CSC266 Introduction to Parallel Computing using GPUs GPU Architecture I (Execution)

Sreepathi Pai

October 25, 2017

URCS

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

- Determine a thread block size: say, 256 threads
- Divide work by thread block size
 - Round up
 - *[N/*256]
- Configuration can be changed every call

```
int threads = 256;
int Nup = (N + threads - 1) / threads;
int blocks = Nup / threads;
```

```
vector_add<<<blocks, threads>>>(...)
```

- GPU kernels are SPMD kernels
 - Single-program, multiple data
 - All threads execute the same code
- Number of threads to execute is specified at launch time
 - As a grid of B thread blocks of T threads each
 - Total threads: $B \times T$
- Reason: Only threads within the same thread block can communicate with each other (cheaply)
 - Other reasons too, but this is the only algorithm-specific reason

Blocking and Non-blocking APIs

- Blocking API (or operation)
 - CPU waits for operation to finish
 - e.g. simple cudaMemcpy
- Non-blocking API (or operation)
 - CPU does not wait for operation to finish
 - e.g. kernel launches
 - You can wait explicitly using special CUDA APIs
- Operations queue up
 - Multiple kernels can be launched
 - They will execute by default in launch order

Streams and Command Queues

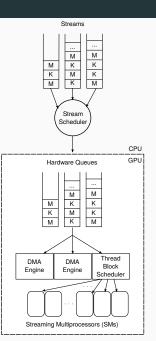
GPU Execution of Kernels

Warp Divergence

The Default Stream

- A GPU can do multiple things in parallel
 - Just like a CPU
 - Most common: overlapping memory copies and kernel executions
- Main programming construct: Stream
 - Purely software construct
- Stream is conceptually equivalent to a CPU thread
 - Operations in same stream happen in order
 - Operations in different streams can happen in any order
- Stream 0 is the *default stream*
 - All operations not on an explicit stream are on this stream

- Streams map to command queues
 - Many (streams)-to-one (hardware queue)
- About 32 hardware queues in Kepler (Hyper-Q)

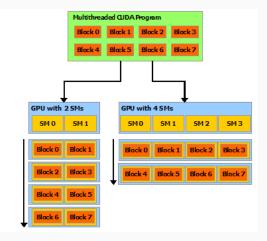


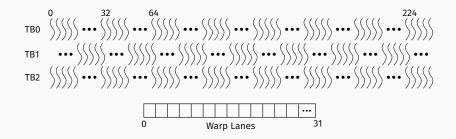
Streams and Command Queues

GPU Execution of Kernels

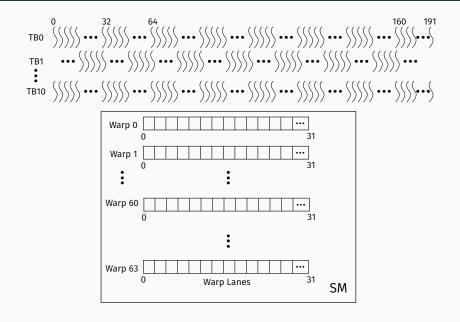
Warp Divergence

Why Grids? NVIDIA: Hardware Scalability





Thread blocks to an SM



- CPU threads share resources by time multiplexing
 - One thread owns all CPU resources (registers, etc.) for its time slice
 - Context-switches are performed by OS
- GPU threads do not share resources
 - Own fixed partition of resources for entire lifetime of thread
 - Context-switches are performed by hardware every few cycles
- Changing number of threads changes utilization of resources

GPU Resources per SM (NVIDIA Kepler)

Resource	Available	Maximum
Threads	2048	1024/block
Shared Memory	48K (max)	48K/block
Registers	65536	255/thread
Thread Blocks	16	16/SM

- Every block consumes:
 - T threads
 - $T \times R$ registers where R is registers per thread
 - 1 block
 - SM shared memory per block (optional)
- The resource that gets exhausted first determines occupancy and residency
 - Occupancy: number of hardware threads utilized
 - Residency: number of hardware blocks utilized

GPU Occupancy: Example 1

kernel<<<2048, 32>>>()

- *T* = 32
 - thread limit 2048/32 = 64 thread blocks
- $R = 100 (100 \times 32 = 3200 \text{ per thread block})$
 - register limit 65536/3200 = 20 thread blocks
- SM = 1K
 - SM limit 48K/1K = 48 thread blocks
- Limiting resource: thread blocks (16)
- Residency: 16
- Occupancy: $(16 \times 32)/2048 = 25\%$

GPU Occupancy: Example 2

kernel<<<2048, 64>>>()

- *T* = 64
 - thread limit 2048/64 = 32 thread blocks
- $R = 100 \ (100 \times 64 = 6400 \text{ per thread block})$
 - register limit 65536/6400 =? thread blocks
- SM = 1K
 - SM limit 48K/1K = 48 thread blocks
- Limiting resource: ?
- Residency: ?
- Occupancy: $(? \times 64)/2048 = ?\%$

- Try to maximize utilization (NVIDIA Manual)
- Later today: Better strategy

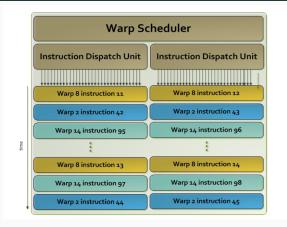
- Thread blocks are mapped to SMs "whole"
 - Atleast one thread block must fit
 - No partial thread blocks
- Upto res thread blocks per SM
 - res is residency
 - Different for different kernels
- Once all SMs are occupied, remaining blocks wait
 - Start running once currently running blocks finish

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

SIMT Issue



- All threads in a warp execute the same instruction (same PC)
- What happens when:
 - that instruction is a conditional branch?
 - is a load that misses for some threads but not others?

- If threads in a warp decide execute different PCs, the warp *splits*
- Two directions for a branch
 - Two splits
 - Each split is executed serially
 - Nested branches also split correctly
- Join back at a pre-determined "meet" point
 - Immediate post-dominator

Example

```
if (cond) {
    x = 1;
} else {
    y = 1;
}
```

- Assume warps contains four threads each
- Assume only T0, T2 have cond == true.

• If cond is true for all threads

Tackling Divergence

- Threads in the same warps should avoid divergent conditions
 - Easier said than done
- Threads in the same warp should try to access locations in same memory line
 - Memory divergence *repeats* requests until all threads have received data
- Compiler will predicate instructions
 - No divergence both sides executed
 - Predicated instructions are executed but do not commit
 - Shown as [] below

Streams and Command Queues

GPU Execution of Kernels

Warp Divergence

- GPUs partition resources among running threads
- NVIDIA Manual says maximize occupancy
 - Why?

```
kernel <<<x, y>>>()
```

- Consider:
 - 1 Thread Block
 - N thread blocks, N equal to number of SMs/SMX
 - N * Residency thread blocks
 - > N * Residency thread blocks

- Is there a case to reduce occupancy/residency?
 - i.e. let threads consume more resources?
 - smaller thread blocks?

Multiplication of two large matrices, single precision (SGEMM):

	CUBLAS 1.1	CUBLAS 2.0	
Threads per block	512	64	8x smaller thread blocks
Occupancy (G80)	67%	33%	2x lower occupancy
Performance (G80)	128 Gflop/s	204 Gflop/s	1.6x higher performance

Batch of 1024-point complex-to-complex FFTs, single precision:

	CUFFT22	CUFFT2.3	
Threads per block	256	64	4x smaller thread blocks
Occupancy (G80)	33%	17%	2x lower occupancy
Performance (G80)	45 Gflop/s	93 Gflop/s	2x higher performance

Volkov, V., "Better Performance at Lower Occupancy", GTC 2010

Volkov's Insights

- Do more parallel work per thread to hide latency with fewer threads (i.e. increase ILP)
 - Unroll
- Use more registers per thread to access slower shared memory less
 - Shared memory latency comparable to registers, but
 - Shared memory throughput is lower!
- Both may be accomplished by computing multiple outputs per thread
- Note that Volkov underutilizes threads, but maxes out registers!
 - Fermi had 63 registers/thread, Kepler has 255 registers/thread
 - Why have a register limit?