
CSC266 Introduction to Parallel Computing

using GPUs

GPU Architecture I (Execution)

Sreepathi Pai

October 25, 2017

URCS



Outline

Quick Recap

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

More on GPU Occupancy



Outline

Quick Recap

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

More on GPU Occupancy



Launch

• Determine a thread block size: say, 256 threads

• Divide work by thread block size

• Round up

• dN/256e

• Configuration can be changed every call

int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;

vector_add<<<blocks, threads>>>(...)



Kernel Launch Configuration

• GPU kernels are SPMD kernels

• Single-program, multiple data

• All threads execute the same code

• Number of threads to execute is specified at launch time

• As a grid of B thread blocks of T threads each

• Total threads: B × T

• Reason: Only threads within the same thread block can
communicate with each other (cheaply)

• Other reasons too, but this is the only algorithm-specific reason



Blocking and Non-blocking APIs

• Blocking API (or operation)

• CPU waits for operation to finish

• e.g. simple cudaMemcpy

• Non-blocking API (or operation)

• CPU does not wait for operation to finish

• e.g. kernel launches

• You can wait explicitly using special CUDA APIs

• Operations queue up

• Multiple kernels can be launched

• They will execute by default in launch order



Outline

Quick Recap

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

More on GPU Occupancy



The Default Stream

• A GPU can do multiple things in parallel

• Just like a CPU

• Most common: overlapping memory copies and kernel

executions

• Main programming construct: Stream

• Purely software construct

• Stream is conceptually equivalent to a CPU thread

• Operations in same stream happen in order

• Operations in different streams can happen in any order

• Stream 0 is the default stream

• All operations not on an explicit stream are on this stream



Command Queue

• Hardware construct

• Streams map to command
queues

• Many (streams)-to-one

(hardware queue)

• About 32 hardware queues

in Kepler (Hyper-Q)

Stream
Scheduler

Streams

K
K

K

K

...

K
M

M
M

M
M

M
...

DMA 
Engine

DMA 
Engine

Thread
Block

Scheduler

Streaming Multiprocessors (SMs)

GPU

CPU

Hardware Queues

K
K

K

K

...

K
M

M
M

M
M

M
...



Outline

Quick Recap

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

More on GPU Occupancy



Why Grids? NVIDIA: Hardware Scalability



Threads to Warps

... ... ... ... ... ... ...
... ... ... ... ... ... ... ...

TB0

TB1

0 32 64 224

0 31

...
Warp Lanes

... ... ... ... ... ... ...TB2



Thread blocks to an SM

... ... ... ... ... ... ...
... ... ... ... ... ... ... ...

TB0

TB1

0 32 64 160

0 31

...

... ... ... ... ... ... ...TB10

...
191

...

0 31

...

0 31

...
Warp Lanes

...

Warp 0

Warp 1

Warp 63

...

0 31

...Warp 60

...

SM

...



GPU Occupancy

• CPU threads share resources by time multiplexing

• One thread owns all CPU resources (registers, etc.) for its

time slice

• Context-switches are performed by OS

• GPU threads do not share resources

• Own fixed partition of resources for entire lifetime of thread

• Context-switches are performed by hardware every few cycles

• Changing number of threads changes utilization of resources



GPU Resources per SM (NVIDIA Kepler)

Resource Available Maximum

Threads 2048 1024/block

Shared Memory 48K (max) 48K/block

Registers 65536 255/thread

Thread Blocks 16 16/SM

• Every block consumes:

• T threads

• T × R registers where R is registers per thread

• 1 block

• SM shared memory per block (optional)

• The resource that gets exhausted first determines occupancy
and residency

• Occupancy : number of hardware threads utilized

• Residency : number of hardware blocks utilized



GPU Occupancy: Example 1

kernel<<<2048, 32>>>()

• T = 32

• thread limit 2048/32 = 64 thread blocks

• R = 100 (100× 32 = 3200 per thread block)

• register limit 65536/3200 = 20 thread blocks

• SM = 1K

• SM limit 48K/1K = 48 thread blocks

• Limiting resource: thread blocks (16)

• Residency: 16

• Occupancy: (16× 32)/2048 = 25%



GPU Occupancy: Example 2

kernel<<<2048, 64>>>()

• T = 64

• thread limit 2048/64 = 32 thread blocks

• R = 100 (100× 64 = 6400 per thread block)

• register limit 65536/6400 =? thread blocks

• SM = 1K

• SM limit 48K/1K = 48 thread blocks

• Limiting resource: ?

• Residency: ?

• Occupancy: (?× 64)/2048 =?%



How many threads?

• Try to maximize utilization (NVIDIA Manual)

• Later today: Better strategy



Summary

• Thread blocks are mapped to SMs ”whole”

• Atleast one thread block must fit

• No partial thread blocks

• Upto res thread blocks per SM

• res is residency

• Different for different kernels

• Once all SMs are occupied, remaining blocks wait

• Start running once currently running blocks finish



Outline

Quick Recap

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

More on GPU Occupancy



SIMT Issue

• All threads in a warp execute the same instruction (same PC)

• What happens when:

• that instruction is a conditional branch?

• is a load that misses for some threads but not others?



Divergence

• If threads in a warp decide execute different PCs, the warp

splits

• Two directions for a branch

• Two splits

• Each split is executed serially

• Nested branches also split correctly

• Join back at a pre-determined “meet” point

• Immediate post-dominator



Example

if (cond) {
x = 1;

} else {
y = 1;

}

• Assume warps contains four threads each

• Assume only T0, T2 have cond == true.

Time T0 T1 T2 T3
0 x = 1 x = 1
1 y = 1 y = 1

• If cond is true for all threads

Time T0 T1 T2 T3
0 x = 1 x = 1 x = 1 x = 1



Tackling Divergence

• Threads in the same warps should avoid divergent conditions

• Easier said than done

• Threads in the same warp should try to access locations in
same memory line

• Memory divergence repeats requests until all threads have

received data

• Compiler will predicate instructions

• No divergence – both sides executed

• Predicated instructions are executed but do not commit

• Shown as [] below

Time T0 T1 T2 T3
0 x = 1 [x = 1] x = 1 [x = 1]
1 [y = 1] y = 1 [y = 1] y = 1



Outline

Quick Recap

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

More on GPU Occupancy



Occupancy Recap

• GPUs partition resources among running threads

• NVIDIA Manual says maximize occupancy

• Why?



Reasoning about occupancy

kernel <<<x, y>>>()

• Consider:

• 1 Thread Block

• N thread blocks, N equal to number of SMs/SMX

• N ∗ Residency thread blocks

• > N ∗ Residency thread blocks



Less Occupancy?

• Is there a case to reduce occupancy/residency?

• i.e. let threads consume more resources?

• smaller thread blocks?



Better Performance at Lower Occupancy

Volkov, V., “Better Performance at Lower Occupancy”, GTC 2010



Volkov’s Insights

• Do more parallel work per thread to hide latency with fewer
threads (i.e. increase ILP)

• Unroll

• Use more registers per thread to access slower shared memory
less

• Shared memory latency comparable to registers, but

• Shared memory throughput is lower!

• Both may be accomplished by computing multiple outputs per

thread

• Note that Volkov underutilizes threads, but maxes out
registers!

• Fermi had 63 registers/thread, Kepler has 255 registers/thread

• Why have a register limit?


	Quick Recap
	Streams and Command Queues
	GPU Execution of Kernels
	Warp Divergence
	More on GPU Occupancy

