
Omar Mustardo & Zach Fletcher

Programming - C

Week 3/4 Project

Scan, Parse, and Evaluate

Abstract:
 This program takes in and solves arithmetic expressions. It uses three main parts:

the scanner, parser, and evaluator.

Scanner:
 The scanner is given a file to get data from. It retrieves one character at a time and

puts the characters into nodes in a linked list based on the following deterministic finite

automaton.

DFA for the Scanner

(Diagram 1)

Start
] or)

[or (

digit

letter
space

/n

digit

A

B

.

.

digit ;

END

;

Goes to another DFA

See Diagram 2

O
perator

] or)

Letter

S

O

G

Too many possibilities to show but this is
an example of how the scanner finds COS

C

L

T
X

E

Back to Start

Parser:
 The parser takes in the head of the linked list from the Scanner. It creates a parse

tree by taking the head node off of the linked list and putting it onto the tree. This parse

tree can be viewed by uncommenting line 23 in main.c . We decided not to show the

parse tree normally because a normal user generally doesn't want to see how their

equations are computed.

 The position on the tree is determined by the typeID of the node for operators.

The typeID is an integer that represents an operation. It is also used to represent

numbers, parenthesis, and special functions.

typeID : representation

0 - ^

1 - /

2 - *

3 - -

4 - +

10 - Numbers

20 - [(

21 -])

30 - SIN

31 - COS

32 - TAN

33 - SQRT

34 - LN

35 - LOG

36 - EXP

Diagram 2

A higher typeID for an operator signifies lower precedence so a node with low

precedence is moved up the tree.

Parentheses are put into the tree by recursively calling the method to make a tree and

assigning the head node of the recursive tree to the place where it would go in the main

tree if it were a number.

5.000000

4.000000

5.000000 5.000000

5.000000

4.000000 5.000000

5.000000

4.000000

5.000000

4.000000

5.000000

5.000000

5.000000

5.000000 4.000000

5+4+5+5;

==

Operator: +

 5.000000

 Operator: +

 4.000000

 Operator: +

 5.000000

 5.000000

Diagram 3:
Building the parse tree

The special operations are evaluated in almost the same manner as parentheses with a

recursive make tree call. The difference is that special operations are evaluated and their

operation is performed immediately before they are added to the main tree as a number.

Evaluator:
 The evaluation process is simple with the parse tree that we designed. The

evaluator recurses to the left until it finds two numbers to perform an operation on. It

performs the operation and sets the typeID of the operation's node to 10 which means

that it is now the node of a number. Then it changes the value of the node to the result of

the operation. Then it continues recursing through the tree until the head becomes a

number at which point the evaluator returns that number.

 Diagram 5 shows how a parse tree is evaluated.

See diagram 6 for example output and visual representations of parse trees.

5 + sin(pi/2);

==

Operator: +

 5.000000

 1.000000

5 + sin(pi/2);

== 6.000000

pi/2;

==

Operator: /

 3.141593

 2.000000

pi/2;

== 1.570796

π 2.000000

1.570796

5.000000 1.000000

SIN(1.57079

6)

Diagram 4:
Evaluation of special

operations

5.000000

4.000000

5.000000 5.000000

5.000000

4.000000 10.000000

5.000000 14.000000

19.000000

5+4+5+5;

==

Operator: +

 5.000000

 Operator: +

 4.000000

 Operator: +

 5.000000

 5.000000

5+4+5+5;

== 19.000000

Diagram 5:
Evaluation of the parse tree

3/2+4(5-3^2)+2;

==

Operator: +

 Operator: /

 3.000000

 2.000000

 Operator: +

 Operator: *

 4.000000

 Operator: -

 5.000000

 Operator: ^

 3.000000

 2.000000

 2.000000

5+4*5+5;

==

Operator: +

 5.000000

 Operator: +

 Operator: *

 4.000000

 5.000000

 5.000000

5+4+5+5;

==

Operator: +

 5.000000

 Operator: +

 4.000000

 Operator: +

 5.000000

 5.000000

5.000000

4.000000

5.000000 5.000000

4.000000 5.000000

5.000000

5.000000

3.000000

 2.000000 2.000000

3.000000

5.000000

4.000000

2.000000

5+4+5+5;

== 19.000000

5+4*5+5;

== 30.000000

3/2+4(5-3^2)+2;

== -12.500000

Diagram 6:
Sample output and parse trees

