

Context-Free Grammars

- Adds recursion/allows non-terminals to be expressed in terms of themselves
- Can be used to count/impart structure e.g., nested parentheses
- Notation grammar G(S,N,T,P)
 - S is the start symbol
 - N is a set of non-terminal symbols (LHS)
 - T is a set of terminal symbols (tokens)
 - P is a ser of productions or rewrite rules (P : N \rightarrow N U T)

Derivations

- A sequence of application of the rewrite rules is a derivation or a parse (e.g., deriving the string x + 2 - y)
- The process of discovering a derivation is called parsing

Parse Trees

A parse tree for a grammar G is a tree where

- The root is the start symbol for G
- The interior nodes are non-terminals of G
- The leaf nodes are terminal symbols of G
- The children of a node T (from left to right) correspond to the symbols on the right hand side of some production for T in G

Every terminal string generated by a grammar has at least one corresponding parse tree; every valid parse tree represents a string generated by the grammar (yield of the parse tree)

Advantages of CFGs

- Precise syntactic specification of a programming language
- · Easy to understand, avoids ad hoc definition
- Easier to maintain, add new language features
- · Can automatically construct efficient parser
- Parser construction reveals ambiguity, other difficulties
- · Imparts structure to language
- · Supports syntax-directed translation

Calculator Example

- All variables are integers
- There are no declarations
- The only statements are assignments, input, and output
- Expressions use one of four arithmetic operators and parentheses
- Operators are left associative, with the usual precedence
- · There are no unary operators

Regular Expressions

id \rightarrow letter (letter | digit)* literal \rightarrow digit digit* read, write, ":=", "+", "-", "*", "/", "(", ")" \$\$ /* end of input */

Grammar for Calculator

 $\begin{array}{l} < pgm> \rightarrow < stmtlist> \$\$ \\ < stmtlist> \rightarrow < stmtlist> < stmt> | \epsilon \\ < stmt> \rightarrow id := < expr> | read < id> | write < expr> \\ < expr> \rightarrow < term> | < expr> < add op> < term> \\ < term> \rightarrow < factor> | < term> < multop> < factor> \\ < factor> \rightarrow (< expr>) | id | literal \\ < addop> \rightarrow + | - \\ < multop> \rightarrow * | / \end{array}$

Types of derivations

- Leftmost derivation
 - The leftmost non-terminal is replaced at each step
- Rightmost derivation

 The rightmost non-terminal is replaced at each step
- Ambiguous grammar one with multiple leftmost (or multiple rightmost) derivations for a single sentential form

Types of parsers

- Top-down (LL) parsers
- Left to right, leftmost derivation
- Starts at the root of the derivation tree and fills in
- Predicts next state with n lookahead
- Bottom-up (LR) parsers
- Left to right, rightmost derivation
- Starts at the leaves and fills in
- Start with input string, end with start symbol
- Starts in a state valid for legal first tokens
 Change state to encode possibilities as input is
- consumed
- Use a stack to store both state and sentential form

Top-Down Parsing

- At a node labeled A, select a production with A on its LHS and for each symbol on its RHS, construct the appropriate child
- When a terminal is added that does not match the input, backtrack
- Find the next node to be expanded (must have a label in NT)

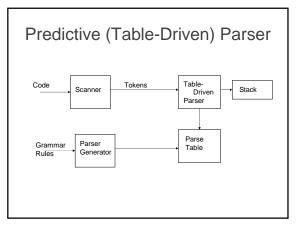
Eliminating Common Prefixes

foo → bar δ → bar (µ) → foo → bar footail footail → $\delta | (µ)$

LL Grammar for Calculator $<pgm> \rightarrow <stmtlist> \$$ $<stmtlist> \rightarrow <stmt < <stmtlist> | \epsilon$ $<stmt> \rightarrow id := <expr> | read <id> | write <expr>$ $<math><expr> \rightarrow <term> <termtail>$ $<termtail> \rightarrow <addop> <term> <termtail> | \epsilon$ $<term> \rightarrow <factor> <factortail>$ $<math><factortail> \rightarrow <multop> <factor> <factortail> | \epsilon$ $<factor> \rightarrow (<expr>) | id | literal$ $<addop> \rightarrow + | <multop> \rightarrow *| /$

Parser Construction

- Recursive descent parsing
 - Top-down parsing algorithm
 - Built on procedure calls (may be recursive)
 - Write procedure for each non-terminal, turning each production into clause
 - Insert call to procedure A() for non-terminal A and to match(x) for terminal x
 - Start by invoking procedure for start symbol S



Predictive (Table-Driven) Parsing

- Actions
 - Match a terminal
 - Predict a production
 - Announce a syntax error
- Push as yet unseen portions of productions onto a stack
- Use -
 - FIRST (A)
 - FOLLOW(A)

The FIRST Set

- FIRST(α) is the set of terminal symbols that begin strings derived from α
- To build FIRST(X):
 - If X is a terminal, FIRST(X) is {X}
 - If $X \leftarrow \epsilon$, then $\epsilon \epsilon FIRST(X)$
 - If X←Y1 Y2 … Yk then put FIRST(Y1) in FIRST(X)
 - If X is a non-terminal and X \leftarrow Y1 Y2 ... Yk, then a ϵ FIRST(X) if a ϵ FIRST(Yi) and ϵ ϵ FIRST(Yj), for all 1≤j<i

The Follow Set

- For a non-terminal A, FOLLOW(A) is the set of terminals that can appear immediately to the right of A in some sentential form
- To build FOLLOW(B) for all B -
 - Starting with goal, place eof in FOLLOW(<goal>)
 - If $A \leftarrow \alpha B\beta$, then put {FIRST(β)- ϵ } in FOLLOW(B)
 - If $A \leftarrow \alpha B$, then put FOLLOW(A) in FOLLOW(B)
 - If $A \leftarrow \alpha B\beta$ and $\varepsilon \varepsilon$ FIRST(β), then put FOLLOW(A) in FOLLOW(B)

Using FIRST and FOLLOW

- For each production A ← α and lookahead token
 - Expand A using the production if token ϵ FIRST($\alpha)$
 - If $\epsilon \; \epsilon \; FIRST(\alpha),$ expand A using the production if token $\epsilon \; FOLLOW(A)$
 - All other tokens return error
- If there are multiple choices, the grammar is not LL(1) (predictive)

LL(1) Grammars

A Grammar G is LL(1) if and only if, for all non-terminals A, each distinct pair of productions A $\leftarrow \alpha$ and A $\leftarrow \beta$ satisfy the condition FIRST(α) \cap FIRST(β) = Φ , i.e.,

For each set of productions $A \leftarrow \alpha 1 | \alpha 2 | ... | \alpha n$

- > FIRST(α 1), FIRST(α 2), ..., FIRST(α n) are all pairwise disjoint
- > If α_i ←ε for any i, then FIRST(α_j) ∩ FOLLOW(A) = Φ, for all j≠i

The Complexity of LL(1) Parsing

- Inside main loop bounded by constant (function of symbols on RHS)
- How many times does the main loop execute?
 - Number of iterations is the number of nodes in the parse tree, which is N*P (N is the number of tokens in the input, P is the number of productions)
 - P is a constant, therefore running time is O(N)

CFGs versus Regular Expressions

- CFGs strictly more powerful than REs
 - Any language that can be generated using an RE can be generated by a CFG (proof by induction)
 - There are languages that can be generated by a CFG that cannot be generated by an RE (proof by contradiction)

Example non-LL Grammar Construct

stmt → if condition then_clause else_clause | other_stmt

then_clause \rightarrow then stmt

else_clause \rightarrow else stmt | ϵ

Ambiguous – allows dangling else to be paired with either then in if A then if B then C else D

