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Memory vs CPU

from STREAM

https://www.cs.virginia.edu/stream/ref.html


Misses (Recap)

• Compulsory/Cold

• Capacity

• Conflict

• Our Goal: Reduce Misses
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Data Layout Preliminaries

• Caches are optimized for:

• Spatial locality

• Temporal locality

• Caches store lines, 64 to 128 bytes from contiguous locations

• Memory is partitioned into lines

• Important considerations:

• Footprint (total size of data)

• Working set (total size of data accessed in a given period of

time)



Data Layout for Arrays

[
0 1 2 3 4

5 6 7 8 9

]

• Row Major

• C

• Array elements in same row are next to each other

• Memory:
[

0 1 2 3 4 5 6 7 8 9
]

• Column Major

• FORTRAN

• Array elements in same column are next to each other

• Memory:
[

0 5 1 6 2 7 3 8 4 9
]



Data Layout for Structures

• What is the size in bytes of each of the structures below?

struct pt {
char ptvalid;

int x;
char xvalid;

int y;
char yvalid;

} lines[100];

struct pt2 {
char ptvalid;
char xvalid;
char yvalid;

int x;
int y;

} lines[100];



Packing in Structures

struct pt {
char ptvalid;

int x;
char xvalid;

int y;
char yvalid;

} lines[100];

• Uses 20 bytes per element, padding/packing (3 bytes) inserted

after ptvalid, xvalid, yvalid

struct pt2 {
char ptvalid;
char xvalid;
char yvalid;

int x;
int y;

} lines[100];

• Uses 12 bytes per element, padding/packing (1 byte) inserted

after yvalid



Dynamic data structures and “Pointer-chasing” code

struct node {
struct node *next;
int data;

};

n = list->head;
while(n) {

...
n = n->next;

};



Dynamic data structures and “Pointer-chasing” code

• Most dynamic data structures (i.e. allocated dynamically)

• Members keeps links (pointers) to other members of the
structure

• Linked lists

• Trees

• Code to traverse these data structures can hinder some
processor optimizations

• Sometimes called “irregular” code

• Memory equivalent of indirect/conditional branches



Summary of Data Layout

• Understand how data is laid out in memory

• Contiguous memory accesses are the fastest (due to spatial

locality)

• Aligned memory accesses are the fastest

• Check for excessive packing

• May cause poor utilization

• Dynamically allocated structures can perform poorly

• Use sparingly in high-performance code

• Consider using custom memory allocators that are backed by

contiguous memory
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Reuse Distance (Stack Distance)

Reuse distance for a cache line (or address) is the number of

intervening unique references to other lines between any two

consecutive references to the same line.

A B C C D B F A

• Reuse distance for second B is 2

• Reuse distance for last A is 4

• Reuse distance for second C is 0

• Reuse distance for others is ∞



Interpreting Reuse Distance

• A miss with reuse distance ∞ implies cold miss

• A miss with reuse distance < cache size (in lines) implies

conflict miss

• A miss with reuse distance > cache size (in lines) implies

capacity miss

• Note: these assume LRU is the replacement algorithm

• P.S.: these are not exact rules

• P.P.S: the only takeway is that changing (specifically,

reducing) reuse distance can result in better cache behaviour.



Goal: Reduce misses by decreasing reuse distance

How can you reduce reuse distance?



Register Blocking/Scalarization in SAXPY (before)

• y = αx + y

...
for(int j = 0; j < N; j++) {

y[i] = y[i] + alpha * x[j];
}



Register Blocking/Scalarization in SAXPY (after)

• y = αx + y

temp = y[i];
for(int j = 0; j < N; j++) {

temp = temp + alpha * x[j];
}
y[i] = temp;

• Automatically by any compiler that can determine that y and

x do not alias



Strip-mining

min = minimum(y, 0, N);
max = maximum(y, 0, N);

• where minimum and maximum may be implemented as:

int minimum(int *a, int start, int end) {

int tmp = a[start];
for(int i = start + 1; i < end; i++) {

if(a[i] < tmp) tmp = a[i];
}

}



Strip-mining (after)

min = y[0];
max = y[0];

for(int j = 0; j < N; j+=WIDTH) {
end = j + WIDTH;
if(end > N) end = N;

tmp_min = minimum(y, j, end);
tmp_max = maximum(y, j, end);

if(tmp_min < min) min = tmp_min;
if(tmp_max > max) max = tmp_max;

}



Loop Blocking/Tiling

for(int i = 0; i < m; i++)
for(int j = 0; i < n; j++)

A_out[j * m + i] = A_in[i * n + j];



After one full inner iteration (j)

cache line cache line

• Ain has good cache reuse

• Aout has poor cache reuse (reuse distance = n)



Loop Blocking (after)

for(int i = 0; i < m; i+=WIDTH)
for(int j = 0; i < n; j+=HEIGHT)

for(int ii=0; ii < WIDTH && (i+ii) < m; ii++)
for(int jj=0; jj < HEIGHT && (j+jj) < n; jj++)

A_out[(j+jj) * m + (i+ii)] = A_in[(i+ii) * n + (j+jj)];



After one full tile iteration (ii and jj)

cache line cache line

• Ain has good cache reuse

• Aout has good cache reuse (reuse distance = WIDTH)



Determining blocking parameters

• Which cache must the block fit?

• L1?

• L2?

• LLC?

• How to determine best performing values of WIDTH and
HEIGHT?

• ”Auto-tuning”

• Search through space of all possible values



Other loop transformations to improve cache behaviour

• Loop interchange

• IJK vs IKJ (previous lecture)

• Analyze that loop for reuse distance

• Loop fusion

• merge two loops together if reuse can be improved

• check dependencies are not violated!

• Many more

• need to verify legality when applying

• check dependencies are not violated
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Other components in the memory subsystem

The following play an important role in the memory subsystem:

• Prefetcher

• Virtual Memory Manager/Pager



The Prefetcher

To avoid compulsory misses, we can prefetch data.

• Software techniques (programmer)

• issue loads in advance of reading

• use software prefetch instructions

• useful when no hardware prefetcher present

• Hardware techniques (automatic)

• automatically detect a “stream” and fetch from it

• limited in what it can do

• Fundamental performance concerns

• Timeliness (is prefetch just-in-time?)

• Usefulness (was data from prefetch read?)

• Cache Pollution (prefetches displaces useful lines from cache

space)

• Bandwidth (prefetches compete with “actual” loads)



The Hardware Prefetcher

• “Next line prefetcher” (L1)

• Fetch next cache line on multiple accesses to a line

• “Stream/Stride prefetcher” (L2/LLC)

• Triggered by multiple misses

• Detects stride

• Fetches cache lines that match the stride

• Does not fetch past 4096 bytes (x86)



Virtual Memory and Paging

Why did the memory request read from disk?



Virtual Memory

• Every process has its own address space

• for protection, isolation, etc.

• Two different processes may store data at the same virtual

address

• Data may exist:

• Physical RAM

• Disk (Swapped out)

• Virtual to Physical address mappings are handled by the OS

• stored in page tables

• which may also be swapped out!

• Every [why?] memory reference by a program must be:

• translated into its physical equivalent

• involves reading the page table



Translation Look-aside Buffer (TLB)

• Small cache (what else?)

• Caches page table entries (about 64 or so)

• Fully-associative

• Consulted on every memory request

• Miss in TLB implies walking the page table

• OSes are lazy, may only create a page on a miss!

• One solution to lower TLB misses: “Huge Pages”

• 4MB vs 4KB

• Requires OS and programmer support



Software Managed Caches

• On-chip memory managed by programmer

• Separate address space

• Prevalent on DSPs, GPUs

• Will deal with these when studying GPUs



Conclusion

• Memory accesses will remain primary bottleneck for most
applications

• Big data ...

• Compilers can help with regular, array-based code

• Especially if you use FORTRAN to write it

• Situation getting better for C

• What about other programming languages?

• Irregular, dynamic data-structure based code must be
optimized by programmer

• Few general and automatic solutions

• Ideas similar to strip-mining/blocking may still be applicable


	Cache Performance Recap
	Data Layout
	Reuse Distance
	Besides the Cache

