
simple partitioning. Hodor protected libraries enable more
powerful protection policies like proportional bandwidth shar-
ing and even safe, concurrent accesses to the same data. IX [4]
and ZygOS [40], both of which build on Dune [3], use virtu-
alization to run their kernel-bypass stack in ring 0 of VMX
non-root mode. While this design already isolates networking
logic from the applications, it is limited to only a single trusted

domain and does not support multiple distrusting data-plane
libraries within the same application, as Hodor does.

Kernel-based high-throughput software stacks like Mega-
Pipe [14] and StackMap [57] depend on aggressive batching
to limit the frequency and cost of protection domain switch-
ing. Aggressive I/O batching, however, requires asynchronous
programming models that are generally hard to employ and
not always supported by library APIs. In Sec. 4, for example,
we were unable to batch over the Silo database API [48] or
F-Stack’s send calls [46].

5.2 Intra-Process Isolation
There has been much previous work on intra-process isolation.
The method with least overhead is to write code in a type-
safe language. Work in single address space operating systems
such as Singularity [17] and Verve [56] shows that application
and kernel code can execute safely within the same virtual
address space. The disadvantage of such systems is their
incompatibility with much existing code. Hodor, in contrast,
supports existing fast I/O applications.

For type-unsafe languages, approaches such as SFI [52]
and XFI [49] employ either source- or binary-level instru-
mentation to guarantee that code cannot read or write out-
side of designated sections of the virtual address space. Load
and store instrumentation either checks that the accessed ad-
dress is within bounds or transforms out-of-bounds pointers
to in-bounds pointers. SFI [52] incurs an average overhead
of 17.6% for read-write protection and 4.3% overhead when
only instrumenting writes. Hodor works without sophisticated
binary rewriting techniques and incurs less overhead than SFI
by leveraging newer hardware support.

Hardware mechanisms can isolate code running within the
same virtual address space. CODOMs [51] and CHERI [55]
augment instructions with capabilities. Segmentation also pro-
vides intra-process isolation [43] by requiring code to possess
a descriptor to address a particular section of memory. By
restricting which descriptors are accessible to various code
components, the OS kernel can isolate untrusted components.
Segmentation is supported in 32-bit but not 64-bit x86 sys-
tems [20]. ARM memory domains [2] are similar to Intel
PKU [20] but available only on 32-bit processors, and mem-
ory domain permissions can be modified only in supervisor
mode. Our work focuses on hardware support available in
64-bit x86 systems.

ERIM [50], developed concurrently to our work, uses pro-
tection keys like Hodor to provide an isolated domain within a
single virtual address space. We believe ERIM’s use of static
binary rewriting to eliminate occurrences of WRPKRU in the
application binary is insufficient to guarantee the safety of
protected domains: static binary rewriting is undecidable for
arbitrary x86 code [41, 54]. Dynamic binary rewriting (not
considered in ERIM) would incur prohibitive costs, negating
the performance gain of PKU.

Several OS abstractions are similar to our work. Wedge [5]

provides privilege separation and isolation among its sthreads.
Each sthread is a lightweight process that inherits only a sub-
set of the memory mappings and file descriptors of its parent,
as specified in a security policy. Shreds [9] use ARM memory
domains [2] to divide execution within a user-space thread.
Each shred is a thread fragment with a private memory pool
in which to store secret data and sensitive code. Light-weight
contexts (lwCs) [31] isolate units within an address space.
Each lwC has its own virtual memory mappings, file descrip-
tors, access rights and execution state. Secure Memory Views
(SMV) [15] use per-thread page tables to enforce isolation
while allowing sharing between threads. SMV does not sup-
port multiple domains within a thread. Each of these systems
requires a system call to change domains, while Hodor does
not. Hodor can also be linked to unmodified applications.

MemSentry [28] is a memory isolation framework that
provides compiler support for multiple hardware features,
including EPT-switching VMFUNC and PKU, to create a
safe region within a process. It analyzes and instruments
applications with code which, like Hodor’s trampolines, en-
ables and disables access to the protected domain using the
desired isolation mechanism. SeCage [32] uses static and dy-
namic compiler analysis to decompose a monolithic program
into different domains and uses EPT-switching VMFUNC
to prevent memory disclosure attacks even when running on
a compromised OS. Unlike SeCage and MemSentry, Hodor
relies on existing explicit library boundaries, alleviating the
need for compiler analysis to extract components. SeCage
places the entire OS and its applications in a virtual machine,
while Hodor-VMFUNC and MemSentry leverage Dune’s [3]
process-level virtualization to expose the VMFUNC EPT-
switching mechanism to individual applications. Executing
the intended application in non-root mode affects the per-
formance of that application only. SeCage [32] compensates
for the system-wide performance impact of the virtualization
layer with its additional protections against a malicious OS.

SkyBridge [35] uses VMFUNC to improve the latency
of IPCs in a micro-kernel setting. Unlike Hodor, SkyBridge
does not enforce a single way to cross protection boundaries
(Hodor ensures that only trampolines are mapped in both
source and target EPTs), which introduces the possibility for
malicious VMFUNCs. To address this, SkyBridge uses static
binary rewriting (inspired by ERIM [50]), which as discussed
earlier, is undecidable for an arbitrary x86 binary [41, 54]. Fi-
nally, EPTI [16] uses VMFUNC to provide isolation between
kernel and user-space page tables to mitigate Meltdown [8].

VMFUNC has been used for communication between com-
ponents isolated at coarse granularity. High-throughput net-
work function virtualization has used VMFUNC and EPT-
switching to provide efficient communication between VMs
hosting different network functions [36]. CrossOver [29] pro-
poses a cross-world interaction mechanism that provides com-
munication between VMs as well as different address spaces
and privilege levels in or between VMs. It uses EPT-switching

VMFUNCs to approximate the cost of cross-world interac-
tion and suggests architectural changes to VMFUNC to allow
such calls. While CrossOver can theoretically be used for
intra-process isolation, the paper focuses on providing cross-
world calls as a generic communication mechanism.

5.3 OS and Hypervisor Security
Hodor builds on previous work on security enforcement in
OS kernels and hypervisors. The design of the Hodor-PKU
trampoline is inspired by the Nested Kernel [12] trampoline
code. Both Hodor-PKU and Nested Kernel must check that
the inputs to domain switching instructions are correct be-
cause neither system enforces control flow integrity [1]. Fi-
nally, Hodor’s restrictions on mmap to enforce code segment
integrity are similar to protections in Secure Virtual Architec-
ture [11], HyperSafe [53], and Nested Kernel [12].

6 Conclusions
We have introduced Hodor, an in-process isolation system for
protection and sharing of fast data-plane libraries. Our pro-
posed solution uses Intel’s memory protection keys (PKU) to
isolate components within a single address space. We also pre-
sented two alternative implementations based on separate user-
level address spaces—one uses system calls for page-table
switching, the other Intel’s VMFUNC switching of extended
page tables. Additionally, Hodor uses asynchronous event
delivery and a novel application of hardware watchpoints to
ensure that when multiple processes share a protected library,
failure in one will not affect the others.

Our evaluation with microbenchmarks, Silo, DPDK, and
Redis confirm that Hodor can provide full isolation of pro-
tected libraries while approaching unprotected kernel bypass
performance. Hodor-PKU, in particular, provides 90–98% of
kernel-bypass throughput in all of our experiments.

Hodor could benefit from a VMFUNC-like instruction that
switches among pre-approved page table root pointers without
requiring virtualization. We encourage hardware designers to
consider such an extension. We would also welcome a vari-
ant of PKU with a larger number of keys and with coverage
of execute rights. In future work, we hope to evaluate the
cost of a Hodor implementation based on software fault isola-
tion [52] and to explore hardware-supported implementations
for additional processor architectures (e.g., ARM and Power).

Acknowledgment
We thank our shepherd, Adam Belay, and the anonymous
reviewers for their helpful feedback. This work was supported
in part by NSF grants CNS-1319417, CCF-1717712, CCF-
1422649, CNS-1618213 and CNS-1629770, and by a Google
Faculty Research award. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of our
sponsors.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow Integrity Principles, Implementations, and
Applications. ACM Trans. on Information Systems
Security, 13:4:1–4:40, Nov. 2009.

[2] ARM Ltd. ARM Memory Domains.
http://infocenter.arm.com/help/index.jsp?topic=/com.
arm.doc.ddi0211k/Babjdffh.html.

[3] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe User-level
Access to Privileged CPU Features. In 10th USENIX
Symp. on Operating Systems Design and
Implementation (OSDI), pages 335–348, Hollywood,
CA, Oct. 2012.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput and
Low Latency. In 11th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages
49–65, Broomfield, CO, Oct. 2014.

[5] A. Bittau, P. Marchenko, M. Handley, and B. Karp.
Wedge: Splitting Applications into Reduced-privilege
Compartments. In 5th USENIX Symp. on Networked
Systems Design and Implementation (NSDI), pages
309–322, San Francisco, CA, Apr. 2008.

[6] D. L. Bruening. Efficient, Transparent, and
Comprehensive Runtime Code Manipulation. PhD
thesis, Massachusetts Institute of Technology,
Cambridge, MA, 2004. AAI0807735.

[7] N. Burow, X. Zhang, and M. Payer. Shining Light On
Shadow Stacks. arXiv e-prints, abs/1811.03165, Nov.
2018.

[8] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von
Berg, P. Ortner, F. Piessens, D. Evtyushkin, and
D. Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. arXiv e-prints,
abs/1811.05441, Nov. 2018.

[9] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu.
Shreds: Fine-grained Execution Units with Private
Memory. In 37th IEEE Symp. on Security and Privacy
(SP), pages 56–71, Oakland, CA, May 2016.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking Cloud Serving Systems
with YCSB. In 1st ACM Symp. on Cloud Computing
(SoCC), pages 143–154, Indianapolis, IN, June 2010.

[11] J. Criswell, N. Geoffray, and V. Adve. Memory Safety
for Low-level Software/Hardware Interactions. In 18th
USENIX Security Symp. (SEC), pages 83–100,
Montreal, PQ, Canada, Aug. 2009.

[12] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell,
and V. Adve. Nested Kernel: An Operating System
Architecture for Intra-kernel Privilege Separation. In
20th Intl. Conf. on Architectural Support for

Programming Languages and Operating Systems
(ASPLOS), pages 191–206, Istanbul, Turkey, Mar. 2015.

[13] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,
and S. Mangard. KASLR is Dead: Long Live KASLR.
In Intl. Symp. on Engineering Secure Software and
Systems (ESSoS), pages 161–176, Bonn, Germany, July
2017.

[14] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A New Programming Interface for Scalable
Network I/O. In 10th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages
135–148, Hollywood, CA, Oct. 2012.

[15] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer.
Enforcing Least Privilege Memory Views for
Multithreaded Applications. In ACM SIGSAC Conf. on
Computer and Communications Security (CCS), pages
393–405, Vienna, Austria, Oct. 2016.

[16] Z. Hua, D. Du, Y. Xia, H. Chen, and B. Zang. EPTI:
Efficient defence against meltdown attack for unpatched
vms. In USENIX Annual Technical Conf. (ATC), pages
255–266, Boston, MA, 2018. USENIX Association.

[17] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken,
P. Barham, M. Fähndrich, C. H. O. Hodson, S. Levi,
N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and
B. Zill. An Overview of the Singularity Project.
Technical Report MSR-TR-2005-135, Microsoft
Research, Oct. 2005.

[18] Intel Corp. Engineering New Protections Into
Hardware. http://www.intel.com/content/www/us/en/
architecture-and-technology/
engineering-new-protections-into-hardware.html.

[19] Intel Corp. Intel Optane SSD DC P4800X Series.
http://www.intel.com/content/www/us/en/products/
memory-storage/solid-state-drives/data-center-ssds/
optane-dc-p4800x-series/p4800x-750gb-aic.html.

[20] Intel Corp. Intel 64 and IA-32 Architectures Software
Developer’s Manual, May 2018. 325462-067US.

[21] Intel Corp. Intel DPDK: Data Plane Development Kit,
2018. http://www.dpdk.org.

[22] Intel Corp. Intel SPDK: Storage Performance
Development Kit, 2018. http://www.spdk.io.

[23] Intel Corp. PCI-SIG SR-IOV Primer: An Introduction
to SR-IOV Technology, 2018.
http://www.intel.sg/content/dam/doc/application-note/
pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf.

[24] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems. In 11th
USENIX Conf. on Networked Systems Design and
Implementation (NSDI), pages 489–502, Seattle, WA,
Apr. 2014.

[25] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0211k/Babjdffh.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0211k/Babjdffh.html
http://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
http://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
http://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
http://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
http://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
http://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-aic.html
http://www.dpdk.org
http://www.spdk.io
http://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
http://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf

J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon. In-datacenter Performance
Analysis of a Tensor Processing Unit. In 44th Intl.
Symp. on Computer Architecture (ISCA), pages 1–12,
Toronto, ON, Canada, June 2017.

[26] V. Kiriansky and C. Waldspurger. Speculative Buffer
Overflows: Attacks and Defenses. ArXiv e-prints,
abs/1807.03757, July 2018.

[27] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre
Attacks: Exploiting Speculative Execution. In 40th
IEEE Symp. on Security and Privacy (SP), May 2019.

[28] K. Koning, X. Chen, H. Bos, C. Giuffrida, and
E. Athanasopoulos. No Need to Hide: Protecting Safe
Regions on Commodity Hardware. In 12th ACM
SIGOPS European Conf. on Computer Systems
(EuroSys), pages 437–452, Belgrade, Serbia, Apr. 2017.

[29] W. Li, Y. Xia, H. Chen, B. Zang, and H. Guan.
Reducing World Switches in Virtualized Environment
with Flexible Cross-world Calls. In 42nd Intl. Symp. on
Computer Architecture (ISCA), pages 375–387,
Portland, Oregon, June 2015.

[30] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security
Symp. (SEC), pages 973–990, Baltimore, MD, Aug.
2018.

[31] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety,
D. Garg, B. Bhattacharjee, and P. Druschel.
Light-weight Contexts: An OS Abstraction for Safety
and Performance. In 12th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages
49–64, Savannah, GA, Nov. 2016.

[32] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia.
Thwarting Memory Disclosure with Efficient
Hypervisor-enforced Intra-domain Isolation. In 22nd
ACM SIGSAC Conf. on Computer and Communications
Security (CCS), pages 1607–1619, Denver, CO, Oct.
2015.

[33] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proc. of the 2005 ACM
SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), pages 190–200, Chicago,
IL, June 2005.

[34] K. Menychtas, K. Shen, and M. L. Scott. Disengaged
Scheduling for Fair, Protected Access to Fast
Computational Accelerators. In 19th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 301–316, Salt
Lake City, UT, Mar. 2014.

[35] Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen.
SkyBridge: Fast and Secure Inter-process
Communication for Microkernels. In 14th EuroSys
Conf. (EuroSys), pages 9:1–9:15, Dresden, Germany,
Mar. 2019.

[36] J. Nakajima. Xen as High-performance NFV Platform,
Aug. 2018.
http://events.static.linuxfound.org/sites/events/files/
slides/XenAsHighPerformanceNFVPlatform.pdf.

[37] F. Nawab, J. Izraelevitz, T. Kelly, C. B. Morrey III,
D. R. Chakrabarti, and M. L. Scott. Dalí: A
Periodically Persistent Hash Map. In 31st Intl. Symp.
on Distributed Computing (DISC), pages 37:1–37:16,
Vienna, Austria, Sept. 2017.

[38] G. Paoloni. How to Benchmark Code Execution Times
on Intel IA-32 and IA-64 Instruction Set Architectures.
http://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/
ia-32-ia-64-benchmark-code-execution-paper.pdf,
Sept. 2010.

[39] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control Plane. In
11th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 1–16, Broomfield, CO,
Oct. 2014.

[40] G. Prekas, M. Kogias, and E. Bugnion. ZygOS:
Achieving Low Tail Latency for Microsecond-scale
Networked Tasks. In 26th Symp. on Operating Systems
Principles (SOSP), pages 325–341, Shanghai, China,
Oct. 2017.

[41] G. Ramalingam. The Undecidability of Aliasing. ACM
Trans. on Programming Languages and Systems
(TOPLAS), 16(5):1467–1471, Sept. 1994.

[42] Redis Labs. Redis, 2018. http://www.redis.io.
[43] J. H. Saltzer and M. D. Schroeder. The Protection of

Information in Computer Systems. Proc. of the IEEE,
63(9):1278–1308, Sept. 1975.

[44] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting Software
Fault Isolation to Contemporary CPU Architectures. In

http://events.static.linuxfound.org/sites/events/files/slides/XenAsHighPerformanceNFVPlatform.pdf
http://events.static.linuxfound.org/sites/events/files/slides/XenAsHighPerformanceNFVPlatform.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.redis.io

19th USENIX Security Symp. (SEC), pages 1:1–1:11,
Washington, DC, Aug. 2010.

[45] L. Spelman. Reimagining the Data Center Memory and
Storage Hierarchy, May 2018.
newsroom.intel.com/editorials/
re-architecting-data-center-memory-storage-hierarchy/.

[46] Tencent Corp. F-Stack, 2018. http://www.f-stack.org.
[47] Transaction Processing Council. TPC-C Benchmark,

2018. http://www.tpc.org/tpcc.
[48] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy Transactions in Multicore In-memory
Databases. In 24th ACM Symp. on Operating Systems
Principles (SOSP), pages 18–32, Farmington, PA, Nov.
2013.

[49] Úlfar Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software Guards for System
Address Spaces. In 7th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages
75–88, Seattle, WA, Nov. 2006.

[50] A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, and
P. Druschel. ERIM: Secure and Efficient In-process
Isolation with Memory Protection Keys. arXiv e-prints,
abs/1801.06822, Nov. 2018.

[51] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion,
and M. Valero. CODOMs: Protecting Software with
Code-centric Memory Domains. In 41st Intl. Symp. on
Computer Architecuture (ISCA), pages 469–480,
Minneapolis, MN, June 2014.

[52] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient Software-based Fault Isolation. In 14th ACM

Symp. on Operating Systems Principles (SOSP), pages
203–216, Asheville, NC, Dec. 1993.

[53] Z. Wang and X. Jiang. HyperSafe: A Lightweight
Approach to Provide Lifetime Hypervisor Control-Flow
Integrity. In 31st IEEE Symp. on Security and Privacy
(SP), pages 380–395, Oakland, CA, May 2010.

[54] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu,
and B. Thuraisingham. Differentiating Code from Data
in x86 Binaries. In 2011 European Conf. on Machine
Learning and Knowledge Discovery in Databases
(ECML PKDD), pages III 522–536, Athens, Greece,
Sept. 2011.

[55] R. N. Watson, J. Woodruff, P. G. Neumann, S. W.
Moore, J. Anderson, D. Chisnall, N. Dave, B. Davis,
K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. Roe,
S. Son, and M. Vadera. CHERI: A Hybrid
Capability-system Architecture for Scalable Software
Compartmentalization. In 36th IEEE Symp. on Security
and Privacy (SP), pages 20–37, San Jose, CA, May
2015.

[56] J. Yang and C. Hawblitzel. Safe to the Last Instruction:
Automated Verification of a Type-Safe Operating
System. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), pages
99–110, Toronto, ON, Canada, June 2010.

[57] K. Yasukata, M. Honda, D. Santry, and L. Eggert.
StackMap: Low-latency Networking with the OS Stack
and Dedicated NICs. In USENIX Annual Technical
Conf. (ATC), pages 43–56, Denver, CO, June 2016.

newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
http://www.f-stack.org
http://www.tpc.org/tpcc

	Introduction
	Protected Libraries
	Threat Model
	Virtual Address Space Integrity
	Local Variables and Protected Stack
	Program Loading
	Asynchronous Events and Termination

	Fast Memory Isolation
	Page Table Switching via Syscalls
	Hodor-VMFUNC
	Hodor-PKU
	Safety of Hodor-PKU

	Evaluation
	Microbenchmarks
	Silo
	DPDK TestPMD
	Redis on DPDK
	Discussion
	Cross-Application Sharing

	Related Work
	Fast I/O Systems
	Intra-Process Isolation
	OS and Hypervisor Security

	Conclusions

