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1 Data Acquisition Basics

This is not a tutorial: we’re not going into details. You’re being given the “opportunity”
(welcome to the world: that is code for “responsibility”) to read existing technical doc-
umentation and understand it. Very luckily for us, the Matlab documentation is clear,
has examples, is not just for experts, and is mirrored in exemplary on-line features and
help. Your primary references are the PDF documentation “User’s Guide” and (you may
want to print this out) the “Quick Reference Guide”, both found down near the bottom of
http://www.mathworks.com/access/helpdesk/help/toolbox/daq/daq.html.
(If you like video and html tutorials they are what you find higher up on this page.) If you’re
into hardware, our data acquisition (and voltage generating) device, National Instrument’s
USB-6009, is described in http://www.ni.com/pdf/manuals/371303l.pdf.

In the User’s Guide, you should glance through the table of contents (pp. v —xvii) ev-
ery now and then, and especially when you have a specific question in a particular subject
context. Of course the Index is good if you have the right name of the subject at hand.

You should read the User’s Guide, Chapter 1, and actually understand most of it. Pages
1-5 through 1-19 are full of basic concepts and are a good investment for your whole engi-
neering career. You can skip from bottom third of 1-21 to 2nd half of 1-24: it’s under-the-hood
hardware issues that may be important to you sometime, though. Pages 1-24 through 1-45
are really basic principles and should be understood in detail, except we can ignore 1-31
through 1-33. In fact we shall be using exclusively the differential inputs for analog signals,
which are generally preferred.

You may find Pages 2-19 through 2-25 to be quite useful: overviews, documentation ex-
amples and demos, the daqhwinfo function for getting information on your hardware, etc.

2 The Hardware and Software Abstractions

This is material from Chapter 3 of the Matlab DAQ User’s Guide (the 744-page one). Details
of the Analog Input, Output, and Digital I/O are in Chapters 4, 6, and 8, with even more
detailed details and advanced stuff in Chapters 5 and 7.

Digital-to-Analog and Analog-to-Digital (D/A and A/D) converters are a lot alike, like cars
or phones, and are accessed and manipulated in the Matlab DAQ toolbox (and LabView) in
functional terms. But there are many DAQ products because their power and number of
features vary (like cars and phones). Thus it behooves you to get the right product for
your application (when you have a choice) on the basis of its specifications and what you
can afford, and take note of how its hardware features are mirrored in the software. Our
situation with one device is typical and representative and generalizable, so everything you
learn about software access will serve you in good stead.

The USB-6009 we use is totally typical. However Matlab (or LabView, I bet) does not
“understand it” directly. Even matlab needs the equivalent of a library of functions to deal
with exterior hardware.
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Each piece of computer hardware (monitors, disk drives, headphones, printers, DAQ
hardware...) has a software driver that communicates with the computer, usually at the
level of the operating system. Matlab has a uniform syntax that does not change with the
device used, and so its commands have to communicate with these drivers. They do that
via adaptors, usually one for each device manufacturer (plus the sound card). This layer is
usually beneath your notice except for the one-liner you use to create an abstract version of
your device: when you command AO = analogoutput(’nidaq’, ’Dev3’), for instance,
you create an instance of the National Instruments adaptor to communicate with the 6009.

The LHS of this statement is any name you choose for the analog input object you have
just constructed (don’t panic, read on).

Both the RHS string arguments are “magic constants” dictated by our software. The
’nidaq’ argument will not change for this class, it means we are using the National In-
struments adaptor. The ’Dev3’ string is a name for our 6009 device. This string is subject
to change after 2011. Somehow the DAQ toolbox is remembering every installation of the
software on campus, of which there have been three in three locations over the past year.
The constant, in the other locations where the DAQ toolbox is still installed, is or has been
’Dev1’ and ’Dev2’. For spring 2011 in Gavett 244 it’s ’Dev3’.

So how do you know what’s right? The software is pretty helpful (if you RTFM), and
there’s a powerful command daqhwinfo() that takes various arguments and gives you var-
ious info about hardware. If the DAQ toolbox does not recognize your device name, it gives
you a red error message and points you to this command. If you type >> daqhwinfo(’nidaq’);
at the Matlab command line you’ll be told the name to use for the 6009 at your location.

The hardware has three basic functions.

1. Digital input and output: output turns on a voltage down a line (signaling a binary 1)
or turns it off (signaling a binary 0). Input reads a voltage on a line and returns 1 if it
is above some value and 0 if not.

2. Analog input: it reads a voltage in some range.

3. Analog output: it outputs a voltage in some range.

Matlab abstracts these functions into three different objects, which you use to control the
device: digitalio, analoginput, analogoutput.

You’ll notice the 6009 has many more than three connections. In fact you can do several
of these I/O operations at once, thus sending or getting data to or from several sources
“simultaneously” (not true, it cycles through them but we’ll ignore that). Thus another level
of truth and abstraction is the individual lines. Analog lines are called channels, maybe
since they have more parameters you can set, and digital ones are indeed called lines. Thus
each object has a set of lines or channels.

Each line or channel has parameters that determine its behavior. These are called prop-
erties. Some properties are common to all lines in the object, and can (must be) set all alike:
these are the common properties of the object. Some properties are settable on a per-line or
per-channel basis: these are Channel (Line) Properties.
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That’s where we stop: you’ll read that the channel and line properties are both divided
into base properties that are universal and device-specific properties that pertain to a par-
ticular device. We’re only concerned here with base properties, so we ignore this distinction.

Important: Before you look at Analog Output, check out the situation with the USB-6009
(Section 5).

The properties we can control are things like the rate at which the device acquires analog
data (for us, up to 48,000 samples / second), the voltage range we expect the data to be in
(we have 8 ranges, from [-10 10] volts to [-1,1]), what starts the collection process (for us,
whether the collection starts when we start the device or whether we start the device and
want it to wait for an explicit trigger command to begin), and so forth. There are lists
of properties, categorized by object and channel or line, in the DAQ reference manual and
Quick Reference Guide.

Several commands give you information about what you can do, and some of them actu-
ally do things to the hardware: Say you have created a device by the command
ai = analoginput(’nidaq’, ’Dev3’);

You can then use inspect(ai), get(ai), set(ai) for instance give you lots of facts
(set tells what you can set, and get tells you what their current settings are) about the object
ai you have constructed. To set a property you use syntax like set(ai, ’PropName’,
<propval>), and to make sure the right thing happed you can use ActualSetting =
setverify(ai, ’PropName’, <propval>). Other useful information commands are
daqhwinfo, inspect, propinfo,....

It seems that if you specify an out-of-bounds value for some property you either get an
error message or the value is set silently to the one closest to the one you had in mind (there
are only 8 discrete voltage ranges for analog input channels, so if you say you want range
[-pi, pi], you’ll get the next best thing (according to the adaptor.)

3 Naming Channels

DAQ abstractions are implemented as Matlab structures, and thus there are two basic syn-
taxes to access and update them. You should read Attaway Chapter 7 for the details, but
basically a named structure is a bunch of named slots each of which contains a value. For
example, if an analog input object is named AI, we can say get(AI,’SampleRate’) or
AI.SampleRate and get the same result.

Not only that, you’ll see that you can make up your own names for channels, for instance.
At channel addition time there’s an optional third parameter, a name.
addchannel(AI, 0, ’BlueLEDVolts’
After that you could say AI.BlueLEDVolts.InputRange = [-5, 5],
for instance.

You’ll notice there is a bit of an issue naming channels. National Instrument channels
are numbered from 0, so addchannel(AI, 0:4) creates five of them. However, Matlab
addresses arrays from 1, so AI.Channel(1) here addresses Channel 0. So
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AI.Channel(1).Inputrange = [-5, 5]) is how you’d address this channel as an array
element.

The digitalio lines seem to be divided into two ports, P0 and P1. This is indeed the case,
and you can choose to use the port distinction or ignore it. There are no port-specific prop-
erties, so maybe it’s for parallel port operation...who knows? Anyway, you can do these sorts
of things:

DIO = digitalio(’nidaq’, ’Dev3’);
OutLines = addline(DIO, 0:3, ’out’); % Use Line No. Only
PortLine = addline(DIO, 1, 1, ’Port1Line1’); % Or Port/Line
sensor = addline(DIO, 2, ’in’, ’OverHeat’);

I’d recommend ignoring ports and just referring to lines 0-12. Thus to refer to line 0, also
known as Port 0 line 0, given Statement ’Use Line No. Only’, above, you’d use OutLines(1).
I think Port 1, line 1 is line 9.

Thus digitalio lines have matlab array and maybe symbolic names as above.
To output digital data, you may specify a ’bit vector’ for which lines get 1 and which lines

get 0: So you might see
putvalue(DIO, 12);
putvalue(DIO, logical([1 0 1 0]));
In the first command the digital 12 is interpreted in binary to get 1100. Note that the first
high-order bit here refers to the first line in the line array (here DIO.Line(1), which has
DIO.Line(1).HwLine = 0 (it’s digital line 0 of the 6009)). Likewise the last (low order) bit
in the vector refers to the last (highest-index-value) line in the Line array. Phew: see the
User’s Guide page 8-14.

This is Matlab, so you can create and address matrices of objects and channels with these
commands. Not only that, but property names are case-insensitive and can abbreviated, so
’SampleRate’, ’SAMPleRatE’, or even ’SampleRa’ are enough to identify the slot (abbrevia-
tions like the latter are a bad idea since some property like ’SampleRadix’ might get added
in the future).

4 National Instruments USB-6009

4.1 What They Tell You

This device (Fig. 1) has a lot going on inside it, including the complex process of dealing
with the USB communications protocol, generating timing information, setting circuits for
different voltages, etc.

Its main information page is this one at National Instruments:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/201987. I’ve found most use-
ful the little tab “Specifications”, where you’ll also find “Detailed Specifications” and “Data
Sheet”.
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Figure 1: The 6009 and its Schematic.

All this is useful in some off-line circumstances, but from a practical point of view,
the DAQ toolbox, via commands like get, set, setverify, daqhwinfo, inspect,
propinfo... can tell you all the attributes you can access, change, or need to know.

A possibly useful page on the labeling of the lines and channels is
http://techteach.no/tekdok/usb6009/index.htm.

4.2 What They Don’t Tell You

¿ The 6009 has internal state that sometimes gets set mysteriously.
IF you get strange errors involving timeouts, lack of timeouts, operations not finished, or
samples missed, if get(ai) (for instance) shows the object in the ’Running’ state when it
shouldn’t be, if you’re told to kill off other jobs or set SampleRate lower, or you get other
mysterious whining,
AND your code seems OK,
THEN delete(daqfind); clear;, turn off connections into the 6009 that may have volt-
ages on them,
DISCONNECT the 6009 from its USB cable and reconnect. That should fix things. If not,
call for help!
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5 Case Study: 6009 and Analog Output

This true story illustrates a little sleuthing and real life use of DAQ commands.
In general, (and in the User’s Guide) analog output works like this: First, you can set

an output voltage on a channel with a putsample() command. Or second, you can queue
up (in the adaptor-driver ’engine’) a vector (say MyData) of analog voltages you want emit-
ted over your channel by using a putdata(ao, MyData) command. You set the rate for
these outputs using set(ao,’SampleRate’,..). After starting the ao object, you issue
a trigger(ao) and the values are sent down the line at the specified rate, in complete
analogy to the way an analog input object works.

BUT. The 6009 can’t do the putdata() thing. How did I discover this? Turns out if I’d
just blundered ahead and stubbed my toe I would have gotten a very helpful error message
telling me the above sad fact and advising me what I should do instead. Gotta Love Matlab’s
User Interface, I must say.

Being me, I wanted to find out just what the timing ranges were before I jumped in. My
first hint of a mystery was NOT in the spec sheet on the main 6009 page. That says you can
go up to 150 samples/sec on an AO line, but no lower range. The “detailed specifications”
PDF has electronic schematics and the words “software timed” opposite the same 150 S/s
line in the specs sheet. This doesn’t look good, but it could mean anything, like maybe the
driver does it. The schematic for the analog output circuit looks suspiciously simple, though.
My experts in ME who’ve used the 6009 for years tell me: “no idea,” and “I always put analog
input in a while loop,” which again doesn’t sound good but isn’t conclusive.

So in the lab I try some stuff: I made a digitalio object and:
setverify(dio, ’TimerPeriod’, 0.001);
seemed to work, but that’s faster than 150/second. What’s up?
propinfo(dio, ’TimerPeriod’);
gives me a range from [0.001 – 2 billion]. Oops...this is interesting and I didn’t know these
numbers, but I really meant ANALOG output, not digital: “never time to do it right, always
time to do it over.”

I make analogoutput object ao, try: inspect(ao),
which shows 150 samples each channel... no news and no help.
setverify(ao,’SampleRate’,100)
works fine, and
propinfo(ao,’SampleRate’
returns [.6 150], which looks believable.

So I’m ready: I make a script like this:

ao = analogoutput(’nidaq’, ’Dev3’);
addchannel(ao, 0, ’aout’);
ActualOutRate = setverify(ao, ’SampleRate’) = 100 % trust but verify
GotOutRate = get(ao,’SampleRate’) % another check
set(ao, ’TriggerType’, ’Manual’);
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VoltsOut = linspace(-1,5,100);
putdata(ao, VoltsOut);
get(ao, ’SamplesOutput’) % 100 if queued or sent? not sure
start(ao);
trigger(ao);
wait(ao, 3); % should only take a second
delete(daqfind);

BOOM. Error at the putdata command to the effect: “Your hardware does not support
timed output. You must use software equivalent. Most systems support pauses down to 0.01
second. Sorry for any inconvenience and have a nice day.”

There it is. So I tried the following script several times, and you might too.

tic
pause(0.01)
toc

Don’t know about you, but I got a bunch of .0092 and .0096, one .019... it’s like we’re
right at the quantization limit for Matlab’s pause here, but more research needs to be done
maybe. One thing we’ll do is the final LED lab.

Conclusion: we can forget the interesting version of analog output for the 2009. We can
only use putsample, pause, and prayer.
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A Electricity: All You Need To Know

What follows is no substitute for your high-school physics. Electricity is a current of elec-
trons thought of (for some strange reason) as flowing from a positive source into a sink called
ground. It is measured in amperes, proportional to electrons per second through the wire.
The more electrons per second, the more current. The force propelling the electrons is elec-
tromotive force, or a voltage, or a potential difference (measured in volts, as from a battery
or other source.

We’ll mainly deal with direct current, which flows in one direction. alternating current,
found in house wiring or the input and output of transformers, flows alternately in both
directions, in the USA usually at 60 Hz. Later we’ll use a step-down transformer that
produces 6 volts of alternating current from the 110 volt AC from the wall plug.

The current in a wire can be lowered by a resistor, which converts some of the electrons
to heat. Resistance is measured in ohms, and typical resistors have values from a few ohms
to millions. Current, voltage, and resistance are governed by Ohm’s Law: If I is current, R
is resistance, and V the voltage (potential difference) across the resistance, then I = V/R.

That’s it. The 6009 has a +5 volt voltage source and several ground terminals. The digital
outputs come with a ground connection and put out something like 6 volts relative to that
ground when they are turned on. The digital inputs register 0 if the input voltage is low,
and 1 if it is high (again, above about 6 volts). The single ended analog inputs measure the
difference between one input and the associated ground terminal. The differential analog
inputs measure the potential difference between their two inputs, and are generally more
accurate and to be preferred. The analog outputs put the requested voltage on their positive
terminal, relative to the associated ground terminal. All the 6009’s grounds are connected
but there are several for ease of wiring.
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B Components

B.1 Diodes

Diodes pass current one way and don’t want to pass it the other. They are asymmetrical, and
must be wired with that in mind. Our diodes are light-emitting diodes: if their positive end
is connected to a positive voltage source and their negative end is connected to ground, they
will emit light as long as the positive voltage is in some range (about 1 volt to 5 volts). If they
get too much voltage in that direction, they could burn out (depending on the current). If
they are wired in the opposite direction, they’ll either stop the current or blow out. Morals:
wire them in the right direction and control their input voltage.

They tend to have two clues to their polarity. Their long lead is for the positive input, the
shorter one is to go to ground. Also they tend to have a a flat part on their bulb, which is on
the ground side.

To limit the voltage across them, we put them in series with a resistor. That is, a resistor
is between them and the voltage source and the ground. It can be before or after them in
the circuit, that’s not important. We’ll use any old resistor in the 500-700 ohm range for an
input of 10 volts and a current (supplied by the 6009) of 200 milliamperes.

B.2 Resistors

Resistors are symmetrical devices, and can be facing either way in a circuit. Their values in
ohms are encoded by the colored bands on their bodies. Google ’resistor color code chart’ or
go to http://www.elexp.com/t resist.htm for instance.

For our work we’ll give you the resistors you need.

B.3 Breadboard

This useful item lets you put together temporary circuits and change them easily (no solder-
ing). Fig. 2 shows that in this case there are semi-rows of five holes and vertical columns of
30 holes, in which each hole is electrically connected to the others.

You can see that the rows are numbered from about 0 to 30 and that there are two
columns on the left and right of each row. The internal columns are labeled in two groups,
A-E on one side and F-J on the other.

In the figure, the far left and far right two columns (of about 30 holes each) are con-
nected: the blue and red lines on the breadboard are strictly for your convenience, but they
are sometimes used as a common positive voltage source (connected to any hole in the red
column) and ground (connected to any hole in the blue). We won’t be doing that uniformly,
but we could.

In each of the 30 rows, the holes A-E and F-J are also electrically connected. None of
these internal 5-hole sub-rows is connected to any other hole: all 5 holes in a sub-row y are
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Figure 2: Typical solderless breadboard. Lines indicate semi-rows and columns of holes, for
each of which the holes are electrically connected.

connected to each other but isolated from all other holes – in particular the A-E holes on row
X are not connected to the F-J holes on row X or any other row.

To connect a component (LED, resistor, or wire) to a hole just jam the uninsulated end of
the lead into the hole.

C Number Bases

In a number-base system (for instance, the base-10 or decimal system in worldwide use) a
non-negative integer (like 327) is written as a string of digits di (here d0 = 7, d1 = 2, d2 = 3.
That string is here a base-10 (decimal) representation of the integer that is the three
hundred and twenty-seventh successor of zero, or the sum of 325 + 2, or generally the integer
we agree we mean by ’three hundred and twenty-seven’.

To define what the string of digits means, the rule is:

I =
n∑

i=0

dib
i

where b is the base of the number system. Thus 327 = 7 + 2*10 + 3*100, and we say 2 is in
the “ten’s place” and 3 is in the “hundred’s place”, etc.
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How many different digits do we need? As many as the base: in base 10: 0, 1, 2, 3, 4, 5,
6, 7, 8, 9. After that, we go to two digits: 10, 11, 12... And the ’largest’ digit is one less than
the base.

That’s it. Integers in ’trinary’ look like 210212, and in ’octal’ they look like 67045300215,
for example, and their values are computed as above. It’s not easy for us to get their English
equivalents by inspection since we don’t usually have powers of 3 and 8 memorized.

Binary, octal, and hexadecimal (base 16) numbers are important in computers since bi-
nary numbers are the basic representation of computer data and both octal and hexadecimal
act like shorthand for binary.

The first eight binary numbers are

421 <-- "binary places"

bin dec
000 0
001 1
010
011
100
101 5
110
111 7

Often in computer representations (as in naming lines in the USB-6009 DA/AD con-
verter), a bit string like 001001 represents a set: in this case we have a domain of six items
and the string is 1 in the first and fourth (counting from right) positions, so it denotes the
set consisting of the first and fourth items from the domain. Sometimes the digits in the
string are called ’flags’, with the understanding that 1 means the flag is true and 0 if not.
Thus for instance the Unix permission codes for a file is (about) a string of 9 bits:

owner group others
read write execute r w x r w x
1 1 1 1 1 0 1 0 0

The above string means the file owner has total control, members of his group can read
and write the file, but others can only read it.

Clearly, a 32-bit integer is a string of 32 bits, this time to be interpreted (by hardware)
as binary digits, not flags.

Octal and Hex are shorthand for binary since their bases are powers of two. Each octal
digit represents three binary bits. 0 for 000, 1 for 001, 5 for 101, and 7 for 111 for instance.
Likewise there are 16 Hex digits, universally written 0-9, A,B,C,D,E,F: 3 is binary 0011, 9
is 1001, A is 1010, F is 1111. Thus we can write 32 bits as 8 Hex digits like DEADFADE or
FEE169F0.
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Famous CS riddle: Prove Halloween = Christmas.
Mind-stretching department: Consider negative, imaginary, and complex number bases!

The same old formula above applies.
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