
1

Patterns, Automata, and 
Regular Expressions

• Finite Automata – formal or abstract 
machine to recognize patterns

• Regular expressions – formal notation to 
describe/generate patterns

Finite Automata

• A finite collection of states
• An alphabet
• A set of transitions between those states labeled 

with symbols in the alphabet
• A start state, S0
• One or more final states

Deterministic – single-valued transition, no epsilon 
transitions

Non-deterministic – multi-valued transitions

Regular Expressions

• Defines a set of strings over the characters contained in 
some alphabet, defining a language

• Atomic operand can be 
– a character, 
– the symbol ε, 
– the symbol Φ, or 
– a variable whose value can be any pattern defined by a regular 

expression

• Three basic operations/operators
– Union – e.g., a|b
– Concatenation – e.g., ab
– Closure – (Kleene closure) – e.g., a* - where a can be a set 

concatenated with itself zero or more times

Precedence of Regular Expression 
Operators

• Closure (highest)
• Concatenation
• Union

Algebraic Laws for Regular 
Expressions

• Identity for Union Φ|R = R|Φ= R
• Identity for concatenation εR=Rε=R
• Associativity and commutativity of union 

R|S=S|R, ((R|S)|T) = (R|(S|T))
• Associativity of concatenation (RS)T = R(ST)
• Non-commutativity of concatenation
• Left distributivity of concatenation over union 

(R(S|T)) = (RS|RT)
• Right distributivity of concatenation over union 

((S|T)R) = (SR|TR)
• Idempotence of union (R | R) = R



2

RE <-> DFA

RE

NFA

DFA

Thompson’s 
Construction

Subset
Construction

State-Elimination
Construction

• Build NFA for each term, connect them 
with � moves
– Concatenate - ab

– Union – a|b

– Kleene Closure – a*

Automated RE->NFA

a
s0 s1

b
s2 s3

a
s0 s1

b
s2 s3

�

s3s2

��
�

a
s0 s1

a
s0 s1

b
s2 s3

s4 s5

�

� �
�

�

Thompson’s Construction

• Each NFA has a single start state and a single 
final state, with no transitions leaving the final 
state and only the initial transition entering the 
start state

• An � -move always connects two states that were 
start or final states

• A state has at most 2 entering and 2 exiting � -
moves, and at most 1 entering and 1 exiting 
move on a symbol in the alphabet

NFA->DFA

• Subset construction algorithm 
– Each state in DFA corresponds to a set of states in NFA

q0 � ε-closure(n0)
initialize Q with {q0}
while (Q is still changing)

for each qi � Q
for each character ��� �

t� ε-closure(move(qi, � ))
T[qi, � ] � t
if t � Q then 

add t to Q

Example
�

m a i n
S0 Sm Sa Si Sn

S0 S0,Sm S0,Sa
m

�
-m

a i

n
S0,Si

�
-n,m

�
-a,m

�
-i,m

S0,Sn S0,Sn,
Sm

So,Sn,
Sa

S0,Sn,
Si

NFA

Corresponding DFA

m

�
-m

a i

�

�
-m

�
-a,m

�
-i,m

m m m
m m m

DFA Minimization

P � P {SF, {S - SF}
while (P is still changing)

T � 0
for each set p � P

for each  �	��

partition p by �

into p1, p2, p3, … pk
T� T U p1, p2, p3, … pk

if T � P then 
P � T



3

Automated DFA->RE

for i = 1 to N
for j = 1 to N

Rij
0 = {a|� (si,a) = sj}

if (i == j)
Rij

0 = Rij
0 U �

for k = 1 to N
for i = 1 to N

for j = 1 to N
Rij

k = Rik
k-1 Rkk

k-1 Rkj
k-1 URij

k-1 

L = U R1j
N 

s
j � SF

Identifier
letter � (a|b|c| … |z|A|B|C| … |Z)
digit � (0|1|2|3|4|5|6|7|8|9)
id � letter (letter|digit)*

Regular Expression and DFA

S1

letter
digit

accept

S2

S0
letter

digit

errorletter
digit

Implementing Scanners 
(Recognizer)

• Ad-hoc
• Semi-mechanical pure DFA
• Table-driven DFA

Code for Semi-Mechanical Pure 
DFA

state = S0; /* code for S0 */
done = false;
token_value = “” /* empty string */ 
token_type = error;
char = next_char();
while (not done) {

class = char_class[char];
switch(state) {

case S0:
switch (class)

case ‘letter’: token_type = identifier; token_value = token_value+char; 
state = S1; char = next_char(); break;

case ‘digit’:   done = true; break;
case ‘other’:  done = true; break;

break;
case S1: 

switch(class)
case ‘letter’:
case ‘digit’: token_value = token_value+char;  char = next_char(); break;
case ‘other’: done = true; break;

break;
}

}
return(token_type); 

Table-Driven Recognizer

S3

S0 S2S1 otherletter

digit
other accept

error

letter
digit

Tables Driving the Recognizer

otherdigitletterlettervalue

other0-9A-Za-z
char_class

----S2S3other

----S1S3digit

----S1S1letter

S3S2S1S0class

next_state

To change language, we can just change tables



4

Table-Driven Recognizer/Scanner

char = next_char();
state = S0; /* code for S0 */
token_value = “” /* empty string */
while (not done) {

class = char_class[char];
state = next_state[class,state];
switch(state) {

case S2: /* accept state */
token_type = identifier;
done = true; break;

case S3: /* error */
token_type = error;
done = true; break;

default: /* building an id */
token_value = token_value + char;
char = next_char; break;

}
}
return(token_type);

Error Recovery

• E.g., illegal character
• What should the scanner do?

– Report the error
– Try to correct it?

• Error correction techniques
– Minimum distance corrections
– Hard token recovery
– Skip until match

Scanner Summary

• Break up input into tokens
• Catch lexical errors
• Difficulty affected by language design
• Issues 

– Input buffering
– Lookahead
– Error recovery

• Scanner generators
– Tokens specified by regular expressions
– Regular expression -> DFA
– Highly efficient in practice


