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1 The problem

Solve

T (0) = 0

T (n) =
1

n

n−1∑
i=0

T (i) + cn, n > 0.

Prove your answer. What is the asymptotic order of T (n)? What can you say about
generalizations?

2 Solution (creating a guess)

By now in class we’ve thought about this... did it fit the form for The Master Method? How
about just brute force substitution? What’s happening? One thing is that ALL the previous
T (k)’s are involved, which doesn’t look like the MM. Substitution looks like a mess. We’ve sort
of seen this kind of thing before... Hmmmm...

OK, it’s a telescope job, as it turns out, but you can’t do it just as it stands – if you mess
around you’ll be getting frustrated by that (1/n), but we’ve seen this problem before in our very
first telescope e.g., so try (forgive the notation)

nTn = Tn−1 + Tn−2 + . . . + T1 + T0 + cn2.

(n− 1)Tn−1 = Tn−2 + Tn−3 + . . . + T1 + T0 + c(n− 1)2.

Subtracting (telescoping) makes sense now...
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nTn − (n− 1)Tn−1 = Tn−1 + c(n2 − (n2 − 2n + 1)),

so

n(Tn − Tn−1) = c(2n− 1),

and
(Tn − Tn−1) = 2c− c

n
,

thus
Tn = Tn−1 + 2c− c

n
.

So this is super-simple to add up... we just have n steps of adding the terms involving c and
carrying along the sum, so

Tn = n2c− c
n∑

i=1

1

i
.

Wow. Out of nowhere has emerged our old friend the harmonic series H(n). As the man
says, this happens more in computer science than in the natural sciences...

3 Prove the solution

We know we’re in for a proof by mathematical induction. We want to prove the claim

Tn = 2nc− c
n∑

i=1

1

i
.

We have the definition of the recurrence:

T (0) = 0

T (n) =
1

n

n−1∑
i=0

T (i) + cn.

Base case: Does the claim work?

T0 = 0,

and murtherfore,
T1 = 2c− c · 1 = c,
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which is easy to check is right by the definition ( it equals cn if n = 1).

Inductive step:

We assume we know

T0 = 0

etc, all the way up to

Tk = 2kc− c
k∑

i=1

1

i
,

and we want to prove

Tk+1 = 2(k + 1)c− c
k+1∑
i=1

1

i
.

From the definition we can write (changing notation again)

T (k + 1) =
1

k + 1
T (k) +

1

k + 1

k−1∑
i=0

T (i) + c(k + 1).

Now remember we’re looking for an instance of a solved case of our problem within this
mess. That sum looks familiar, and if you refer to the definition you’ll see that the definition
can be rewritten as

k−1∑
i=0

T (i) = k(T (k)− ck).

So this feels right – we have something fairly neat to substitute in for something sort of
messy, and it uses the definition in place of a piece of our problem, so nothing to do but forge
on...

T (k + 1) =
1

k + 1
T (k) +

1

k + 1
(kT (k)− ck2) + c(k + 1).

Well this is cool. The terms involving T (k) actually add up to one whole T (k):

T (k + 1) = T (k) +
1

k + 1
(−ck2) + c(k + 1).

Using the claim to re-write the T (k) and doing some algebra on the rest gives

T (k + 1) = 2kc− c
k∑

i=1

1

i
+

ck2 + 2ck + c− ck2

k + 1
.
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Things are still a little hazy but we know one thing: we gotta get a −c/(k + 1) into that
second (harmonic series) term if it’s going to be the right sum for the k + 1 case. So let’s create
it, subtract it out in the sum and add it back in the rightmost term:

T (k + 1) = 2kc− c
k+1∑
i=1

1

i
+

ck2 + 2ck + c + c− ck2

k + 1
.

Simplify that messy last term:

T (k + 1) = 2kc− c
k+1∑
i=1

1

i
+

2ck + 2c

k + 1
,

more...

T (k + 1) = 2kc− c
k+1∑
i=1

1

i
+

2c(k + 1)

k + 1
,

T (k + 1) = 2kc− c
k+1∑
i=1

1

i
+ 2c,

et voila...

T (k + 1) = 2c(k + 1)− c
k+1∑
i=1

1

i
.

4 Asymptotic complexity

We should remember for the harmonic series,

H(n) =
n∑

i=1

1

i
≈ ln n

with an additive error tending toward a (in fact, Euler’s) constant. Thus as n →∞, T (n) is
in Θ(n).

5 Afterthought... Constants matter!

Our example recurrence,

T (0) = 0
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T (n) =
1

n

n−1∑
i=0

T (i) + cn, n > 0,

resembles very much the recurrence describing the expected running time of Quicksort. I’m
not sure that analysis is done in detail in CLRS but there’s a nice quickie justification for the
detailed approach on p. 158. We’ll look at the detailed approach in class. Anyway, it’s

Q(0) = 0

Q(n) =
2

n

n−1∑
i=0

Q(i) + n, n > 0.

That factor of 2 in the recurrence changes the answer from O(n) to O(n log n). In fact
Q(n) ≈ 1.386n lg n− 1.846n, as we’ll see.

So this raises the obvious question: what if that numerator gets larger? I asked Prof.
Ogihara, who had this to say. [Comments by me in square brackets.]

For k ≥ 3 , T (n) ∈ Θ(nk−1), although I can’t obtain a general solution.

Let’s say we have

T (n) = (k/n)
n−1∑
i=0

T (i) + an + b.

Here a + b ≥ 0 so that T (1) = a + b ≥ 0.

Just to make sure we have a base case with value greater than zero, so the recurrence produces
an increasing sum, let m be the first i such that T (m) > 0.

Just following the previous approach, we have

nT (n)− (n− 1)T (n− 1) = kT (n− 1) + a(2n− 1) + b (1)

By moving terms we have:

nT (n) = (n + k − 1)T (n− 1) + a(2n− 1) + b.

This gives an inequality nT (n) ≥ (n + k − 1)T (n− 1). So,

T (n) ≥ (n + k − 1)(n + k − 2)...(m + k)

n(n− 1)...(m + 1)
T (m)

=
(n + k − 1)...(n + 1)

(m + k − 1)...(m + 1)
T (m).
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This is Ω(nk−1). On the other hand, we have an inequality

T (n) =
(n + k − 1)

n
T (n− 1) +

2a + b

n
≤ c(n + k − 1)

n
T (n− 1)

for some constant c and for all n ≥ m + 1.

By using the same analysis, we have T (n) = O(ck−1nk−1). Since c is a constant, we have
T (n) = O(nk−1).

k = 1 and k = 2 are special cases in which Eq. (1) produces much simpler formulas.
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