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Launch

• Determine a thread block size: say, 256 threads

• Divide work by thread block size

• Round up

• dN/256e

• Configuration can be changed every call

int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;

vector_add<<<blocks, threads>>>(...)



Kernel Launch Configuration

• GPU kernels are SPMD kernels

• Single-program, multiple data

• All threads execute the same code

• Number of threads to execute is specified at launch time

• As a grid of B thread blocks of T threads each

• Total threads: B × T

• Reason: Only threads within the same thread block can
communicate with each other (cheaply)

• Other reasons too, but this is the only algorithm-specific reason



Blocking and Non-blocking APIs

• Blocking API (or operation)

• CPU waits for operation to finish

• e.g. simple cudaMemcpy

• Non-blocking API (or operation)

• CPU does not wait for operation to finish

• e.g. kernel launches

• You can wait explicitly using special CUDA APIs

• Operations queue up

• Multiple kernels can be launched

• They will execute by default in launch order
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The Default Stream

• A GPU can do multiple things in parallel

• Just like a CPU

• Most common: overlapping memory copies and kernel

executions

• Main programming construct: Stream

• Purely software construct

• Stream is conceptually equivalent to a CPU thread

• Operations in same stream happen in order

• Operations in different streams can happen in any order

• Stream 0 is the default stream

• All operations not on an explicit stream are on this stream



Command Queue

• Hardware construct

• Streams map to command
queues

• Many (streams)-to-one

(hardware queue)

• About 32 hardware queues

in Kepler (Hyper-Q)
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Why Grids? NVIDIA: Hardware Scalability



Threads to Warps
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Thread blocks to an SM
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GPU Occupancy

• CPU threads share resources by time multiplexing

• One thread owns all CPU resources (registers, etc.) for its

time slice

• Context-switches are performed by OS

• GPU threads do not share resources

• Own fixed partition of resources for entire lifetime of thread

• Context-switches are performed by hardware every few cycles

• Changing number of threads changes utilization of resources



GPU Resources per SM (NVIDIA Kepler)

Resource Available Maximum

Threads 2048 1024/block

Shared Memory 48K (max) 48K/block

Registers 65536 255/thread

Thread Blocks 16 16/SM

• Every block consumes:

• T threads

• T × R registers where R is registers per thread

• 1 block

• SM shared memory per block (optional)

• The resource that gets exhausted first determines occupancy
and residency

• Occupancy : number of hardware threads utilized

• Residency : number of hardware blocks utilized



GPU Occupancy: Example 1

kernel<<<2048, 32>>>()

• T = 32

• thread limit 2048/32 = 64 thread blocks

• R = 100 (100× 32 = 3200 per thread block)

• register limit 65536/3200 = 20 thread blocks

• SM = 1K

• SM limit 48K/1K = 48 thread blocks

• Limiting resource: thread blocks (16)

• Residency: 16

• Occupancy: (16× 32)/2048 = 25%



GPU Occupancy: Example 2

kernel<<<2048, 64>>>()

• T = 64

• thread limit 2048/64 = 32 thread blocks

• R = 100 (100× 64 = 6400 per thread block)

• register limit 65536/6400 =? thread blocks

• SM = 1K

• SM limit 48K/1K = 48 thread blocks

• Limiting resource: ?

• Residency: ?

• Occupancy: (?× 64)/2048 =?%



How many threads?

• Try to maximize utilization (NVIDIA Manual)

• Later today: Better strategy



Summary

• Thread blocks are mapped to SMs ”whole”

• Atleast one thread block must fit

• No partial thread blocks

• Upto res thread blocks per SM

• res is residency

• Different for different kernels

• Once all SMs are occupied, remaining blocks wait

• Start running once currently running blocks finish
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SIMT Issue

• All threads in a warp execute the same instruction (same PC)

• What happens when:

• that instruction is a conditional branch?

• is a load that misses for some threads but not others?



Divergence

• If threads in a warp decide execute different PCs, the warp

splits

• Two directions for a branch

• Two splits

• Each split is executed serially

• Nested branches also split correctly

• Join back at a pre-determined “meet” point

• Immediate post-dominator



Example

if (cond) {
x = 1;

} else {
y = 1;

}

• Assume warps contains four threads each

• Assume only T0, T2 have cond == true.

Time T0 T1 T2 T3
0 x = 1 x = 1
1 y = 1 y = 1

• If cond is true for all threads

Time T0 T1 T2 T3
0 x = 1 x = 1 x = 1 x = 1



Tackling Divergence

• Threads in the same warps should avoid divergent conditions

• Easier said than done

• Threads in the same warp should try to access locations in
same memory line

• Memory divergence repeats requests until all threads have

received data

• Compiler will predicate instructions

• No divergence – both sides executed

• Predicated instructions are executed but do not commit

• Shown as [] below

Time T0 T1 T2 T3
0 x = 1 [x = 1] x = 1 [x = 1]
1 [y = 1] y = 1 [y = 1] y = 1
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Occupancy Recap

• GPUs partition resources among running threads

• NVIDIA Manual says maximize occupancy

• Why?



Reasoning about occupancy

kernel <<<x, y>>>()

• Consider:

• 1 Thread Block

• N thread blocks, N equal to number of SMs/SMX

• N ∗ Residency thread blocks

• > N ∗ Residency thread blocks



Less Occupancy?

• Is there a case to reduce occupancy/residency?

• i.e. let threads consume more resources?

• smaller thread blocks?



Better Performance at Lower Occupancy

Volkov, V., “Better Performance at Lower Occupancy”, GTC 2010



Volkov’s Insights

• Do more parallel work per thread to hide latency with fewer
threads (i.e. increase ILP)

• Unroll

• Use more registers per thread to access slower shared memory
less

• Shared memory latency comparable to registers, but

• Shared memory throughput is lower!

• Both may be accomplished by computing multiple outputs per

thread

• Note that Volkov underutilizes threads, but maxes out
registers!

• Fermi had 63 registers/thread, Kepler has 255 registers/thread

• Why have a register limit?


	Quick Recap
	Streams and Command Queues
	GPU Execution of Kernels
	Warp Divergence
	More on GPU Occupancy

