
282 Math Preview

Chris Brown

June 29, 2011

Contents

1 Why This? 2

2 Logarithms 2

2.1 Basic Identities . 2

2.2 Basic Consequences . 3

3 Sums of Series 3

3.1 Arithmetic Series . 3

3.2 Polynomial Series . 4

3.3 Geometric Series . 4

3.4 Harmonic Series . 5

3.5 Arithmetic-Geometric Series . 6

3.6 Using Integration . 6

3.7 Who Knew? . 8

4 Bounds 8

4.1 Big Bounds by Limits . 8

4.2 Putting Limits to Work . 8

4.3 Little Bounds by Limits . 9

4.4 Properties . 10

5 Simple Recurrence Techniques 10

5.1 Brute Force Substitution . 11

5.2 Telescoping . 11

5.3 The Master Method . 13

1

1 Why This?

I’ve noticed that often the only math in an algorithms book is presented in one or two chapters
and then is referred to for the next 1100 or so pages. So it’s good to get this material nailed
down early.

This is mostly reiteration of content from CLRS chapters 3 and 4, but I’ve used material
from a couple of other Algorithms textbooks. This is meant to fill in some CLRS gaps, but
I’m not sure the gaps are really there – maybe it’s just been useful for me to pull this stuff
together in one spot. If it helps anyone else, great, but it’s certainly not meant to be any sort
of self-contained tutorial.

Still, please report typos, bugs, thinkos, and unclarities, as well as suggestions for more
content, to brown@cs.rochester.edu and maybe we can improve its chances of being useful.

2 Logarithms

2.1 Basic Identities

Definition: For b > 1, x > 0, logb(x) is real L such that bL = x.

Properties: (following easily from the definition)

• logb is a strictly increasing function: x > y ⇒ logb(x) > logb(y)

• logb is one-to-one: logb(x) = logb(y)⇒ x = y.

• logb(1) = 0 for any b since b0 = 1.

• logb(b
a) = a (pretty much restates the definition).

• logb(xy) = logb(x) + logb(y). If bL = x and bM = y, then bLbM = b(L+M) = xy and by the
previous result logb(xy) = L+M = logb(x) + logb(y).

• logb(x
a) = a logb(x). Use previous result a times with y = x.

• xlogb(y) = ylogb(x). Use 2nd property above to justify taking logs on both sides: logb(x) logb(y) =
logb(y) logb(x).

• logc(x) = logb(x)/ logb(c). This important base-changing identity that establishes t hat
logs to two different bases are related by a constant multiple. Let L = logc(x), M = logb(x),
N = logb(c). Then cL = x, bM = x, and bN = c. But if c = bN then x = cL = (bN)L, and
also x = bM , so bM = bNL ⇒M = NL⇒ L = M/N.

2

2.2 Basic Consequences

There are a number of little corollaries and techniques flowing from these identities that might
cause some head-scratching when first seen. They are useful if you want to compare functions
that are written using different bases. For instance, one can rewrite an exponentiation to a
different base by first taking logs and then exponentiating to the base of the log, comme ça:

nx = 2x lg(n),

or the more exciting
nlg(n) = 2lg lg(n).

or

nlg(n) = 2lg(n)+lg lg(n) = 21+
lg lg(n)
lg(n) ,

which if you’re normal isn’t obvious at first blush.

These examples do not address the complications introduced by arbitrary bases (e.g. e, 10,
3 ...) that would force the use of the base-changing identity, thus introducing a base-changing
multiplier into the picture.

3 Sums of Series

3.1 Arithmetic Series

For instance

n∑
i=1

i =
n(n+ 1)

2
.

Why? Draw n × (n + 1) rectangle and a jaggy diagonal and count the squares in one half.
Or think of numbers 1 to n and pair them up first to last, 2nd to penultimate, etc. You get
n/2 sums each equal to n + 1. Questions: what if n is odd? Does this trick work for other
summation limits?

These questions should lead you to think that maybe you can use the above counting tricks
for linear variants on the sum. Indeed. Consider 2 + 5 + 8 + . . . + (3k − 1). Rewritten as 3(1
+ 2 + 3+ . . . + k) - (1 + 1 + 1 + . . . + 1) the sum is obviously 3(k(k− 1)/2)− k. OR you can
again add the first and last, 2nd and next-last, etc. to get k/2 pairs of pair-sums each equal to
(3k + 1), or k(3k + 1)/2, which is the same answer, (nicht?).

3

3.2 Polynomial Series

The most familiar instance:

n∑
i=1

i =
n(n+ 1)

2
.

more generally,

n∑
i=1

ik ≈ 1

k + 1
nk+1.

You might remember that the sum of the first n squares has a cubic term in the answer...turns
out to be no accident. In general, summing over the exponentiation index:

n∑
i=1

ik ≈ 1

k + 1
nk+1.

This is justified approximation to an integral (see later), but for any specific k (2 is a
classroom favorite) the exact formula (involving a k + 1st degree polynomial) can be proved by
induction.

3.3 Geometric Series

The old familiar

k∑
i=0

2i = 2k+1 − 1

is of course visualized best by thinking of each term 2i as a 1-bit in a binary number. Thus
the sum = 1111...111 for k + 1 bits, and if you add 1 you get 100000000 = 2k+1.

Related is the special case

k∑
i=0

1

2i
= 2− 1

2k
.

Bearing a close resemblance is the more general

k∑
i=0

bri = b

(
rk+1 − 1

r − 1

)
,

with r often known as the ratio.

4

The last is a trivial generalization of

k∑
i=0

ri =
rk+1 − 1

r − 1
,

which when 0 < r < 1 leads to

k∑
i=0

ri ≤ 1

1− r

as k →∞. In this tending-to-infinite case, the sum is quite easy to derive.

Let S be the infinite sum of powers. Then

S = 1 + r + r2 + r3 + r4 + . . .

So

rS = r + r2 + r3 + r4 + . . . ,

and subtracting these two equations (only allowable if they are convergent), an infinite amount
of right hand side vanishes to leave

S − rS = 1⇒ S =
1

1− r
.

Cute, eh? This trick can generalize to more complex summand terms if one is careful (see
the telescoping technique in Section 5.2).

3.4 Harmonic Series

We saw that the general case for polynomial series is

n∑
i=1

ik ≈ 1

k + 1
nk+1,

which does not work when k = −1. That case is the Harmonic series

H(n) =
n∑

i=1

1

i
≈ ln(n) + γ,

where γ ≈ 0.57721566 . . . is Euler’s constant.

5

3.5 Arithmetic-Geometric Series

In this example sum the index appears both as coefficient and exponent in the summand terms.
Unfortunately our solution relies on the base being 2...

k∑
i=1

i2i = (k − 1)2k+1 + 2.

The solution for this type of sum is an analog of integration by parts, which counts on
producing sub-sums that cancel (except for first and last terms) and the sum of a leftover term
that is easy to evaluate.

k∑
i=1

i2i =
k∑

i=1

i(2i+1 − 2i),

(here is our reliance on base 2) – and now

=
k∑

i=1

i2i+1 −
k−1∑
i=0

(i+ 1)2i+1.

We’re aiming for a sum of terms of form i2i+1 to emerge from the RHS, and sure enough...

=
k∑

i=1

i2i+1 −
k−1∑
i=0

i2i+1 −
k−1∑
i=0

2i+1

= k2k+1 − 0− (2k+1 − 2) = (k − 1)2k+1 + 2,

with a little care on the last sum.

3.6 Using Integration

With some simple ideas rendered mathematically precise we can translate results from contin-
uous mathematics into results for the discrete sums we use.

One simple idea is monotonic (nondecreasing) (e.g. log(x), x2, 2x if x > 0; or the discontin-
uous bxc), and antimonotonic (non-increasing) functions, (e.g. 1/x).

Convex functions are those that “never curve downward” (like x, 1/x, ex, x4). These puppies
have always looked concave to me; I have to remember “convex down”. A function can be
convex but not monotonic, or could be monotonic but not convex. Clearly

√
x is not convex,

nor is log(x). A discontinuous function cannot be convex. Convexity can be proved by showing,
for a real function, that the average value of the function at two points is above the function
of their average. Convexity for a function on the integers can be proved by showing the same
thing for all adjacent sets of three integers: f(n+1) is at most the average of f(n) and f(n+2).

An integer function f(n) can be extended to a real function f ∗(x) simply by linear interpo-
lation. Then we have some useful properties:

6

1. f(n) is monotonic (convex) ⇔ f ∗(x) is monotonic (convex).

2. f ′(x) (1st derivative) exists and is nonnegative ⇒ f(x) monotonic.

3. f ′(x) exists and is monotonic ⇒ f(x) convex.

4. Thus f ′′(x) exists and is nonnegative ⇒ f(x) convex.

See CLRS Appendix 2 on integral bounds and nice pictures explaining why they work... the
idea is to put upper and lower bounds on discrete sums by pairs of definite integrals on the
corresponding functions.

Some useful integration formulae (the Theory Math Cheat Sheet linked off the main course
page has many more):

∫ n

0
xkdx =

1

k + 1
nk+1

∫ n

0
eaxdx =

1

a
(ean − 1)

∫ n

1
xk ln(x)dx =

1

k + 1
nk+1 ln(n)− 1

(k + 1)2
nk+1.

CLRS on p. 1067 show a bound for the harmonic series (Section 3.4). Another example is
to use a simple case of the last formula to get a lower bound for the sum of logarithms — which
is what? The logarithm of a factorial!

lg(n!) =
n∑

i=1

lg i = 0 +
n∑

i=2

lg i ≥
∫ n

1
lg xdx

by CRLS formula (A.11).

Changing bases, ∫ n

1
lg xdx =

∫ n

1
lg(e) lnxdx = lg(e)

∫ n

1
lnxdx

= (lg e)(x lnx− x) |n1= (lg e)(n lnn− n+ 1)

= n lg n− n lg e+ lg e ≥ n lg n− n lg e.

lg e ≤ 1.443, so
n∑

i=1

lg i ≥ n lg n− 1.443n

7

3.7 Who Knew?

It seems that the last example is related to the derivation of the very useful Stirling’s Formula,
which bounds n!. (

n

e

)n√
2πn ≤ n! ≤

(
n

e

)n√
2πn

(
1 +

1

11n

)
,

(for n ≥ 1).

4 Bounds

4.1 Big Bounds by Limits

Not much to add on bounds. Besides the traditional “there’s a c and n0 such that for n > n0

etc. etc.,”, one can use infinite limits to determine the order of functions, and doing so is often
easy because of L’Hôpital’s rule, so here’s the idea.

A function f ∈ O(g) if:

lim
n→∞

f(n)

g(n)
= c <∞,

for nonnegative c (including the case c = 0.) So if the limit exists and is not infinite, f grows
no faster than g and so f ∈ O(g).

If the limit is ∞ then f grows faster than g (see below).

A function f ∈ Ω(g) if:

lim
n→∞

f(n)

g(n)
> 0,

including the case that the limit is ∞.

This leaves:

A function f ∈ Θ(g) if:

lim
n→∞

f(n)

g(n)
= c

for some constant 0 < c <∞.

4.2 Putting Limits to Work

L’Hôpital’s Rule: If f and g are differentiable functions with derivatives f ′ and g′, and

lim
n→∞

f(n) = lim
n→∞

g(n) =∞,

then

8

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)
.

So let’s check what happens with some favorite functions like f(n) = n2 and g(n) = n lg n.
We expect that f /∈ O(g) but g ∈ O(f). In the ratio of functions a factor of n drops out so
we’re interested in

lim
n→∞

n

lg(n)
.

But we don’t like differentiating lg(n), so we change base by the last identity in Section 2 to
get the more friendly ln function: lg(n) = ln(n)/ ln(2). So by L’Hôpital’s Rule,

lim
n→∞

n ln(2)

ln(n)
= lim

n→∞

ln(2)

(1/n)
= lim

n→∞
n ln(2) =∞.

Since the∞ case isn’t allowed in the O(n) test, f is not O(g), but since the limit of the ratio
g(n)/f(n) must go to 0, g is O(f).

4.3 Little Bounds by Limits

For strictly smaller and greater growth rates we have the “little oh” and “little omega” concepts.
You’re probably way ahead of me, since the limit forms of these definitions are obvious:

With f and g functions from non-negative integers into the positive reals,

f ∈ o(g) is the set of functions f such that

lim
n→∞

f(n)

g(n)
= 0,

and

f ∈ ω(g) is the set of functions f such that

lim
n→∞

f(n)

g(n)
=∞.

It’s easy to remember that “little oh” functions are the smaller functions in “Big Oh”. Less
intuitively, the “little omega” functions are the LARGER ones in “Big Omega”.

9

4.4 Properties

CLRS have lots of fun exercises so you can prove properties of these bounding functions.

For instance:

1. Membership in o, ω,O,Ω,Θ are (each) transitive.

2. f ∈ O(g)⇔ g ∈ Ω(f).

3. f ∈ Θ(g)⇒ g ∈ Θ(f).

4. Θ defines an equivalence relation whose classes are called complexity classes.

5. O(f + g) = O(max(f, g)), with similar equations for Θ,Ω.

6. Our buddy L’Hôpital lets us prove: lg(n) ∈ o(na), a > 0. So the log grows more slowly
than any positive power of n, like the .000001 power.

7. Similarly, nk ∈ o(2n), k > 0. So powers of n grow more slowly than 2n (in fact more slowly
than any bn where b > 1.)

The asymptotic order of some common summations is easy to determine. CLRS has Ap-
pendix A.2 entirely devoted to this topic. I don’t know how the following fits into what it says,
but does have some good examples of calculating bounds and some important caveats, including
a neat “proof” that the sum of the first n integers is O(n).

So some summation factoids follow:

If d is a nonnegative constant and r 6= 1 be a positive constant,

The sum of a polynomial series
∑n

i=1 i
d ∈ Θ(nd+1).

The sum of a geometric series
∑b

i=a r
i ∈ Θ of its largest term. Remember we disallow r = 1,

and note that usually b is some function of the problem size n.

The sum of a logarithmic series
∑n

i=1 log(i) ∈ Θ(n log(n)).

The sum of a polynomial-logarithmic series
∑n

i=1 i
d log(i) ∈ Θ(nd+1 log(n)).

The proof for the geometric series follows from the formula for its sum (Section 3.3) and the
proofs for the other cases rest on the fact that the functions are monotonic and can be bounded by
“upper” and “lower” rectangles. E.g. for nd use the upper rectangle [(0, 0), (n, 0), (n, nd), (0, nd)]
and the lower rectangle [(n/2, 0), (n, 0), (n, (nd)/(2d)), (n/2, (nd)/(2d))]. It turns out the these
upper-bound rectangles and lower-bound rectangles both grow at the same rate, hence the
function has to grow at that rate too. A picture would be good but I’m too lazy.

5 Simple Recurrence Techniques

CLRS presents some sophisticated techniques for solving recurrences but deemphasizes a couple
of simple ones.

10

5.1 Brute Force Substitution

Probably the most obvious thing to do with a recurrence is just to use it to rewrite itself.

In the canonical mergesort example, start with the original

T (n) = 2T (n/2) + n,

So what is 2T (n/2) ? We simply substitute n/2 in the equation and get

2T (n/2) = 2(2T (n/4)) + n/2) = 4T (n/4) + n,

so
T (n) = 4T (n/4) + 2n.

Plodding onwards,

4T (n/4) = 4(2T (n/8)) + n/4) = 8T (n/8) + n,

so
T (n) = 8T (n/8) + 3n.

So we see (and can prove by induction if we wish)

T (n) = 2kT (n/2k) + kn

We know there will only be k = lg n terms, so

T (n) = nT (1) + n lg n = n lg n+ n = O(n log n).

The ugliness of those right hand side partial results is the target of the next technique, which
with a little foresight aims to make the rewriting trivial.

5.2 Telescoping

The telescoping technique is mentioned in CLRS Appendix A1. The crucial observation is that
for any sequence a0, a1, a2, . . . , an,

n∑
i=1

(ak − ak−1) = an − a0.

We used this idea for our infinite-series-solving trick in Section 3.3.

Continuing with the mergesort example:

T (1) = 1

11

T (n) = 2T (n/2) + n,

but it is not in the correct form to telescope. We want the right hand use of T (i) to have
exactly the same form as the left hand side T (i− 1). We notice the pesky 2 and also the pesky
n messing up the right hand side.... We want the RHS to be a function of n/2. Hmmmm.
Inspiration strikes and we divide both sides by n to obtain

T (n)

n
=
T (n/2)

n/2
+ 1.

Fair warning.... this sort of pre-adjustment is an aspect of the telescoping method that is a
bit creative and varies from recurrence to recurrence.

Anyway now we’re set. Our equation now works for any n that is a power of two (removing
this assumption is possible and gives almost the same answer) and we can keep rewriting thus:

T (n/2)

n/2
=
T (n/4)

n/4
+ 1,

T (n/4)

n/4
=
T (n/8)

n/8
+ 1,

down to

T (2)

2
=
T (1)

1
+ 1.

Finally, we can add up all these equations. The left hand side is our original sum, and there
are canceling pairs of terms for all but the first on the LHS and the last on the RHS. There are
lg(n) rewrites since we divide n by 2 every time, so

T (n)

n
=
T (1)

1
+ lg n,

and multiplying by n gives us

T (n) = n lg n+ n = O(n log n).

Now the idea of adding up all the equations is nice conceptually, but in practice we usually
see telescoping presented and used just as re-writing a RHS term: above, just rewriting T (n/2)

n/2

as T (n/4)
n/4

+ 1, say.

12

5.3 The Master Method

The master method (MM) (a.k.a. the Master Theorem) is for solving recurrences of the form

T (n) = aT (n/b) + f(n),

Which is best visualized by a recursion tree that splits up the problem into a smaller versions
(smaller by the factor b) and puts together subproblems at the current level at a cost of f(n).
The sum of non-recursive costs (the f(n)s) at every level is the row-sum.

CLRS seems to rely on their MM proof for intuition as to why it works. They spend a fair
amount of time and space on it (their Section 4.4, with some helpful graphics), and some books
have even hairier proofs. Here I just want to make sure I’m understanding what’s going on. The
two big questions seem to be: In CLRS Theorem 4.1 (their Section 4.3):

1. What do those three cases mean?

2. Where did that logb a come from?

OK. The problem size drops by factor of b for every unit depth increase. Thus we hit
the leaves of the tree at depth D such that (n/bD) = 1. Rearranging and taking logs yields
D = lg(n)/ lg(b), which is in Θ(log n).

What the MM is telling us, in fact the answer to 1), is that the row-sums are not the same
at all depths. Hold that thought.

Let’s figure out how many leaves the tree has. With branching factor a, the number of
nodes at depth D is L = aD. Taking logs gives lg(L) = D lg a = (lg(a)/ lg(b)) lg(n), (using
our expression for D from derived just above). The ratio E = (lg(a)/ lg(b)) relating these tree
properties is important. In fact it is the answer to question 2), since by the last property of logs
in Section 2, (the base-changing formula), E = logb(a). Call E the “critical exponent”.

Thus the number of leaves in the recursion tree is about L = nE. Also we know the depth
of the tree (the number of row-sums) is about D = lg(n)/ lg(c). The row-sum for the row of
leaves at depth D is Θ(nE), or simply nE if the base case cost is 1.

Last, the value T (n) we are looking for is the sum of the non-recursive costs of all the nodes
in the tree, which is the sum of the row-sums.

Often the row-sums form a geometric series, or can be approximated (closely bounded) by
geometric series (here, a series of the form

∑D
d=0 ar

d — see Section 3.3.) The ratio r is important
in determining how the series acts. In particular, we know (Section 4) that if r 6= 1, the sum is
in Θ of its largest term. From what we know and that fact we can deduce the following Little
Master Theorem:

1. Roughly the r > 1 case. If the row-sums form an increasing geometric series (with row 0
at the root of the tree), then T (n) ∈ Θ(nE), with E the critical exponent (a.k.a. logb(a)).
The cost is proportional to the number of leaves in the recursion tree (since the sum is
dominated by the largest member of the series, the last term).

13

2. Roughly the r = 1 case. If the row-sums are about constant, T (n) ∈ Θ(f(n) log(n)) (since
there are Θ(log(n)) equal terms.)

3. Roughly the r < 1 case. If the row-sums are a decreasing geometric series, then T (n) ∈
Θ(f(n)); that is, all the real work is done at the root in putting together the subproblems
— the sum is dominated by the first term.

That’s the intuition behind the MM in terms of geometric series, which are simple and easy
to believe. The MM is a more general result with the same intuitions. The graphics in CLRS
are quite helpful I think. If you don’t like CLRS’s proof, there’s a nice long one in Johnsonbaugh
and Schaefer.

14

