CSC 290E
Pi Project
9-28-2010

MATLAB approximating pi

Introduction:

This project involved approximating the value of pi using MATLAB and testing to find out
which method works best based on accuracy and processing speed. Four different approaches
were used to approximate pi. The first was an Archimedes approximation, which involves
approximating pi based on the perimeter of a regular N-gon, where each vertex is .5 units away
from the center. Considering a regular N-gon becomes more circular as N approaches infinity,
the perimeter of the N-gon essentially becomes the circumference of a circle. Circumference =
2*pi*rad, so by assuming rad = .5 we can approximate the value of pi. The next two
approaches were the Leibniz and Wallis approximations. The Leibniz approximation is an

o0 (_l)n B T

— 2n+1 B

infinite series of the form = 4 (Wikipedia.com). By multiplying the value of

the series by four we can approximate the value of pi. The Wallis product states,
2]_O_OI (2n—1)(2n+1)
T (2n) (2n)

n=1
an approximation of pi. The fourth approach involved a Monte Carlo Simulation of throwing

) (midnightwiki.com). Two times the Wallis product yields

darts at a board. Here we simulate random darts being thrown at a 1 x 1 square containing % of
a circle with radius one. We can calculate the distance of the random (x, y) coordinate of each
dart to find whether it “stuck” inside or outside the circle. The ratio of darts inside the circle to
total darts thrown approximates pi.

The Functions:

My first function, arch_pi, approximates pi using Archimedes’ method. The function
prompts the user for the number of sides of the N-gon. The function then uses trigonometry to
calculate internal angles, side lengths, and finally the perimeter of the N-gon, approximating pi.
Arch_pi also has the ability to take a 1 x N vector as input, and return a 1 x N vector of pi approximations

/ \ (Archimedes approach according to the CSC290E blackboard page)
s/ K’ Opp My functions for the Leibniz and Wallis

approximations, leib_pi and wallis_pi respectively, have a

sinA = ——gﬂ’——-
different structure than arch_pi. Both leib_pi and wallis_pi

prompt the user for the number of terms (N), and calculates the value of the series to that number of
terms. The calculation is achieved by using a ‘for’ loop to loop the general term over the range 1 to N.

The Monte Carlo approximation, monte_carlo_pi, has a unique algorithm. It prompts the user
for the number of darts in the simulation, N. Variables x and y are assigned to random real numbers
from 0 to 1. The function then uses a ‘for’ loop to run the Monte Carlo simulation using N darts and
counts how many darts land in the circle. The ratio of darts in the circle to total darts is then used to
approximate pi.

The function nests this first loop in another loop, which runs the simulation 1000 times. The
approximated values of pi are assigned to one long vector. The vector is sorted, and the first 100 and
last 100 terms are discarded to eliminate outlying values that will skew the results. The function returns
the arithmetic mean of the remaining values. The function also calculates the standard deviation of the
results. If the user assigns two variables to monte_carlo_pi(N), the first variable will return the
approximated value pi and the second will return the standard deviation of the 800 middle trial values.
The function also resets the seed of the random number stream based on the MATLAB clock (I found the
code for this while navigating through ‘help rand’ and similar topics). By resetting the seed every time
the function is open, it changes the sequence of random numbers generated.

How | Compared

To test and compare the functions, | wrote scripts to loop each function through a given range
of input values, gather data such as error and CPU time, and plot the results. | compared Archimedes
approximations of pi using polygons with 1 to 10° sides, Leibniz approximations with 1 to 10> terms,
Wallis approximations with 1 to 10° terms, and Monte Carlo simulations with 1 to 10* darts.
| then wrote a script, pi_driver to launch all the plotting scripts.

Results

: x 107 No. of Sides v. Error for Archimedes Approx x 10* No. Sides v. CPU time of Archimedes approx

09} 09p

08} 0.8}
07} 0.7}

06} 06}

L3
5 E
s o0s] = o5l
& 2
04 O o4l
03} 0.3}
02 0.2pH L 2 A
0.1F 0L
0 0 L
0 5 6 8 9 10 0 1 2 3 4 5 6 7 8 9 10
No. of Sides x 10 No. of Sides x 10
Figure 1, No. of Sides v. Error, Archimedes Figure 2, No. of Sides v. CPU time, Archimedes

According to figure 1, an Archimedes approximation of pi using a polygon with more than 10° sides has
an error of less than 10”. In other words, a 10*-gon approximates pi correctly to 7 decimal places. The

data also indicates that an inverse relationship exists between the number of polygon sides and the
error of approximation.

According to figure 2, it appears that the arch_pi function operates at a somewhat constant CPU time of
approximately 2*107 seconds. The plotted value of 2*107 is rather peculiar, however. When |
launched arch_pi with various input values on the range 10,000 to 100,000 in the MATLAB command
window and measured time elapsed, the time elapsed averaged at about 1.4*10™ seconds. CB
suggested that MATLAB may be recognizing the existence of a loop and changing the processing
algorithm behind our back.

x 10" No. of Terms v. Error for Leibniz Approx x 10° No. Terms v. CPU time of Leibniz approx

oSt 08

08} 08
0.7} 07
06} 06

051 05

Error
CPU time

04L 04

03t 03

0.2t 0.2

0.1L 0.1

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
No. of terms ¢ No. of terms X 104

Figure 3, No. of Terms v. Error, Leibniz Figure 4, No. of Terms v. CPU time, Leibniz

Figure 3 shows that the Leibniz function approximated pi correctly to 4 decimal places using 10*to 10°
terms. It also indicated an inverse relationship between number of terms and error.

Figure 4 illustrates that the CPU time of the function increases with a near constant rate of
approximately (.6*¥10” seconds)/(10000 terms), or 6¥10” seconds per 1000 terms.

x 10 No. Terms v. Error for Wallis Approx. 05X 10° No. Terms v. CPU time of Wallis approx
1 X
09}
08} 21
074
06} 154
©
s £
s o5l =
o x
04p S 4L
03}f
02¢ 054
0L
0 L 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
No. of terms x 10 No. of terms x 10*
Figure 5, No. of Terms v. Error, Wallis Figure 6, No. of Terms v. CPU time, Wallis

Figure 5 is very similar to figure 3 of the Leibniz function. Once again, pi was approximated correctly to
4 decimal places using 10" to 10°. However, the Wallis function also approximates pi correctly to 5
decimal places using close to 10° terms.

According figure 6, the CPU time for the Wallis function is directly related to the number of terms and
increases with an approximate rate of 2*¥10™ seconds per 1000 terms.

No. of Darts v. Error for Monte Carlo Approx. No. of Dats v. Standard Deviation of data for Monte Carlo Approx
0.01 0.1

0.009 0.09 1

0.008 0.08}

0.007 0.07}
S

0.006 H S 0.06}
=

& oo} 8 oos|
g °
©

0.004f T oo4f
%]

0.0031 0.03}

0.002 0.02}+

0.001¢ 0.01F

0 . . . | . | ! | N 0 . . . |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
No. of Darts No. of Darts
Figure 7, No. of Darts v. Error, Monte Carlo Figure 8, No. of Darts v. Standard Deviation

Figure 7, while appearing scattered, does relay some important information. As the number of darts
approached 10000, the error lingered predominantly in a range of .001 and below. This indicates that,
on average, a Monte Carlo simulation with 10000 darts will approximate pi within three decimal places
of accuracy. If I had more knowledge of data fitting and MATLAB | would have tried to model the error
with a best fit curve.

Because the Monte Carlo Simulation deals with random numbers, | also plotted darts v. the standard
deviation of values (figure 8). We can see that as the number of darts increases, the standard deviation
of the data decreases. This inverse relationship tells us that the Monte Carlo simulation increases in
precision as the number of darts increases.

No. Darts v. CPU time of Monte Carlo approx

08} i

07} i

06} 4

05} i

CPU time

041 i

03} 4

02} i

01} B

0 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
No. of Darts

Figure 9, No. of Darts v. CPU time
Figure 9 indicates that the CPU time of the Monte Carlo function is directly related to the number of

darts. CPU increases with an approximate rate of 1 second per 1000 darts, much slower than the other
three functions.

Which One is Best?

According to my results, the Archimedes approximation of pi is most accurate and practical.

Accuracy

The Archimedes approximation had the lowest calculated error of all the functions. An Archimedes
approximation of pi using a 10000-gon had seven degrees of precision, while 10000 terms of the other
functions only had up to 4 degrees of precision.

Practicality

The Archimedes approximation of pi offered several advantages related to CPU speed. Most
importantly, as the number of sides increased, the CPU time remained nearly constant. Each other
function showed a direct relationship between the number of terms and the CPU time. Therefore, one
can approximate pi using my Archimedes function with nearly any number of sides without worrying
about waiting around for MATLAB to process the result. Even though other functions, such as Leib_pi,
were faster at calculating, say, 3 terms, they fell far behind when processing very large numbers of
terms (which we use to get a good approximation).

The reason for the lack of a direct relationship between terms and CPU time for the Archimedes
approximation is its lack of a loop. The Archimedes function only executes a few calculations in
sequence and displays a result. The other three pi-approximating functions involve ‘for’ loops that
drastically increase CPU time as the number of terms, and therefore the number of loop iterations,
becomes very large. My Monte Carlo simulation, for example, contains two large loops that cause the
function to operate at the speed of 1 sec/1000 darts.

The lack of a ‘for’ loop in the Archimedes function leads to another advantage. In MATLAB, a function
truncates after 2147483647 iterations of a loop. This further limits the functionality of the other three
pi-approximating functions, which will reach a term limit sooner than the Archimedes function will.

In short, the Archimedes function is the simplest in design. In engineering, we strive to reach a goal as
efficiently as possible. According to my results, of the Archimedes, Leibniz, Wallis, and Monte Carlo
approaches, the Archimedes approach can be most efficiently written as a practical MATLAB function.

Extra Credit

For extra credit, | also included a pi-approximating function that uses the Euler approximation of pi. This
1

-
P

J%. The code for this function is very similar to

2
—=Zj

s v

approximation is represented by the notation
that of leib_pi. The plots of No. terms v. speed and No. terms v. CPU time appear as follows.

x 107 No. of Terms v. Error for Euler Approx.
1 T T T T T T T T T

09t 4

08} 4

0.7¢ 4

06F 4

051 4

Error

041 -

021 4

0.1t i

0 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

No. of terms X 104

Figure 10

Figure 10 shows the number of terms v. error for this function for 1 to 1*10° terms. Figure 10 looks
almost identical to figure 3. The graph shows an inverse relationship between number of terms and
error. It also shows that for a number of terms greater that 1*10*, eulerpi will approximate pi will an
error of less than 1*10™,

x 107 No. Terms v. CPU time of Euler approx
1 T T T T T T T T T

09t 4

0.7} 4

06} 4

0.5t 4

CPU time

04t -

03} 4

02t 4

0.1t 4

0 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

No. of terms X 104

Figure 11

Figure 11 shows the graph of No. of terms v. CPU time for the Euler approximating function. CPU time
increases with a seemingly constant slope of roughly 1*10®°seconds per 1000 terms.

The Euler approximation was similar in accuracy to both the Leibniz and Wallis approximations, and a
little faster than both. Even still, it was much slower than arch_pi for large numbers of terms, further
cementing arch_pi’s place as the best overall pi approximating function.

