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Abstract

In this paper, I briefly introduce and summarize the state of the art
of emergent behavior. I also present my own experiment and findings.
I used a competitive domain to investigate how information contributes
to emergent behavior. Specifically, I attempt to see if there is a certain
required level of information for emergent behavior to arise. By using the
competitive domain to decide “which team is stronger”, I simply examine
the results of a round-robin tournament between teams of agents. The
only difference between each team is simply how far the member agents
can see. My hypothesis was that there would be a certain “cutoff” point,
where after a certain sight range teams, having access to enough or more
than the sufficient level of information, would act dramatically better.
Sadly, this hypothesis was most likely falsified by the evidence. What I
did find was that both too much and too little sight range creates weaker
teams, while a middling sight range creates the strongest. This paper
ends with a discussion of what next steps might be taken in investigating
emergent behavior in this fashion.
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1 Introduction

This paper presents a brief introduction to the topic of emergent behavior, some
past and present research in the field, and details my own research in subject.
My work was an attempt to help define a formal requirement of emergent behav-
ior, through a series of experiments and simulations. As a result, I found that
I needed to also investigate how one detects, measures, and evaluates emergent
behavior in a system. Before continuing, I will attempt to explain emergent
behavior, and summarize the state of the art.

1.1 Emergent Behavior

Emergent behavior can be called a kind of global behavior that arises from
many agents interacting in a system, but is not attributable to any particular
agent[PMKDO02, VVPV97, Nit05]. Some common examples of emergent behav-
ior that arise in nature are hive insects such as bees, ants, and termites, as
well as herding behaviors in groups of land mammals, and flocking behaviors
in birds[Par97, Mat92, HK04]. However, emergent behavior can often arise in
the technological world. Computers can communicate with one another through
networks, robots communicate with one another via radio signals, and our facto-
ries work off of complex, automated schedules[Nit05, VVPV97, Mog06]. Unfor-
tunately, as for now, most examples of emergent behavior in our technology are
for the worse[VVPV97, Mog06]. Everywhere we are creating complex, densely
connected systems, where countless agents can interact. Clearly, then, the abil-
ity to analyze, predict, measure, and in any way understand emergent behavior
is critical for knowing simply how all of our systems truly work.

1.2 Current State of the Art

There are many papers discussing the powers, applications, and abilities of
emergent systems[LSLO06, Nit05]. Many revolve around implementing emergent
behavior already found in nature[Par97, Mat92, HK04, Nit05], but others focus
on behaviors somewhat divorced from the natural world[Mog06, Nit05]. Those
papers demonstrate inspiring results on how very simple rules can emulate ants
foraging for food, or termites building their nest, or animals herding. There are
also papers that present ideas on how to analyze and predict and formulize emer-
gent behaviors in systems, some from a biological perpective and others from a
purely theoretical or technical[SBB0O1, RVHT04b, HRRT05, WZ07, VVPV97].
A notable disparity is that, while there seems to be some settled-upon — and
quite elegantly simple — implementations of simple emergent behavior such
as those listed above, there seems to be very little agreed upon in methods of
analyzing emergent behavior. This is certainly understandable, as by its very
nature emergent behavior is extremely difficult to predict'. This paper is an
attempt to contribute to the communities’ ability to analyze emergent behavior.

ndeed, a few papers have said that emergent behavior is precisely that which is not easy
to predict!



Within the general label of “analyzing”, however, there are several logical
ways of dividing that topic up into sub-topics. Here I will discuss the differ-
ence between attempts at analyzing the behavior of emergent systems, versus
analyzing what makes them “emergent”.

1.2.1 Ability to Predict The Behavior of an Emergent System

Most of the papers analyzing emergent behavior attempt to focus on, well,
the behavior part of it[RVHT04b, HRRT05, WZ07]. The benefit of successfully
analyzing the behavior is obvious — one gets to understand what actually would
happen with the emergent system! They attempt to analyze emegent behavior
through various models and formalisms[RVH"04b, HRRT05, SBB01, WZ07].
Using models to predict the behavior allows researchers to attempt to design
a system that is purposefully emergent[RVHT04b, HRRT05]. On the other
hand, some papers hold that simulation is a strong way to analyze the behavior
of emergent systems[VVPV97, LSL06]. While much of the literature I found
focused on analyzing and determining the behavior of an emergent system,
it seemed that there was a severe lack of research on when or why emergent
behavior actually arose in a system.

1.2.2 Ability to Predict the Emergence of an Emergent System

The ability to predict the “emergence” part of emergent behavior is obviously
critical to understanding the subject. However, while there are many formalisms
attempting to describe the behavior of an emergent system, it seemed that
there was little research trying to understand how those behaviors precisely
emerged. Early research did present “rules of thumb” for identifying emergent
behavior[VVPV97]. Early research also showed that the individual agents need
not be very smart at all to demonstrate the typical behavior examples, such as
flocking or herding[Mat92]. However, there seems to be, simply, a lack of any
ability to formally say “this level of interaction is required for emergence”, or
anything of the like.

1.3 The Purpose of This Research

The purpose of this research is not to create a way to formally say such a
statement, because that is a huge challenge. Rather, the experiments presented
were an attempt to provide initial measurements on how levels of information
available to individual agents determined the exhibition of emergent behavior.

1.3.1 The Hypothesis

Consider: intuitively, a large set of agents that simply cannot communicate
with one another, and cannot observe the world around them, should really not
be able to exhibit any sort of emergent behavior. On the other hand, a set of
agents in which each contain total (or at least, most) information about their



surroundings and are smart enough to compute how to work in concert seems
also not emergent.

Thus, my hypothesis is simply this: for emergent behavior to arise, there
needs to be a certain density of information available to each agent that makes
up the system.

I test this using a software simulator of my own making, and use it to “host”
a round-robin tournament between agents in a competitive domain. The only
difference between the agents is how “far” they can see in the simulation world
— the ones that see farther clearly have more information than those that do
not. A key assumption that was deemed necessary is that the team of agents
that wins ought to have acted in a more emergent fashion[Gor09].

The hypothesis would be verified if the experiments showed that a certain
“relationship” between information levels resulted in a likely outcome for one
side. The hypothesis would be falsified if there was no clear rhyme or reason to
which team was the winner in any given matchup.



2 Experiment Setup

Here I will discuss the experiment itself (independent of the softare) and explain
my reasoning for it. It will conclude with a description of some implementation
details for the simulator software.

2.1 The Domain Chosen for this Paper

Most of the experiments in emergent behavior have the same general setup: a set
of simple agents that will ultimately work together, and perhaps a few immobile
obstacles[Mat92, WZ07, Par97]. However, I felt that while these domains were
certainly worth exploring, for my experiments I chose a more unusual one —
a competitive one. Essentially, there are two teams of agents, blandly called
“red” and “blue” due to their colors displayed on the GUI. These agents all
exist on a 2D plane of discrete square cells. Agents have four behaviors to
choose from: attack nearest enemy, avoid enemies, move towards nearest friend,
or avoid friends. They act by either moving or attacking in a cardinal direction,
as appropriate, each timestep. If an agent is attacked often enough by agents
from the opposing team, it sadly perishes and is removed from the simulation.

The agents can also investigate their immediate surroundings, and recieve a
summary in the form of a perception vector. The agents can also query nearby
friendly agents, and adopt what they see as their own perception vector. In
this sense, agents can communicate, and the most important messages spread
around the system.?

As this research is an attempt to study what effect “more or less information”
has on an emergent system, the sight range value, which dictates just how far
away each agent can see from its position, is the adjusted variable. The round-
robin tournament was essentially between 10 teams, identical to one another
except that each had a different sight range. Team 1 has sight range of 1, team
2 has sight range of 2, all the way up to team 10 with sight range of 10. With the
sight range value being the only changing variable in the simulation, I hoped that
this round-robin tournament would help reveal what role in emergent behavior
information played.

But why a competitive domain?

2.1.1 Importance of Competitive Domain

As stated before, emergent behavior can easily arise from computer networks,
and other systems of interacting technology. The current emergent behavior
research is helpful towards understanding those systems. However, it seems to
me that there are so many examples of interconnected systems, that there may
be multiple emergent systems in the same space. Studying this competitive

2The idea of a red team versus a blue team in a competitive setting is incredibly common
for computer and board games. However, in the context of emergent behavior, this is not the
first paper to use such a system — the ISAAC system[I1a94] was the first, as far as I can tell.
That system was in some ways significantly influential in the design of this software, the exact
extent of which will be discussed later.



domain may hopefully lead to some insight on how entire emergent systems
interact with one another. Furthermore, many of the aspired, future uses of
emergent systems involve pitting them against rival systems. A proposed NASA
mission involves sending a fleet of simple, emergent-behavior-exhibiting drones
into the asteroid belt[RVHT04b, RVHT04a, HRRT05]. Perhaps that mission can
be best seen as one emergent system interacting with another — the asteroids.
An exciting medicinal application would be a host of microscopic robots entering
a human body and killing viruses[Hol07]. Clearly, that can also be construed as
two competing emergent systems.

Clearly, studying emergent behaviors in competitive domains is a necessity,
and so this research uses such a domain.

2.1.2 Will Emergent Behavior Even Arise?

Given this competitive domain, the next questions to ask are “is it sufficient
for emergent behavior to arise,” and “why is sight range the way to adjustable
variable for how much information density the agents recieve?” Fortunately,
it seems likely that emergent behavior is quite possible in this domain. As
stated before, very simple agents can result in emergent behavior[Mat92, Par97].
Indeed, early research concluded that many emergent behaviors can “build up”
from simpler ones, in a fittingly bottom-up approach[Mat92, BMM94].

Sight range was chosen as the adjusted variable in the experiments because
there is prior research that indicates it can be the deciding factor for emergent
behavior. The ISAAC system was developed to find new wawys of simulating
land warfare for military-research purposes, using emergent systems[Ilad4]. It
uses a simulator not entirely different from the one I developed, though theirs
adds significant complexity to better reflect military structure. Ilachinski men-
tions at one point that, when adjusting one team’s equivelant of sight range,
a team became much more effective and demonstrated much greater coopera-
tion. But as the value was increased further, the team broke down and was very
ineffective. These findings, actually tangential to the purpose of the ISAAC
paper, seem to indicate that chosen independent variable is the correct one to
investigate.

2.2 Issues with Experimentation as a Research Tool

As a tool to understanding emergent behavior, experimentation through simu-
lations is an accepted method[WZ07, Nit05]. However, experimentation has its
own flaws. I will list and attempt to address the most glaring of these in this
section.

e Is there even a way to extend results I find to the entire field of emergent
behavior? Or will the conclusions be limited to just this domain, with just
this simulator?

I feel that there is a possibility of broadly applicable conclusions from
these experiments. If they show, for example, that the larger the sight



range on a team, the more effective it is, I believe that it is possible to
extrapolate some more general conclusions. Perhaps there will not be a
neat mathematical formula that computes exactly how much information
is required for emergent behavior (indeed, simply measure what numerical
value to assign to information is a feat in and of itself!), but I think it
reasonable to be able to extend the results to create “rules of thumb”
about emergent behavior.

e Given a particular experiment run of this simulation, or any simulation,
what tools exist to definitely show that emergent behavior either arose
or did not? Is it possible to look at a recording of a simulation, and
quantitatively say that “feature X” is indicative of emergent behavior?

How I went about addressing this issue is a significant portion of both
the results and discussion sections. Just as it seems difficult to predict
what is necessary to bring about emergent behavior, the exact ways to
decide whether or not emergent behavior is occuring in any given simu-
lation is difficult. However, this issue is in large part dealt with by the
initial assumption that, for any given competition, the “winning” team
demonstrates “more” emergent behavior.

Conveniently, due to the competitive nature of the domain, the winning
team is easily calculated: whichever team has more pieces remaining at
the end of the simulation is the winner!

Hopefully this brief discussion has addressed a few of the central concerns about
the validity of the experiments.

2.3 Implementing the Domain, the Simulator Software

The last concern, or perhaps question, to address is simply why I chose to
implement my own simulator, rather than use an already-existing one. While
there are many other simulation programs out there, such as NetLogo[TW04],
I thought it best to make my own for a number of reasons.

As this is my first real foray into studying emergent behavior, I thought it
would be best if I understood as deeply as possible what concerns and issues
went into the software. The best way to gain such an understanding is, of course,
to make one yourself. In a similar vein, there is always the need to understand
exactly what is going on in a simulation, and writing your own addresses that.
I also entertained the hope that by implementing the simulator, I would gain
further insight into the very nature of emergent behavior. If that occured, I did
not notice. Lastly, I wanted the ability to provide full recording of both the
GUI in the form of an animated GIF, as well as “behind-the-scenes” activity in
the form of a plaintext log file. Simply put, I was unable to find if there was
any software that allowed one to do that to the extent that I wished.

With that reasoning, I created the simulator software. I never named the
simulator, so I simply refer to it as “the simulator” and the like. For brevity



(which this paper sorely lacks) I will not include a full description of the simu-
lator software. Here are some choice facts about it.

It is written entirely in the Python, using a 2.5.2 interpreter for Ubuntu
8.04 LTS.

For graphics display, it uses the Pygame 1.7 module, which is an SDL
wrapper, so it should work on video cards with OpenGL support.

The simulation procedes in discrete steps.

Agents recieve sensor input through a perception vector, a 5-element list.
In order, the elements of that list are, the number of friends seen, the
number of enemies seen, the difference between the centroid of friends
versus the centroid of enemies, the time in which this perception was
made, and the location at which this perception was made.

A brief sketch of how agents behave is as follows:

As stated before, the agents can exhibit one of four behaviors: attack
nearest enemy, avoid enemies, go towards nearest friend, or avoid friends.
Given a perception vector to act off of, agents act based off of their policy
vector3. The policy vector, inspired by the personality vector used in
the ISAAC system[Ila94], is simply a collection of four vectors. Every
timestep, the agent takes four dot products — one for each pairing of the
perception vector with one of the sub-vectors in the policy vector. Each
of those four dot products refers to one of the four behaviors available.
The highest dot product is the behavior that the agent will exhibit.

However, agents are not only able to percieve their immediate surround-
ings, but prior to making acting on their perception vector, they also
“listen” to nearby friendly agents. With a big list of all of their percep-
tion vectors as well, the agent simply sees which perception, out of all of
them, produces the highest-value dot product. That perception, regard-
less of where or when it originated, will be what the agent chooses as
“its” perception vector *. A nice side-effect of this implementation is that
an agent’s behavior can be entirely described through its policy vector, a
mere 24-number encoding.

This was the simulator used for all of the experiments that will be discussed
shortly.

3Credit for the name goes to Professor Brown of the University of Rochester Computer
Science Department.

4Note that, intuitively, a sane policy vector will have negative values paired up with the
time and location value — as a message should be less important as it gets older



3 The Experiments

I ran two sets of experiments for this research. Both were round-robin tourna-
ments between the teams with sight range ranging from 1 to 10. They both took
place in a simulation with the x and y directions set to 100 — the simulator
world had 10,000 discrete cells. The only difference between the tournaments
were the initial starting conditions. In the first tournament, each team was
placed in its own 30 x 10 rectangle, a little distance apart. Both teams filled up
every third location, so there were a total of 100 agents per side, or 200 agents
altogether. The second tournament, each team had 150 agents, but they were
scattered randomly throughout the map initially.

In an attempt to get more robust data, I ran the first tournament three
times. Due to time constraints, I was only able to run the second tournament
once.

Here is an example of an early timestep in a first-tournament game:

Readers with good eyesight may notice that it appears each square has an
“inner square” of a different shade. This is displayed simply for debugging
purposes — those inner squares are visual representations of what behavior
the agent is acting upon. Black refers to “attack enemies”, white is “approach
friends”, yellow is “flee enemies”, and green is “avoid friends”.

10



Without further ado, here is an example of an early timestep in a second-
tournament game:

Included in the submission of this paper are a few choice simulations archived
and compressed. I could not include all of my data, especially not in any
sort of appendix, because the amount of data produced by these tournaments
was substantial. The first tournament, using 200 agents a simulation and 55
simulations®, produced around 170 megabytes. The second tournament, us-
ing 300 agents a simulation and another 55 simulations, produced around 350
megabytes.

3.1 Policy Vectors

The tricky part about beginning these experiments was determining the policy
vectors for the agents. Without question, all agents would use the same policy
vector, but how could I settle on the values? Initially, I attempted to “train”
ideal policy vectors — simply by randomly generating one, and pitting it against
a previous winner. However, such attempts did not work out. I have entertained

. . 10 .
5That number simply comes from number of games in a tournament: (Eifl 2)
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the idea of a genetic algorithm process, but that was simply beyond the scope
of this research.

3.1.1 Manually-Set Policy Vectors

Ultimately, the solution I settled upon was a simple one: I will simply manually
set the policy vectors®! Thankfully, the underlying implementation of policy-
vector interpretation made the manual setting straightfoward. For example, it
is intuitive that an agent would want to attack enemies when it is far from the
centroid of enemies, when it is surrounded by friends, and when it can see many
enemies. Thus, those respective weights in the policy vectors would be positive.
After determining which values ought to be positive and which negative, it
was simply a matter of fiddling until I found ones that had the agents exhibit
sane-enough behaviors. In an attempt to “normalize” everything, I tested these
values with sight range set to 5 — the middle of the range of values that I would
be testing.
Here are the values used in these experiments:

Action # Friends | # Enemies | C Diff | T Diff | L Diff
Attack 2 10 -1 -0.1 -0.1
Retreat -6 20 -1 -1 -0.5
Approach Friend -2 4 2 -1 -0.5
Avoid Friends 2 -50 1 -1 -0.5

C Diff refers to the centroid distance, which is to say the comparitive distance
between the centroid of friends, and the centroid of enemies. T Diff is the time
difference — how recent is this message? L Diff is the location distance — how
far was the origin of this message to this current recipient?

One can see how certain values make a certain action more or less preferred,
given a certain perception.

3.1.2 Mapping/Normalizing Perception Values

An especially astute reader may notice a potential flaw: the perceptions of an
agent grow disproportionately to one another, given an increase in sight range!
That is to say, increasing the sight range will potentially increase the number
of seen friends or enemies by roughly a quadratic function of the sight range.
However, the distance between the centroids will only increase by about a linear
function! This has the effect of making policy vectors have wildly different
effects, even for roughly equivelant perceptions, for agents with different sight
ranges. Thus, behind the scenes, the simulator actually performs some functions
to normalize the values, and divide them by either the area observable by the
agent, or the sight range of the agent, as appropriate. So, in actuality, the
“number of friends” value is more like “density of friends,” and so on.

6 Again, credit goes to Professor Brown of the University of Rochester for this suggestion

12



4 Results

In this section I will explain the various methods used data to get results from
the experiments. The discussion section, appropriately, will contain the real
discussion about the data.

4.1 Method of Gathering the Data

The results were culled from the plaintext log file produced by every simulation.
The numbers gathered are simply various ratios and relationships based off of
how many agents there were per team at the start, compared to how many
remained at the end. After all, as stated before, a core assumption is that the
more successful team demonstrates “more” emergent behavior.

4.2 Method of Organizing Data

The data, as one can find in Appendix A and B, is organized into a series of
charts. Appendix A has the charts for tournament one, where the teams were
arrayed in initial formations. Appendix B has the charts for tournmanet two,
where the teams were scattered all across the map at the start of the simulation.
In each appendix there are ten charts, one for each team, so the first chart in
appendix A is for team 1, the second for team 2, and so on. Each chart is
organized like so:

The Y axis is between 0 and 1, and refers to a percentage — 1 refers to %100,
and so on. The X axis iterates through all 10 possible opposing teams. The blue
bars refers to what percentage of the main team remains — so for the chart with
Team 3, the blue bar above point 5 refers to the percentage of Team 3 members
that remained at the end of a matchup between Team 3 and 5. Likewise, the
red bard refers to the percentage of the other team remaining. So, again, on the
fifth point in the Team 3 chart, the red bar refers to the percentage of Team 5’s
agents remaining. Lastly, if one were to call pieces removed during a simulation
“casualties”, the yellow bar refers to what percentage of the casualties were for
the main team. These three values are computed for every possible matchup.

4.3 Method of Analyzing the Data

The simulations were in fact very time-consuming, and so sadly I was only able
to run the few I have here. I believe that there are enough data points to begin
identifying underlying trends, and draw conclusions from those. However, there
are not enough points to start running statistical or regressions-based analysis
— there simply are not enough numbers to make those meaningful. Thus, I
simply looked at the charts, and many of the simulation recordings, to try to
identify what was going on, and how emergent behavior did or did not arise.
The interpretation of the results are in the discussion section.

13



5 Discussion

The data, between data set 1 (data from the first tournament) and data set 2
(from the second tournament) has both significant differences and similarities.
First I will discuss those trends that seemed particular to each tournament style,
and then the general trends. Lastly, I will discuss how these findings either verify
or falsify my hypothesis.

5.1 Data Set 1

Originally I had hoped that the nature of the first tournament, with its “starting
formations,” would allow for really clever emergent behavior to arise, especially
from those with longer sight range. Unfortunately, it seems that almost the
opposite happened — larger sight-range teams, for tournament one, would often
charge straight into the middle of the enemy team, allowing themselves to get
surrounded unless if their opponents were still more zealous. For this reason,
high-sight-range teams (around 8, 9, and 10) performed surprisingly poorly.

However, teams with very little sight range also performed poorly, but very
reliably poorly, against all opponents. These were the teams with sight range 1
or 2. This trend seems to lend itself to verifying the hypothesis — is sight range
3 this “cutoff point” for information density, the line between non-emergent
and emergent behavior? Sadly, this single data set is far too small to verify the
hypothesis.

The best performing teams were in the middle sight range — around 5 to 7.
This may have been in part because I originally hand-tuned the policy vectors for
sight range 5, but at least in tournament 1 it was team 6 that seemed to perform
even better. That little detail could maybe imply that emergent behavior does
not “commute” very well between different sight ranges — perhaps a larger sight
range could reliably beat a shorter, but with different policy vectors.

Overall, it seems that this data set gives some small hope to the hypothesis,
in that there is the cuttoff-in-efficacy effect at sight-range 3. That a team
becomes less effective over an increase in sight range was observed before, in
the ISAAC report[Ila94].

5.2 Data Set 2

Here we a see much a more linear growth in team effectiveness and sight range
increases. The number of surviving team-members grows pretty steadily from
chart 1 to chart 2, and so on. Interestingly, it is again sight range 3 where a
team first beats another with higher sight range.

Examining the charts of the higher-sight range teams, it would appear that
they reliably beat teams 1, 2, and 3 in slightly decreasing rates of effectiveness.
However, at sight range from 4 to 6, it seems much less consistent. This would
imply, perhaps, that there still is a cutoff point for this tournament as well, but
at the sight-range 4 mark, rather than 3.

14



5.3 General Trends

Between both tournaments, very high and very low sight-ranges were the worst
performers. This observation neatly lines up with the intuitions following the
statement of the hypothesis, much earlier in the paper. For intuition does lead
to the idea that emergent behavior requires some kind of “middle ground” as far
as information is concerned — to little and there is no cooperation, too much
and they would all act as individuals. However, the higher-sight-range teams
for tournament 1 performed remarkably badly in part, I think, simply because
of the way the matches were set up.

In tournament 2, with completely random placement, the differences in effi-
cacy between teams were smoother. That single observation leads me to think
that random-placement is the way to proceed studying this particular domain.
I will expand upon such thoughts in the conclusion section.

5.4 Hypothesis — Verified or Falsified?

Finally, what is the verdict concerning the hypothesis? Sadly, I must say that it
is mostly falsified. The reason I say falsified is because the trends in tournament
2 are simply too smooth to present a sharp cutoff where one can point and say
“here is where emergent behavior began”. Tournament one did have that to
some degree with sight range 3, but it does not seem sharp enough to counteract
the evidence from tournament two. But I say “mostly” falsified because the data
sets gathered here are very small. I did not have enough time to run more, but
several dozen more tournaments each would create truly definitive trends.

15



6 Conclusions

Even with my hypothesis falsified, the idea of exploring the boundary between
emergent and non-emergent behavior is key to understanding emergent behav-
ior. These experiments probably have disproved my initial thoughts on how
emergent behavior arises, but they also raise many more questions, thoughts,
and paths of investigation.

6.1 In What Way Does Information Promote Emergent
Behavior?

These experiments seemed to show that there is not a sharp cutoff for efficacy
of emergent behaviors as a function of information, but rather a trend. This
just raises the question: what kind of role does information play with efficacy of
emergent systems? Does comparitive efficacy increase linearly? Polynomially?
Or in some terribly unpredictable pattern?

6.2 Measuring Coherence

This paper has measured emergence by simply whichever team won, or did bet-
ter, in a given simulation. But there are other ways of measuring emergent
behavior, one of which could be how “coherent” the teams were. How often
did the agents react in concert? How infrequently did they have counteracting
behaviors? This idea presents an entirely different way of analyzing the results
of these experiments, and could perhaps shed new light on the matter. Sadly,
time contraints prohibited me from being able to fully analyze the effect of co-
herence in a quantitative fashion. Reviewing the recordings of a few simulations,
however, it is pretty clear that larger sight range encourages coherence, but to
what degree is the fascinating part, and the part that would require truly in-
depth analysis. I am unaware if there is even an established methodology for
measuring coherence.

6.3 The Idea of a Competitive Domain

This paper also used a competitive, rather than single-team domain. Rather
than trying to get a herding effect or flocking effect, I investigated how different
teams of rivals would attempt to defeat one another. As stated in the introduc-
tion, I believe further research in this area is imperative for understanding more
on how emergent behavior works, and also for producing emergent systems that
really do what we want in fighting disease, or exploring dangerous terrain. This
paper mainly used the competitive domain for ease of analysis — I let the win-
ner tell me who was more “emergent” than the other. But understanding these
interactions between two emergent systems, I think, is a path worth following
in its own right.

16



6.4 Looking Forward

I believe all of those are ideas worth pursuing in the study of emergent behavior.
More immediately, I believe the next steps for this research is to first simply run
more test, and establish a real solid base of numbers. The next way to progress
this particular research is to deal with the manually-set policy vectors. As hinted
at in the results and discussion, it may be that different sight ranges require
different policy vectors. I do not think that accounts for all the differences in
the results, but I believe that automating a way to at least search for better
policy vectors for each sight range would be fruitful. It is almost impossible, but
to establish a few competitions where one knows that the “best possible policy
vector” is in use for each side would be ideal, and stretching towards that goal
is worthwhile.

In summary, the results in this paper have not even scratched the surface
of what is left to find out. More experiments, better experiments, and larger
experiments will all hopefully reveal more information about this fascinating
field. Certainly, every aspect of emergent behavior is fascinating. Hopefully
new research will tell us more about this fascinating phenomenon.
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