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Abstract 

Factoring composite numbers is not an “ easy”  task.  It is classified as a “ hard”  
algorithm, which is why the cryptosystems that are based upon its “ hardness,”  such as 
RSA, are very secure.  Despite this, factoring algorithms are still not optimal and can still 
be optimized by a constant—and sometimes linear—factor.  There are many ways to do 
this by utilizing different classes of algorithms.  The most well known set of classes 
includes trial division, probabilistic methods, geometric methods, and number sieving.  
Each class attacks the problem of factorization a different way, producing at least one 
factor—sometimes non-deterministically—for each run of the algorithm.  This paper 
outlines the methods used to implement each of five algorithms and determines their 
resulting runtime, which is then further compared to the ease of implementation.  In the 
end a probabilistic algorithm—Pollard’s Rho—was deemed the best algorithm. 

 
Background and Motivation 

Factoring numbers is what is called a “hard”  task, which means that any algorithm 
designed to factor will not run in polynomial time.  In fact, most of the algorithms that 
exist today run on the order of en, where e is Euler’s number [6].   

Since prime numbers can be found in polynomial time, and multiplication can also 
be done in polynomial time, the combination of these two creates a polynomial time 
algorithm that can generate large composite numbers with large prime factors.  Because 
these large composite numbers can be generated “easily”  and it is “hard”  to factor them 
again, public key cryptosystems can be based on publishing the large composite number 
and having a private key that is somehow based upon the factorization of the public 
number.  In particular, RSA has created a very popular version, where a user’s private 
key is Euler’s Phi function of the composite number. 

Mainly due to the popularity of the RSA cryptosystem, many different methods for 
factoring composite numbers have been developed1.  It is useful to step back to take a 
look at the larger picture. 

 
Project Goals 

The comparison of factoring algorithms has already been done many times over and 
is a hotspot in research because of the popularity of the RSA cryptosystem [4].  

                                                 
1 It is important to note that factoring large composite numbers is not necessarily an equivalent problem to 
breaking RSA.  Mathematicians are divided on the open problem of whether or not the two are equivalent, 
but it is thought that, although it is still a “hard”  problem, it is possible to break RSA without factorization.  
This is beyond the scope of this project, however, because there are no known methods for breaking RSA 
without factoring the modulus [3]. 



Therefore, although the main goal of this project is to compare factoring algorithms, this 
project also focuses on the implementation of algorithms. 

An inverse relationship appears to exist between ease of implementation of any 
factoring algorithm and its respective runtime, although there are some exceptions.   
Thus, like any software engineering project, it is necessary to weigh the costs and the 
benefits of each side.  Although some factorization algorithms are comparatively very 
fast, the time it takes to implement them may outweigh any speed-up in runtime.  This 
comparison is a key factor in determining a good algorithm. 

When runtime is the only factor being measured, there is a choice of whether to use 
an existing algorithm or to generate an implementation; either based on pseudo-code or 
from scratch.  There is a tradeoff between the two choices.  Using existing code 
guarantees a much faster result (since optimizations are built in) and—to a larger 
degree—a working solution.  However, new implementations allow for more equality 
between each algorithm since they are being generated by the same person. 

Since one of the goals of this project is to determine the tradeoffs between 
implementation and algorithm speed, the choice becomes moot.  Thus, the project 
involves creating implementations of each algorithm for testing purposes instead of using 
existing algorithms. 

 
Environment 

All code was written in Java Standard Edition version 1.4.2.  Programs were run on 
a machine running Linux with dual Pentium III 1133MHz processors. 

Java is one of the best languages for this task because of its modularity and built in 
libraries.  For each algorithm to be equal in structure, a class was defined for each that 
implemented a standardized interface.  Thus, each implementation was a module that 
could be run and timed by a separate application; this is easy in Java because of its 
object-orientation and its type casting.  Java also offers many libraries, in particular, the 
BigInteger class that handles infinite precision arithmetic, which is necessary for the 
large numbers that are involved in this project. 

The only major negative aspect of using Java is its runtime overhead.  Also, Java 
programs tend to run slower by a constant factor than, for example, C programs.   These 
would be a problem if the purpose of this project were to measure absolute runtime, but 
since the different algorithms are being tested relative to each other the only difference 
that needs to be measured is the ratio of their results.  Thus, since the measure of runtime 
by number does not count any overhead and taking a ratio removes constant factors from 
each term, the measurements are as accurate as they would be when written in a similar, 
faster language without overhead. 

The hardware to run the programs was chosen because it was simply the most 
convenient, fastest computer available.  Since all of the algorithms use integer operations, 
there is no disparity between integer-operations and floating-point operations that would 
make the results any different on any other processor (e.g. sparc).  Also, Java 
automatically uses both processors to a large degree of efficiency, removing any disparity 
between program parallelisms. 

 
Methods 



For this project, four classes of factoring algorithms were chosen.  These are: trial 
division, probabilistic, geometric, and number sieves.  These are not strict categories; in 
fact, many of the algorithms are in multiple categories.  Each class represents a different 
angle at which to attack the problem of factoring.  Therefore, some algorithms will be 
better at factoring different numbers, depending on their prime decomposition.  For each 
of the descriptions, the following terms will be used: modulus or composite (refers to the 
composite number to be factored; its name comes from RSA where the public key is the 
composite number, and a message is computed by exponentiating it and then reducing it 
modulo the composite); probabilistic (something that works with a probability less than 
one); deterministic (something that works with probability one).  

 
Trial Division 

Often called the naïve method of factoring, trial division works by dividing the 
modulus by numbers between two and its square root.  If there is no remainder, the 
number is a factor of the modulus.  This method is good for relatively small moduli, 
usually below ten thousand or up to one million on a very fast machine. 

The simplest version of this algorithm is brute force trial division, where every 
number between two and the square root of the modulus is tried.  However, this can be 
optimized easily with certain heuristics such as: only trying odd numbers, only using 
prime numbers, or using a smaller set of randomly chosen prime numbers.  The last two 
heuristics are encompassed by the number sieving and probabilistic classes (respectively) 
as well, both of which will be discussed later. 

The main deficiency of this algorithm is its speed.  Without any heuristics, this 
algorithm requires the maximum number of operations for factorization and uses 
division, an operation that is very costly on any computer architecture.  Even when 
optimized, division is still used, which means that the algorithm will still be slow because 
of its dependence on division. 

 
Probabilistic Algorithms 

Probabilistic algorithms work on the principal that not finding a factor with a 
probability greater than zero will take a fraction of the time it would to take to find a 
factor with complete certainty [9].  Therefore, every time the algorithm is run, it 
multiplies the overall certainty of not finding a factor by the certainty of running it once, 
decreasing the certainty even more.   

For some probability p of not finding a factor, if it takes n/m time to run—where n 
is the runtime of the deterministic version and m is some constant—then if the algorithm 
is run m/2 times, it will find a factor in n/2 time with probability 1-pm/2.  If p is somewhat 
small and m is somewhat large, after m/2 operations or m/c operations where c is bigger 
than two, it is possible to get a speedup of some constant when the algorithm works with 
certainty that is very high. 

There are various methods for speeding up algorithms using a probabilistic 
approach.  One way is to pick a number of “witnesses”  that verify the correctness of an 
algorithm, where each witness has a certain probability of being correct.  Another method 
is to pick random numbers or a random number generator function and run tests using a 
random subset of the values used in the deterministic algorithm. 



There are two main weaknesses to the probabilistic approach.  First, it is not 
deterministic, so it will not work all of the time.  This is acceptable because the 
probability of failure can be set to whatever tolerance is allowable.  Also, it is almost 
impossible to determine what parameters are optimal for this algorithm.  If there are 
multiple parts of the algorithm that are probabilistic, determining a good balance between 
them is very hard.  Also, when comparing to deterministic algorithms, it is difficult to 
give a value to a probabilistic algorithm that fails to find a factor for a certain run. 

 
Geometric Algorithms 

This is a large class of algorithms based on a mixture of algebra, number theory, 
and geometry.  The premise behind the algorithm is that some functions under the real 
numbers reduced modulo a number can form a group under an operation as long as there 
is closure, an identity element, and inverse elements for each member.  Certain functions, 
such as the ray function and the function that measures elliptical curve arc-length are 
groups under certain operations [5].  If an element of these groups is found that generates 
a subgroup, the order of that element is the order of the subgroup, which divides the order 
of the entire group, the modulus.  Thus, for every subgroup generator found, a factor is 
determined. 

The biggest problem with geometric algorithms is that they are difficult to 
implement, especially in an optimal way.  Since the group operation requires finding a 
point on the graph given two previous points, it is usually necessary to do some 
complicated calculations based upon high order functions.  Eliminating code redundancy 
and optimizing memory access for calculations like this has been made into an entire 
field of research because of its difficulty.  Despite this, optimized geometric algorithms 
are some of the fastest known factoring methods. 

 
 Number Sieving 

Number sieving is based upon the elimination of multiple numbers for each factor 
that is tried.  If a number is not a factor of the modulus, it implies that other numbers are 
not factors either; for each non-factor found, other non-factors can be eliminated in some 
way [10].  The sieve of Eratosthenes and the quadratic sieve do this using linear and 
quadratic functions of non-factors, respectively.  This cuts down the number of trials by a 
linear—or even factorial—amount.  

Number sieving has a lot of solutions that are only somewhat fast.  It also contains 
the fastest known algorithm, the number field sieve.  This algorithm works by taking the 
roots to different polynomials and their corresponding rings with integer coefficients and 
determines a set of numbers to remove because of their membership in the ring.  It is very 
difficult to implement and has still not been proven to work for all numbers.  Thus, the 
only truly efficient number sieve is not one that can be readily used. 

 
Algorithms Implemented 

 Aside from the baseline trial division algorithm optimized by only trying odd 
numbers, four other algorithms were implemented: trial division by random prime 
numbers, Pollard’s Rho method, Lenstra’s elliptical curve algorithm, and the quadratic 
sieve algorithm.  This set of algorithms represents at least one representative from each 



class of algorithm; although most are in multiple classes, the overall set covers the entire 
range of modern factorization methods. 

 
Random Prime Division 

The random prime division method is a combination of probabilistic and trial 
division.  It is basically an optimization on the standard trial division algorithm.  It works 
by choosing a prime number at random between two and the square root of the modulus.  
This number is divided into the modulus and if the remainder is zero, it is saved as a 
factor.  This factor and its corresponding factor (the result after the modulus is divided by 
it) are then factored using the same method.  Thus, if there are p primes between two and 
the square root of the modulus, and the program is run p/c times for some constant c, it 
will work with probability 1/c.  A value of two for c was used in this project, giving a 
probability of .5 that a factor would be found. 

 
Pollard’s Rho Algorithm 

Another probabilistic algorithm, Pollard’s Rho, works by successive iterations of a 
random quadratic function.  Random coefficients are chosen for a standard quadratic 
function that generates numbers, which are reduced modulo the composite number.  
Successive iterations of this function based upon a randomly chosen initial number 
generate a sequence that starts looping after a certain point2.  If two points are on the 
same position of the loop, they are congruent to each other modulo a factor of the 
composite.  This is because the loop is actually a subgroup generated by the initial 
element as the identity and with the random function as the group operation.  Thus, if two 
points are in the same equivalence class in the subgroup, they are equivalent to each other 
modulo the order of the subgroup, which divides the order of the entire group, which is 
the composite number.  Subtraction yields a multiple of the order of the subgroup and 
taking the greatest common divisor of this and the modulus yields a factor of the 
modulus. 

It is important to note that not every function and initial point pair will yield a 
subgroup.  This algorithm is probabilistic and thus does not find a factor every time.  
However, bounds can be placed on it that forces a restart after a timeout period.  If the 
algorithm works the first time, it is very fast; at worst case it runs at the same speed as 
trial division does. 

 
Lenstra’s Elliptical Curve Algorithm 

Lenstra’s elliptical curve algorithm is the most common geometric algorithm [1, 7].  
It is based on the function y2=ax3+b, which is a function of the arc length of an ellipse.  
When the operation *  is defined on two points such that (x1, y1)* (x2, y2) = (x3, -y3), where 
the point (x3, y3) is the third point on the line that goes through the points (x1, y1) and (x2, 
y2)

3.  Inverses are defined as (x, y)* (x, -y) = ∞, where infinity is the point that all vertical 
lines converge and the identity of the group [8].  With a starting point and successive 

                                                 
2 This is the reason that the algorithm has its name; the sequence has a tail and then starts to loop, much like 
the Greek Rho. 
3 For every elliptical curve, any line will intersect the curve at three points, if it intersects at a tangent point, 
that point is counted twice. 



iterations of the group operation, some point will eventually be a generator of a subgroup, 
and its order will be a factor of the modulus. 

Thus, the optimal way to find a factor of the modulus is to take two initial points 
and successively operate on them in increasing numbers, so the kth iteration will have k 
factorial iterations of the group operation.  Thus, if the current term is a generator of a 
subgroup, the greatest common denominator of k factorial and the modulus will be the 
order of the element. 

The worst part about this algorithm is that, like most other geometric algorithms, it 
is hard to implement, especially in an efficient manner.   When fully optimized, elliptical 
curve algorithms are the second fastest known factoring algorithm, but these optimization 
techniques are very difficult and are often very obscure. 

 
Quadratic Sieve 

Although it is not the fastest number sieve, the quadratic sieve is the fastest sieve 
that has been proven to work.  It works by the principle that, if two numbers are 
equivalent to each other modulo the composite number, their sum and difference are two 
factors of the modulus4.  There are many different ways of choosing the numbers to 
compare; the best method is to find a set of B-smooth5 numbers for some small bound B.  
Finding a set of numbers that, when their squares are multiplied, have a prime 
decomposition with only even powers will give two square numbers: the prime 
decomposition and the product of the squared numbers.  If there are k numbers that are 
prime less than B, with k + 1 values, it is possible to find a solution where the vector of 
powers of their primes sum to the zero vector mod two using Gaussian elimination. 

The quadratic sieve will not always find a factor.  The algorithm chooses random 
numbers that are close to, but greater than, the square root of the modulus.  A failure 
occurs when either the matrix produced by the B-smooth numbers finds the trivial and 
improper factors, or it is irreducible.  Also, the matrix reduction involved in this method 
is a very expensive operation that is difficult to optimize. 

 
Methods 

Each algorithm was run with numbers of differing complexity6 and length.  All 
algorithms were run as a module of a Java application, which ran as a command line 
program that timed all classes that implemented the Factorer interface.  Each algorithm 
was timed using the difference of the system time (in milliseconds) taken before and after 
execution.  For each number, five runs were done and the average time was recorded. 

The measure for ease of implementation was setting an implementation time bound.  
Once knowledge of an algorithm’s purpose, function, and optimal implementation were 
known (including pseudo-code references), a time bound of six hours of design, coding, 
and testing per algorithm was allotted. 

 
 Results 

Of the five algorithms, only three were compared.  These were the naïve trial 
division algorithm, the random prime trial division algorithm, and Pollard’s Rho 

                                                 
4 This is true because of a simple algebraic identity: a2 - b2 = (a + b) * (a - b). 
5 A number that is B-smooth only has prime factors less than or equal to B. 
6 Complexity refers to the number of factors that are in a composite’s decomposition. 



algorithm.  The other two, quadratic sieve and elliptical curve algorithms, were not 
compared because of insufficient optimization and incompleteness, respectively.  The 
quadratic sieve was easy to implement in a few hours worth of work; however, 
sufficiently optimizing Gaussian elimination is a very difficult task.  The overhead 
incurred by this expensive operation was reduced by 500ms, but that was only half the 

reduction that was necessary for the quadratic sieve to be a competitive algorithm.  The 
elliptical curve algorithm was a product of learning from the mistakes of the quadratic 
sieve.  Instead of implementing and then optimizing, all the work was put into 
implementing an optimized version; this proved to be too difficult.  The elliptical curve 
algorithm takes very advanced mathematics to understand, let alone to optimize.  Even if 
a non-optimized version were implemented, the result would have been similar to the 
Quadratic Sieve.  These two algorithms were compared to the other algorithms only on 
their difficulty of implementation, which was assigned an “ infinite”  value. 

The remaining three algorithms were compared using numbers that ranged from 
13*17*19 to 7*1763668414462081.  Since the probabilistic trial division algorithm was 
only useful for comparison to the naïve algorithm, and its parameters allowed for only a 
50% chance of success, when it showed a similar pattern to the naïve version, it was 
abandoned. 

Runtime of Factoring Algorithms
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The two remaining algorithms—naïve trial division and Pollard’s Rho algorithm—
took thirty minutes and two hours to implement, respectively7.  Figure 1 shows the graphs 
of the runtimes of each algorithm as a function of the composite number each was given.  
The best measure of each algorithm is a linear regression, each of which were created 
using GraphPad Prizm, a statistical program. The graph was generated using Microsoft 
Excel.  The two regressions had an inverse slope (number / milliseconds) of 8.9e10 and 
5.2e13 which means that Pollard’s Rho algorithm is about 23% faster than the naïve 
method.   This means that the difference in time of an hour and a half would be surpassed 
for numbers with approximately twenty digits, making the implementation of Pollard’s 
Rho worth it for these numbers. 

 
Conclusions 

In terms of difficulty, only three of five algorithms were easy enough to implement 
so that they were efficient enough to compete with naïve trial division.  The speed that 
would have been gained, even if it were a factor of 300% or 400%--which is unlikely 
since Pollard’s Rho only worked at 130%--would make up for the implementation time 
with only huge numbers (200 to 250 digits). 

Of the three remaining algorithms, naïve and probabilistic trial division are 
basically the same and are good for smaller numbers (less than sixteen digits).  For any 
numbers over this, the runtime gets large very quickly.  This leaves Pollard’s Rho 
algorithm, which is the best factoring algorithm in terms of ease of implementation and 
power.  With a reasonable amount of implementation time, Pollard’s Rho factors a large 
range of composite numbers in a reasonable amount of time. 
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7 Times are approximate since there is very low accuracy in timing human efforts. 
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