
Runtime and Implementation of Factoring
Algorithms: A Comparison

Justin Moore

CSC290 Cryptology
December 20, 2003

Abstract

Factoring composite numbers is not an “ easy” task. It is classified as a “ hard”
algorithm, which is why the cryptosystems that are based upon its “ hardness,” such as
RSA, are very secure. Despite this, factoring algorithms are still not optimal and can still
be optimized by a constant—and sometimes linear—factor. There are many ways to do
this by utilizing different classes of algorithms. The most well known set of classes
includes trial division, probabilistic methods, geometric methods, and number sieving.
Each class attacks the problem of factorization a different way, producing at least one
factor—sometimes non-deterministically—for each run of the algorithm. This paper
outlines the methods used to implement each of five algorithms and determines their
resulting runtime, which is then further compared to the ease of implementation. In the
end a probabilistic algorithm—Pollard’s Rho—was deemed the best algorithm.

Background and Motivation

Factoring numbers is what is called a “hard” task, which means that any algorithm
designed to factor will not run in polynomial time. In fact, most of the algorithms that
exist today run on the order of en, where e is Euler’s number [6].

Since prime numbers can be found in polynomial time, and multiplication can also
be done in polynomial time, the combination of these two creates a polynomial time
algorithm that can generate large composite numbers with large prime factors. Because
these large composite numbers can be generated “easily” and it is “hard” to factor them
again, public key cryptosystems can be based on publishing the large composite number
and having a private key that is somehow based upon the factorization of the public
number. In particular, RSA has created a very popular version, where a user’s private
key is Euler’s Phi function of the composite number.

Mainly due to the popularity of the RSA cryptosystem, many different methods for
factoring composite numbers have been developed1. It is useful to step back to take a
look at the larger picture.

Project Goals

The comparison of factoring algorithms has already been done many times over and
is a hotspot in research because of the popularity of the RSA cryptosystem [4].

1 It is important to note that factoring large composite numbers is not necessarily an equivalent problem to
breaking RSA. Mathematicians are divided on the open problem of whether or not the two are equivalent,
but it is thought that, although it is still a “hard” problem, it is possible to break RSA without factorization.
This is beyond the scope of this project, however, because there are no known methods for breaking RSA
without factoring the modulus [3].

Therefore, although the main goal of this project is to compare factoring algorithms, this
project also focuses on the implementation of algorithms.

An inverse relationship appears to exist between ease of implementation of any
factoring algorithm and its respective runtime, although there are some exceptions.
Thus, like any software engineering project, it is necessary to weigh the costs and the
benefits of each side. Although some factorization algorithms are comparatively very
fast, the time it takes to implement them may outweigh any speed-up in runtime. This
comparison is a key factor in determining a good algorithm.

When runtime is the only factor being measured, there is a choice of whether to use
an existing algorithm or to generate an implementation; either based on pseudo-code or
from scratch. There is a tradeoff between the two choices. Using existing code
guarantees a much faster result (since optimizations are built in) and—to a larger
degree—a working solution. However, new implementations allow for more equality
between each algorithm since they are being generated by the same person.

Since one of the goals of this project is to determine the tradeoffs between
implementation and algorithm speed, the choice becomes moot. Thus, the project
involves creating implementations of each algorithm for testing purposes instead of using
existing algorithms.

Environment

All code was written in Java Standard Edition version 1.4.2. Programs were run on
a machine running Linux with dual Pentium III 1133MHz processors.

Java is one of the best languages for this task because of its modularity and built in
libraries. For each algorithm to be equal in structure, a class was defined for each that
implemented a standardized interface. Thus, each implementation was a module that
could be run and timed by a separate application; this is easy in Java because of its
object-orientation and its type casting. Java also offers many libraries, in particular, the
BigInteger class that handles infinite precision arithmetic, which is necessary for the
large numbers that are involved in this project.

The only major negative aspect of using Java is its runtime overhead. Also, Java
programs tend to run slower by a constant factor than, for example, C programs. These
would be a problem if the purpose of this project were to measure absolute runtime, but
since the different algorithms are being tested relative to each other the only difference
that needs to be measured is the ratio of their results. Thus, since the measure of runtime
by number does not count any overhead and taking a ratio removes constant factors from
each term, the measurements are as accurate as they would be when written in a similar,
faster language without overhead.

The hardware to run the programs was chosen because it was simply the most
convenient, fastest computer available. Since all of the algorithms use integer operations,
there is no disparity between integer-operations and floating-point operations that would
make the results any different on any other processor (e.g. sparc). Also, Java
automatically uses both processors to a large degree of efficiency, removing any disparity
between program parallelisms.

Methods

For this project, four classes of factoring algorithms were chosen. These are: trial
division, probabilistic, geometric, and number sieves. These are not strict categories; in
fact, many of the algorithms are in multiple categories. Each class represents a different
angle at which to attack the problem of factoring. Therefore, some algorithms will be
better at factoring different numbers, depending on their prime decomposition. For each
of the descriptions, the following terms will be used: modulus or composite (refers to the
composite number to be factored; its name comes from RSA where the public key is the
composite number, and a message is computed by exponentiating it and then reducing it
modulo the composite); probabilistic (something that works with a probability less than
one); deterministic (something that works with probability one).

Trial Division

Often called the naïve method of factoring, trial division works by dividing the
modulus by numbers between two and its square root. If there is no remainder, the
number is a factor of the modulus. This method is good for relatively small moduli,
usually below ten thousand or up to one million on a very fast machine.

The simplest version of this algorithm is brute force trial division, where every
number between two and the square root of the modulus is tried. However, this can be
optimized easily with certain heuristics such as: only trying odd numbers, only using
prime numbers, or using a smaller set of randomly chosen prime numbers. The last two
heuristics are encompassed by the number sieving and probabilistic classes (respectively)
as well, both of which will be discussed later.

The main deficiency of this algorithm is its speed. Without any heuristics, this
algorithm requires the maximum number of operations for factorization and uses
division, an operation that is very costly on any computer architecture. Even when
optimized, division is still used, which means that the algorithm will still be slow because
of its dependence on division.

Probabilistic Algorithms

Probabilistic algorithms work on the principal that not finding a factor with a
probability greater than zero will take a fraction of the time it would to take to find a
factor with complete certainty [9]. Therefore, every time the algorithm is run, it
multiplies the overall certainty of not finding a factor by the certainty of running it once,
decreasing the certainty even more.

For some probability p of not finding a factor, if it takes n/m time to run—where n
is the runtime of the deterministic version and m is some constant—then if the algorithm
is run m/2 times, it will find a factor in n/2 time with probability 1-pm/2. If p is somewhat
small and m is somewhat large, after m/2 operations or m/c operations where c is bigger
than two, it is possible to get a speedup of some constant when the algorithm works with
certainty that is very high.

There are various methods for speeding up algorithms using a probabilistic
approach. One way is to pick a number of “witnesses” that verify the correctness of an
algorithm, where each witness has a certain probability of being correct. Another method
is to pick random numbers or a random number generator function and run tests using a
random subset of the values used in the deterministic algorithm.

There are two main weaknesses to the probabilistic approach. First, it is not
deterministic, so it will not work all of the time. This is acceptable because the
probability of failure can be set to whatever tolerance is allowable. Also, it is almost
impossible to determine what parameters are optimal for this algorithm. If there are
multiple parts of the algorithm that are probabilistic, determining a good balance between
them is very hard. Also, when comparing to deterministic algorithms, it is difficult to
give a value to a probabilistic algorithm that fails to find a factor for a certain run.

Geometric Algorithms

This is a large class of algorithms based on a mixture of algebra, number theory,
and geometry. The premise behind the algorithm is that some functions under the real
numbers reduced modulo a number can form a group under an operation as long as there
is closure, an identity element, and inverse elements for each member. Certain functions,
such as the ray function and the function that measures elliptical curve arc-length are
groups under certain operations [5]. If an element of these groups is found that generates
a subgroup, the order of that element is the order of the subgroup, which divides the order
of the entire group, the modulus. Thus, for every subgroup generator found, a factor is
determined.

The biggest problem with geometric algorithms is that they are difficult to
implement, especially in an optimal way. Since the group operation requires finding a
point on the graph given two previous points, it is usually necessary to do some
complicated calculations based upon high order functions. Eliminating code redundancy
and optimizing memory access for calculations like this has been made into an entire
field of research because of its difficulty. Despite this, optimized geometric algorithms
are some of the fastest known factoring methods.

 Number Sieving

Number sieving is based upon the elimination of multiple numbers for each factor
that is tried. If a number is not a factor of the modulus, it implies that other numbers are
not factors either; for each non-factor found, other non-factors can be eliminated in some
way [10]. The sieve of Eratosthenes and the quadratic sieve do this using linear and
quadratic functions of non-factors, respectively. This cuts down the number of trials by a
linear—or even factorial—amount.

Number sieving has a lot of solutions that are only somewhat fast. It also contains
the fastest known algorithm, the number field sieve. This algorithm works by taking the
roots to different polynomials and their corresponding rings with integer coefficients and
determines a set of numbers to remove because of their membership in the ring. It is very
difficult to implement and has still not been proven to work for all numbers. Thus, the
only truly efficient number sieve is not one that can be readily used.

Algorithms Implemented

 Aside from the baseline trial division algorithm optimized by only trying odd
numbers, four other algorithms were implemented: trial division by random prime
numbers, Pollard’s Rho method, Lenstra’s elliptical curve algorithm, and the quadratic
sieve algorithm. This set of algorithms represents at least one representative from each

class of algorithm; although most are in multiple classes, the overall set covers the entire
range of modern factorization methods.

Random Prime Division

The random prime division method is a combination of probabilistic and trial
division. It is basically an optimization on the standard trial division algorithm. It works
by choosing a prime number at random between two and the square root of the modulus.
This number is divided into the modulus and if the remainder is zero, it is saved as a
factor. This factor and its corresponding factor (the result after the modulus is divided by
it) are then factored using the same method. Thus, if there are p primes between two and
the square root of the modulus, and the program is run p/c times for some constant c, it
will work with probability 1/c. A value of two for c was used in this project, giving a
probability of .5 that a factor would be found.

Pollard’s Rho Algorithm

Another probabilistic algorithm, Pollard’s Rho, works by successive iterations of a
random quadratic function. Random coefficients are chosen for a standard quadratic
function that generates numbers, which are reduced modulo the composite number.
Successive iterations of this function based upon a randomly chosen initial number
generate a sequence that starts looping after a certain point2. If two points are on the
same position of the loop, they are congruent to each other modulo a factor of the
composite. This is because the loop is actually a subgroup generated by the initial
element as the identity and with the random function as the group operation. Thus, if two
points are in the same equivalence class in the subgroup, they are equivalent to each other
modulo the order of the subgroup, which divides the order of the entire group, which is
the composite number. Subtraction yields a multiple of the order of the subgroup and
taking the greatest common divisor of this and the modulus yields a factor of the
modulus.

It is important to note that not every function and initial point pair will yield a
subgroup. This algorithm is probabilistic and thus does not find a factor every time.
However, bounds can be placed on it that forces a restart after a timeout period. If the
algorithm works the first time, it is very fast; at worst case it runs at the same speed as
trial division does.

Lenstra’s Elliptical Curve Algorithm

Lenstra’s elliptical curve algorithm is the most common geometric algorithm [1, 7].
It is based on the function y2=ax3+b, which is a function of the arc length of an ellipse.
When the operation * is defined on two points such that (x1, y1)* (x2, y2) = (x3, -y3), where
the point (x3, y3) is the third point on the line that goes through the points (x1, y1) and (x2,
y2)

3. Inverses are defined as (x, y)* (x, -y) = ∞, where infinity is the point that all vertical
lines converge and the identity of the group [8]. With a starting point and successive

2 This is the reason that the algorithm has its name; the sequence has a tail and then starts to loop, much like
the Greek Rho.
3 For every elliptical curve, any line will intersect the curve at three points, if it intersects at a tangent point,
that point is counted twice.

iterations of the group operation, some point will eventually be a generator of a subgroup,
and its order will be a factor of the modulus.

Thus, the optimal way to find a factor of the modulus is to take two initial points
and successively operate on them in increasing numbers, so the kth iteration will have k
factorial iterations of the group operation. Thus, if the current term is a generator of a
subgroup, the greatest common denominator of k factorial and the modulus will be the
order of the element.

The worst part about this algorithm is that, like most other geometric algorithms, it
is hard to implement, especially in an efficient manner. When fully optimized, elliptical
curve algorithms are the second fastest known factoring algorithm, but these optimization
techniques are very difficult and are often very obscure.

Quadratic Sieve

Although it is not the fastest number sieve, the quadratic sieve is the fastest sieve
that has been proven to work. It works by the principle that, if two numbers are
equivalent to each other modulo the composite number, their sum and difference are two
factors of the modulus4. There are many different ways of choosing the numbers to
compare; the best method is to find a set of B-smooth5 numbers for some small bound B.
Finding a set of numbers that, when their squares are multiplied, have a prime
decomposition with only even powers will give two square numbers: the prime
decomposition and the product of the squared numbers. If there are k numbers that are
prime less than B, with k + 1 values, it is possible to find a solution where the vector of
powers of their primes sum to the zero vector mod two using Gaussian elimination.

The quadratic sieve will not always find a factor. The algorithm chooses random
numbers that are close to, but greater than, the square root of the modulus. A failure
occurs when either the matrix produced by the B-smooth numbers finds the trivial and
improper factors, or it is irreducible. Also, the matrix reduction involved in this method
is a very expensive operation that is difficult to optimize.

Methods

Each algorithm was run with numbers of differing complexity6 and length. All
algorithms were run as a module of a Java application, which ran as a command line
program that timed all classes that implemented the Factorer interface. Each algorithm
was timed using the difference of the system time (in milliseconds) taken before and after
execution. For each number, five runs were done and the average time was recorded.

The measure for ease of implementation was setting an implementation time bound.
Once knowledge of an algorithm’s purpose, function, and optimal implementation were
known (including pseudo-code references), a time bound of six hours of design, coding,
and testing per algorithm was allotted.

 Results

Of the five algorithms, only three were compared. These were the naïve trial
division algorithm, the random prime trial division algorithm, and Pollard’s Rho

4 This is true because of a simple algebraic identity: a2 - b2 = (a + b) * (a - b).
5 A number that is B-smooth only has prime factors less than or equal to B.
6 Complexity refers to the number of factors that are in a composite’s decomposition.

algorithm. The other two, quadratic sieve and elliptical curve algorithms, were not
compared because of insufficient optimization and incompleteness, respectively. The
quadratic sieve was easy to implement in a few hours worth of work; however,
sufficiently optimizing Gaussian elimination is a very difficult task. The overhead
incurred by this expensive operation was reduced by 500ms, but that was only half the

reduction that was necessary for the quadratic sieve to be a competitive algorithm. The
elliptical curve algorithm was a product of learning from the mistakes of the quadratic
sieve. Instead of implementing and then optimizing, all the work was put into
implementing an optimized version; this proved to be too difficult. The elliptical curve
algorithm takes very advanced mathematics to understand, let alone to optimize. Even if
a non-optimized version were implemented, the result would have been similar to the
Quadratic Sieve. These two algorithms were compared to the other algorithms only on
their difficulty of implementation, which was assigned an “ infinite” value.

The remaining three algorithms were compared using numbers that ranged from
13*17*19 to 7*1763668414462081. Since the probabilistic trial division algorithm was
only useful for comparison to the naïve algorithm, and its parameters allowed for only a
50% chance of success, when it showed a similar pattern to the naïve version, it was
abandoned.

Runtime of Factoring Algorithms

1

10

100

1000

10000

100000

1000000
1

3
*1

7*
1

9

1
99

7
*1

9
99

3
1

*1
01

*1
6

7
*4

5
7

5
35

1
*7

9
33

9
90

7
*9

9
73

9
9

7
1

9*
10

7
5

07

9
9

4
9

*9
96

7
*9

9
73

1
5

00
4

5
0

27
1

*9
9

73

1
0

00
5

1
11

7
*1

0
0

19
5

5
83

7
*1

76
3

6
6

84
1

4
46

2
0

8
1

N values

T
im

e
(m

s)

Naïve algorithm

Trial primes algorithm

Pollard Rho algorithm

Figure 1

The two remaining algorithms—naïve trial division and Pollard’s Rho algorithm—
took thirty minutes and two hours to implement, respectively7. Figure 1 shows the graphs
of the runtimes of each algorithm as a function of the composite number each was given.
The best measure of each algorithm is a linear regression, each of which were created
using GraphPad Prizm, a statistical program. The graph was generated using Microsoft
Excel. The two regressions had an inverse slope (number / milliseconds) of 8.9e10 and
5.2e13 which means that Pollard’s Rho algorithm is about 23% faster than the naïve
method. This means that the difference in time of an hour and a half would be surpassed
for numbers with approximately twenty digits, making the implementation of Pollard’s
Rho worth it for these numbers.

Conclusions

In terms of difficulty, only three of five algorithms were easy enough to implement
so that they were efficient enough to compete with naïve trial division. The speed that
would have been gained, even if it were a factor of 300% or 400%--which is unlikely
since Pollard’s Rho only worked at 130%--would make up for the implementation time
with only huge numbers (200 to 250 digits).

Of the three remaining algorithms, naïve and probabilistic trial division are
basically the same and are good for smaller numbers (less than sixteen digits). For any
numbers over this, the runtime gets large very quickly. This leaves Pollard’s Rho
algorithm, which is the best factoring algorithm in terms of ease of implementation and
power. With a reasonable amount of implementation time, Pollard’s Rho factors a large
range of composite numbers in a reasonable amount of time.

Acknowledgements

This project is supported by the cryptology and specifically RSA cryptosystems
teachings offered by Professor Chris Brown’s cryptology course at the University of
Rochester that was supplemented by the text Making, Breaking Codes, written by Paul
Garrett. In addition, all works referenced in this paper played an integral part in the
understanding and continuation of analysis of composite number factoring methods.

7 Times are approximate since there is very low accuracy in timing human efforts.

References
[1] Atkin, A. O. L. and F. Morain. Elliptic curves and primality proving. Math. Comp.,

61(203):29--68, July 1993.
[2] Bautista, Lopez. Factoring Integers. XXXI National Congress of the Mexican

Mathematical Society: 243-269, 1999. (Translated from Spanish).
[3] Boneh, Dan and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to

factoring. Advances in cryptology---EUROCRYPT '98 (Espoo): 59-71, Lecture
Notes in Comput. Sci., 1403, Springer, Berlin, 1998.

[4] Coutinho, S. C. The mathematics of ciphers. Number theory and RSA cryptography.
A K Peters, Ltd., Natick, MA, 1999. (Translated from Portuguese)

[5] de Vries, Andreas. The ray attack, an inefficient trial to break RSA cations
cryptosystems. FH Sudwestfalen University of Applied Sciences, Haldener
Straße: 182.

[6] Diffie, W. and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform.
Theory, 22 (6): 644-654, 1976.

[7] Lenstra, H. W.. Factoring integers with elliptic curves. Annals of Math, 126: 649-
673, 1987.

[8] Morain, F. Primality proving using elliptic curves: an update. In J. P. Buhler, editor,
Algorithmic Number Theory, volume 1423 of Lecture Notes in Comput. Sci.,
pages 111--127. Springer-Verlag, 1998. Third International Symposium, ANTS-
III, Portland, Oregon, june 1998, Proceedings.

[9] Bach E. and V. Shoup. "Factoring polynomials using fewer random bits," Computer
Sciences Technical Report No. 757, University of Wisconsin--Madison; Journal
of Symbolic Computation, to appear (1988).

[10] Dunten, B., Jones, J., Sorenson, J. P.: A space-efficient fast prime number sieve.
Information Processing Letters 59 (1996) 79—84.

