
CSC266 Introduction to Parallel Computing

using GPUs

Optimizing for Caches

Sreepathi Pai

October 4, 2017

URCS



Outline

Cache Performance Recap

Data Layout

Reuse Distance

Besides the Cache



Outline

Cache Performance Recap

Data Layout

Reuse Distance

Besides the Cache



Memory vs CPU

from STREAM

https://www.cs.virginia.edu/stream/ref.html


Misses (Recap)

• Compulsory/Cold

• Capacity

• Conflict

• Our Goal: Reduce Misses



Outline

Cache Performance Recap

Data Layout

Reuse Distance

Besides the Cache



Data Layout Preliminaries

• Caches are optimized for:

• Spatial locality

• Temporal locality

• Caches store lines, 64 to 128 bytes from contiguous locations

• Memory is partitioned into lines

• Important considerations:

• Footprint (total size of data)

• Working set (total size of data accessed in a given period of

time)



Data Layout for Arrays

[
0 1 2 3 4

5 6 7 8 9

]

• Row Major

• C

• Array elements in same row are next to each other

• Memory:
[

0 1 2 3 4 5 6 7 8 9
]

• Column Major

• FORTRAN

• Array elements in same column are next to each other

• Memory:
[

0 5 1 6 2 7 3 8 4 9
]



Data Layout for Structures

• What is the size in bytes of each of the structures below?

struct pt {
char ptvalid;

int x;
char xvalid;

int y;
char yvalid;

} lines[100];

struct pt2 {
char ptvalid;
char xvalid;
char yvalid;

int x;
int y;

} lines[100];



Packing in Structures

struct pt {
char ptvalid;

int x;
char xvalid;

int y;
char yvalid;

} lines[100];

• Uses 20 bytes per element, padding/packing (3 bytes) inserted

after ptvalid, xvalid, yvalid

struct pt2 {
char ptvalid;
char xvalid;
char yvalid;

int x;
int y;

} lines[100];

• Uses 12 bytes per element, padding/packing (1 byte) inserted

after yvalid



Dynamic data structures and “Pointer-chasing” code

struct node {
struct node *next;
int data;

};

n = list->head;
while(n) {

...
n = n->next;

};



Dynamic data structures and “Pointer-chasing” code

• Most dynamic data structures (i.e. allocated dynamically)

• Members keeps links (pointers) to other members of the
structure

• Linked lists

• Trees

• Code to traverse these data structures can hinder some
processor optimizations

• Sometimes called “irregular” code

• Memory equivalent of indirect/conditional branches



Summary of Data Layout

• Understand how data is laid out in memory

• Contiguous memory accesses are the fastest (due to spatial

locality)

• Aligned memory accesses are the fastest

• Check for excessive packing

• May cause poor utilization

• Dynamically allocated structures can perform poorly

• Use sparingly in high-performance code

• Consider using custom memory allocators that are backed by

contiguous memory



Outline

Cache Performance Recap

Data Layout

Reuse Distance

Besides the Cache



Reuse Distance (Stack Distance)

Reuse distance for a cache line (or address) is the number of

intervening unique references to other lines between any two

consecutive references to the same line.

A B C C D B F A

• Reuse distance for second B is 2

• Reuse distance for last A is 4

• Reuse distance for second C is 0

• Reuse distance for others is ∞



Interpreting Reuse Distance

• A miss with reuse distance ∞ implies cold miss

• A miss with reuse distance < cache size (in lines) implies

conflict miss

• A miss with reuse distance > cache size (in lines) implies

capacity miss

• Note: these assume LRU is the replacement algorithm

• P.S.: these are not exact rules

• P.P.S: the only takeway is that changing (specifically,

reducing) reuse distance can result in better cache behaviour.



Goal: Reduce misses by decreasing reuse distance

How can you reduce reuse distance?



Register Blocking/Scalarization in SAXPY (before)

• y = αx + y

...
for(int j = 0; j < N; j++) {

y[i] = y[i] + alpha * x[j];
}



Register Blocking/Scalarization in SAXPY (after)

• y = αx + y

temp = y[i];
for(int j = 0; j < N; j++) {

temp = temp + alpha * x[j];
}
y[i] = temp;

• Automatically by any compiler that can determine that y and

x do not alias



Strip-mining

min = minimum(y, 0, N);
max = maximum(y, 0, N);

• where minimum and maximum may be implemented as:

int minimum(int *a, int start, int end) {

int tmp = a[start];
for(int i = start + 1; i < end; i++) {

if(a[i] < tmp) tmp = a[i];
}

}



Strip-mining (after)

min = y[0];
max = y[0];

for(int j = 0; j < N; j+=WIDTH) {
end = j + WIDTH;
if(end > N) end = N;

tmp_min = minimum(y, j, end);
tmp_max = maximum(y, j, end);

if(tmp_min < min) min = tmp_min;
if(tmp_max > max) max = tmp_max;

}



Loop Blocking/Tiling

for(int i = 0; i < m; i++)
for(int j = 0; i < n; j++)

A_out[j * m + i] = A_in[i * n + j];



After one full inner iteration (j)

cache line cache line

• Ain has good cache reuse

• Aout has poor cache reuse (reuse distance = n)



Loop Blocking (after)

for(int i = 0; i < m; i+=WIDTH)
for(int j = 0; i < n; j+=HEIGHT)

for(int ii=0; ii < WIDTH && (i+ii) < m; ii++)
for(int jj=0; jj < HEIGHT && (j+jj) < n; jj++)

A_out[(j+jj) * m + (i+ii)] = A_in[(i+ii) * n + (j+jj)];



After one full tile iteration (ii and jj)

cache line cache line

• Ain has good cache reuse

• Aout has good cache reuse (reuse distance = WIDTH)



Determining blocking parameters

• Which cache must the block fit?

• L1?

• L2?

• LLC?

• How to determine best performing values of WIDTH and
HEIGHT?

• ”Auto-tuning”

• Search through space of all possible values



Other loop transformations to improve cache behaviour

• Loop interchange

• IJK vs IKJ (previous lecture)

• Analyze that loop for reuse distance

• Loop fusion

• merge two loops together if reuse can be improved

• check dependencies are not violated!

• Many more

• need to verify legality when applying

• check dependencies are not violated



Outline

Cache Performance Recap

Data Layout

Reuse Distance

Besides the Cache



Other components in the memory subsystem

The following play an important role in the memory subsystem:

• Prefetcher

• Virtual Memory Manager/Pager



The Prefetcher

To avoid compulsory misses, we can prefetch data.

• Software techniques (programmer)

• issue loads in advance of reading

• use software prefetch instructions

• useful when no hardware prefetcher present

• Hardware techniques (automatic)

• automatically detect a “stream” and fetch from it

• limited in what it can do

• Fundamental performance concerns

• Timeliness (is prefetch just-in-time?)

• Usefulness (was data from prefetch read?)

• Cache Pollution (prefetches displaces useful lines from cache

space)

• Bandwidth (prefetches compete with “actual” loads)



The Hardware Prefetcher

• “Next line prefetcher” (L1)

• Fetch next cache line on multiple accesses to a line

• “Stream/Stride prefetcher” (L2/LLC)

• Triggered by multiple misses

• Detects stride

• Fetches cache lines that match the stride

• Does not fetch past 4096 bytes (x86)



Virtual Memory and Paging

Why did the memory request read from disk?



Virtual Memory

• Every process has its own address space

• for protection, isolation, etc.

• Two different processes may store data at the same virtual

address

• Data may exist:

• Physical RAM

• Disk (Swapped out)

• Virtual to Physical address mappings are handled by the OS

• stored in page tables

• which may also be swapped out!

• Every [why?] memory reference by a program must be:

• translated into its physical equivalent

• involves reading the page table



Translation Look-aside Buffer (TLB)

• Small cache (what else?)

• Caches page table entries (about 64 or so)

• Fully-associative

• Consulted on every memory request

• Miss in TLB implies walking the page table

• OSes are lazy, may only create a page on a miss!

• One solution to lower TLB misses: “Huge Pages”

• 4MB vs 4KB

• Requires OS and programmer support



Software Managed Caches

• On-chip memory managed by programmer

• Separate address space

• Prevalent on DSPs, GPUs

• Will deal with these when studying GPUs



Conclusion

• Memory accesses will remain primary bottleneck for most
applications

• Big data ...

• Compilers can help with regular, array-based code

• Especially if you use FORTRAN to write it

• Situation getting better for C

• What about other programming languages?

• Irregular, dynamic data-structure based code must be
optimized by programmer

• Few general and automatic solutions

• Ideas similar to strip-mining/blocking may still be applicable


	Cache Performance Recap
	Data Layout
	Reuse Distance
	Besides the Cache

