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The recognition problem is prob-
ably one of the most studied in
computer vision. However, most
techniques were developed on
point features and were not ex-
plicitly designed to cope with
uncertainty in measurements.

The aim of this paper is to
express recognition algorithms
in terms of uncertain geometric
features (such as points, lines, ori-
ented points, or frames). In the
first part we review the principal
matching algorithms and adapt
them to work with generic geo-
metric features. Then we analyze
some noise models on geometric
features for recognition, and we
consider how to cope with this
uncertainty in the matching algo-
rithms. We then identify four key
problems for the implementation
of these algorithms. Last but not
least, we present a new statisti-
cal analysis of the probability of
false positives that demonstrates a
drastic improvement in confidence
and complexity that we can obtain
by using geometric features more
complex than points.
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1 Introduction
The recognition problem is probably one of the most studied in computer
vision. (See for instance [2, 8].) Many algorithms have been developed
to compare two images or to recognize objects against an a priori model.
These models are mostly constructed from point features and can vary
according to rigid or affine transformations. One can cite for instance
the Geometric Hashing [26], the ICP [3, 42], or the alignment algorithm
[1, 20].

However, while these algorithms are efficient for well-scattered data
with little noise, it becomes more and more difficult to find small ob-
jects in a complex and noisy scene. The maximal complexity of these
algorithms is then reached and the problem of uncertainty handling be-
comes critical. Moreover, the geometric models of the real world often
lead one to consider features that are more complex than points, such
as lines [14], planes [10], oriented points, or frames [32, 34]. As we
will show below, using these kinds of features directly in the recognition
algorithm can lead to important improvements in complexity, accuracy,
and robustness. On the other hand, we must be very rigorous in handling
uncertainty to avoid false negatives and paradoxes [33].

The aim of this paper is express the above recognition algorithms in
terms of uncertain geometric features. We restrict our analysis to the
matching of similar features in the same space (3D-3D or 2D-2D for in-
stance). In the following section, we briefly describe the theory already
developed for handling the uncertainty of geometric features. In Sec-
tion 3, we review the principal matching algorithms and adapt them to
work with generic geometric features. In Section 4, we analyze three
noise models for recognition (bounded, probabilistic, and a combina-
tion of both) and how to modify the matching algorithms to cope with
uncertainty in features measurement. This leads to the identification of
four key problems for the implementation in Section 5. In the last sec-
tion, we analyze the drawbacks of uncertainty on recognition algorithm:
false positives. We present a new method to evaluate qualitatively their
probability of occurrence and show that using geometric features more
complex than points drastically improves the algorithms’ performance
and robustness.

2 Geometric Features
We have shown in [33] that geometric features generally do not belong
to a vector space but rather to a manifold and that this induces para-
doxes if we try to use the standard techniques for points with them.
For instance, we can represent a 3-D rotation by its matrix R, the cor-
responding unit quaternions ±q, or the rotation vector r = θ · n. Using
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the barycenter to compute the mean, we obtain either R = 1
n

∑
i Ri,

q = 1
n

∑
i qi, or r = 1

n

∑
i ri. The three results correspond to different

rotations.1

From a mathematical point of view, all the operations we define on
features should rely on intrinsic characteristics of the manifold and not
on the vector properties of some particular chart. Moreover, there gen-
erally is a transformation group acting on the manifold that models the
possible image viewpoints and/or the subject movement in the images.
Any operation should be invariant or “covariant” with respect to the ac-
tion of this group. For instance, the barycenter of points is invariant
under the action of rigid or affine transformations: A(

∑
xi) =∑ Axi.

In the case of geometric features, these requirements are much more
difficult to meet, and we have to look at rather deep results in differen-
tial geometry in order to understand the intrinsic characteristics of the
manifold we can use.

In this section, we summarize the essence of the theory developed in
[35]. More specifically, we present some intrinsic characteristics of the
manifolds of geometric features and we show that most useful opera-
tions on such features can be expressed in this framework using a very
small number of operations (atomic operations). The interested reader
can consult [39, chap. 9], [25], and [7] for more theoretical results.

2.1 Riemannian Manifolds
In the geometric framework, one specifies the structure of a manifold M
by a Riemannian metric. This is a continuous collection of dot products
on the tangent space at each point x of the manifold. Thus, if we consider
a curve on the manifold, we can compute at each point its instanta-
neous speed vector and its norm, the instantaneous speed. To compute
the length of the curve, we can proceed as usual by integrating this
value along the curve. The distance between two points of a connected
Riemannian manifold is the minimum length among the curves joining
these points. The curves realizing this minimum for any two points of
the manifold are called geodesics. The calculus of variations shows that
geodesics are the solutions of a system of second-order differential equa-
tions depending on the Riemannian metric.

In this article, we assume that the manifold is geodesically complete,
i.e., that the definition domain of all geodesics can be extended to R.
This means that the manifold has no boundary nor any singular points
that we can reach in a finite time. As an important consequence, the
Hopf-Rinow-De Rham theorem states that there always exists at least
one minimizing geodesic between any two points of the manifold (i.e.,
whose length is the distance between the two points).

Exponential chart From the theory of second-order differential equa-
tions, we know that there exists one and only one geodesic starting at
a given feature x with a given tangent vector. This allows us to develop
the manifold in the tangent space along the geodesics (think of rolling
a sphere along its tangent plane at a given point). The geodesics going
through this point are transformed into straight lines, and the distance
along these geodesics are conserved (at least in a neighborhood of x).

1. The first two are not even rotations unless they are renormalized: the sum of orthogonal
matrices is generally not an orthogonal matrix and the sum of unit quaternions is not a unit
quaternion. Moreover, choosing the sign of the unit quaternion used in the sum is not a
trivial problem.
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Figure 1. Left: The tangent planes at
points x and y of the sphere S2 are
different: the vectors v and w of TxM
cannot be compared to the vectors
t and u of TyM. Thus, it is natural
to define the dot product on each
tangent plane. Right: The geodesics
starting at x are straight lines in the
exponential map, and the distance
along them is conserved.
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The function that maps to each vector the corresponding point on the
manifold is called the exponential map.

This map is defined in the whole tangent space TxM (since the man-
ifold is geodesically complete), but it is one-to-one only locally around
the origin. If we look for the maximal domain where this map is one-
to-one, we find out that it is a star-shaped domain delimited by a con-
tinuous curve Cx called the tangential cut-locus. The image of Cx by the
exponential map is the cut locus Cx of point x. Roughly, this is the set of
points where several minimizing geodesics starting from x meet.2 On the
sphere S2 for instance, the cut locus of a point x is its antipodal point,
and the tangential cut locus is the circle of radius π .

The exponential map within this domain realizes a chart called the
exponential chart. It covers the whole manifold except for the cut lo-
cus of the development point, which has a null measure. Let −→xy be
the representation of y in this chart. Then its distance to the origin is
dist(x, y)= ‖Ey‖x. This chart is somehow the “most linear” chart of the
manifold with respect to the feature x: geodesics starting from this point
are straight lines, and the distance is (locally) conserved along them.

2.2 Homogeneous Manifolds
Invariant metric Now, since we are working with features onto which
acts a transformation group that models the possible image viewpoints,
it is natural to choose an invariant Riemannian metric. (The existence
conditions are detailed in [35].) This way, all the measurements based
on distance are independent of the image reference frame or the trans-
formation of the image: dist(x, y)= dist(g ? x, g ? y).

Let o be a point of the manifold that we call the origin: we call
principal chart the exponential chart at the origin for the invariant metric
and we denote by Ex the representation of x in this chart. Assuming that
we have chosen an orthonormal coordinate system, the distance with
the origin is dist(o, x)= ‖Ex‖. Now, let fy be a “placement function,” i.e.,
a transformation such that fy ? o = y. The distance between any two
points is dist(x, y)= dist

(
f (−1)
y ? x, o

)
= ‖f (−1)

Ey ? Ex‖. One can verify that
this formula is independent of the choice of the placement function.

Exponential chart and map at other points The previous formula
shows that the vector (f (−1)

Ey ? Ex) is the representation of x in an expo-
nential chart at feature y. The coordinate system of this chart is ortho-
normal, but it depends on the chosen placement function. It is often
more interesting to use the nonorthogonal coordinate system induced by

2. More precisely, the cut locus is the closure of this set.
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the principal chart, which is independent of the placement function: this

is the vector −→yx = J (fEy) · (f (−1)
Ey ? x), where J (fEx)= ∂(Ef?Ex)

∂Ex

∣∣∣∣Ex=o is the Jaco-

bian of the origin’s translation in the principal chart.
From a practical point of view, this means that we can reinterpret the

local calculations on points as local calculations in the principal chart
of our manifold by replacing x − y with −→yx and x + −→δx with
expEx(

−→
δx) = fEx ? (J (fEx)(−1) · S Eδx). For instance, the empirical covariance

matrix with respect to a point y, becomes [35]:

6ExEx(Ey)= 1
n

n∑
i=1

−→yxi · −→yxi
T

= 1
n
J (fEy) ·

 n∑
i=1

(
f (−1)
Ey ? Exi

)
·
(
f (−1)
Ey ? Exi

)T

 · J (fEy)T.

(1)

Atomic operations In fact, we have shown that most of the interesting
operations for us on deterministic and uncertain geometric features can
be expressed in the principal chart of the manifold with only the few
operations we have introduced. From a computational point of view,
this means that the only operations we have to implement for each type
of feature are the action of a transformation (f ? Ex) with its Jacobians
∂(f?Ex)
∂f and ∂(f?Ef)

∂Ex , and the placement function fEx with its Jacobian ∂(fEx)
∂Ex .

Every higher-level operation can be expressed as a combination of these
and thus can be implemented independently of the considered type of
feature. To simplify further computations, we can add to these atomic
operations the Jacobian of the translation of the origin J (fEx).

2.3 Practical Implementation
Computer model of random features Let x be a random feature. To
define the mean value, we have to replace the standard expectation by
the Fréchet expectation [33]:

E [ x ]= arg min
y∈M

(
E
[

dist(y, x)2
])

.

Assuming that this mean value is unique, let E
[ Ex ]= Ēx be its represen-

tation in the principal chart. Its covariance matrix in the same chart is
given by

6xx = E
[ −→

x̄x · −→x̄xT
]
= J (EfĒx) · E

[
(Ef (−1)
Ēx ? Ex) · (Ef (−1)

Ēx ? Ex)T
]
· J (EfĒx)T.

This information is often sufficient to model the random feature and
provide a compact representation. Thus, from a computational point of
view, we define a random feature by its approximation: x∼ (Ēx,6xx). In
this framework, a deterministic feature has a null covariance matrix.
Random transformations are modeled similarly.

Basic operations Using this representation, the action of a random
transformation f ∼ (Ēf ,6ff) on a (random) feature x∼ (Ēx,6xx) gives the
random feature

y = f ? x∼
(Ēf ◦ Ēx, 6yy

)
,
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where 6yy = JEf · 6ff · J T
Ef + JEx · 6xx · J T

Ex with JEf = ∂(Ef?Ex)
∂Ef

∣∣∣∣Ef=Ēf and

JEx = ∂(Ef?Ex)
∂Ex

∣∣∣∣Ex=Ēx.

The distance between two features is simply

dist(x, y)= ‖−→xy‖x =
√(Ef (−1)

Ex ? Ey
)T ·

(Ef (−1)
Ex ? Ey

)
.

Similarly, the Mahalanobis distance between a random feature x ∼
(x̄, 6xx) and a deterministic feature y becomes

µ2(x, y)= −→x̄yT ·6(−1)
xx · −→x̄y

= (f (−1)
x̄ ? Ey)T · J (fx̄)

T ·6(−1)
xx · J (fx̄) · (f (−1)

x̄ ? Ey).
The Mahalanobis distance between two random features is defined by

µ2(x, y)=min
z

(
µ2(x, z)+ µ2(y, z)

)
.

Higher-level operations Based on the atomic and basic operations,
one can define many higher-level operations on geometric features. For
instance, we developed in [31] three gradient descent algorithms to
compute the mean feature by minimizing the standard and Riemannian
least-squares distance, the weighted Riemannian least-squares distance,
and the Mahalanobis distance. We also develop in [30] similar algo-
rithms for computing the optimal registration.

2.4 Summary of Geometric Features
In short, the important point to note is that geometric features usually
belong to manifolds that are not vector spaces. However, developing
the manifold along the geodesics onto its tangent space at the origin
give a chart (the principal chart) which is almost linear: geodesics go-
ing through the origin are straight lines, and the distances are conserved
along them. Using an invariant metric for the transformation group act-
ing on features, we can translate this chart at any point of the manifold.
From a practical point of view, this means that we can reinterpret the
local calculations on points as local calculations in the principal chart
of our manifold by replacing −→yx = x − y with −→yx = J (fEy) · (f (−1)

Ey ? x), and

x + −→δx with expEx(
−→
δx)= fEx ? (J (f (−1)

Ex) ) · δx.
It turns out that all the interesting operations on deterministic and

probabilistic features and transformations can be expressed in the prin-
cipal chart using only a few atomic operations and their Jacobians: the
composition and inversion of transformations (f ◦ g and f (−1)), the ac-
tion of a transformation (f ? Ex), and the placement function (fEx). On this
basis, we can construct many higher-level algorithms, such as the com-
putation of the mean feature or the computation of the transformation
between two sets of matched features (registration).

Example of features In [35], we have implemented this framework
for 3-D rigid transformations acting on different kinds of features such
as frames, semi-oriented frames, and points. Frames are composed of a
point and an orthonormal trihedron and are equivalent to rigid trans-
formations. The principal chart is composed of the rotation vector rep-
resenting the trihedron (or the rotation) and a vector representing the
point position (or the translation). Semi-oriented frames model the dif-
ferential properties of a point on a surface. They are composed of a point
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and a trihedron (t1, t2, n), where (t1, t2)≡ (−t1,−t2) are the principal di-
rections of the surface.

3 Matching Algorithms
In this paper, we consider that matching is aimed at finding correspon-
dences between two set of features, whereas registration is the computa-
tion of the transformation between two matched sets of features. These
two problems are often intrinsically linked to constitute the feature-based
recognition problem. Here, we focus on matching methods.

We have one set X= {x1, . . . xm} ∈Mm ofm features modeling the first
image and similarly a set Y= {y1, . . . yn} ∈Mn of n features modeling the
second image. To distinguish the two sets, we use the vocabulary from
the model-based recognition: we call model the set X, as if it was the
model of an object stored in a library, and scene the set Y, in which we
are looking for objects.

If we had two ideal acquisitions of the same object (with also perfect
low-level processing), the model and the scene would have the same
number of features and the two sets would be simply transformed into
one another using a transformation f ∈ G, with possibly a permutation in
index of features. The matching problem is in this case very simple: find
the index permutation that identifies features up to a transformation f.
In practice, this is not so easy: the object we are looking for is usually
not the only one in our images, and hence there are numerous extra
features in the two images that do not have to be matched but that
we cannot suppress a priori. This is called clutter. Moreover, even if an
object is perfectly known (from its CAD model for instance), an image
can be noisy enough to inhibit the detection of some features. We call
this occlusion as in computer vision, even if the phenomenon is different
in other domains such as 3-D imaging. Last but not least, the measure of
features is inherently noisy and the superimposition of matched features
after registration will never be perfect.

In general, one considers that an object is recognized if there exists a
transformation f ∈G that superimposes (within a given error) a sufficient
number of features in the two images. Thus, we want to maximize both
the number of matches and the quality of these matches, that is the
goodness of fit after registration.

Let π be the matching function that associates to the index i of a model
feature xi the index j = π(i) of the matched feature yj in the scene or the
null feature ∗ if it is not matched. This function can thus be considered
as an application from {1 . . . m} to {1 . . . n + 1} or from X to Y ∪ {∗}.
There are (n+ 1)m such functions in the correspondence space 5. Some
constraints can be added, such as the symmetry of matches. The basic
idea in matching is to maximize the number of matches, but matches
should also be consistent with the configuration of features. One often
uses the following simple plausibility function to estimate the likelihood
of a match: α(z, z′)= 1 if dist(z, z′) ≤ ε and 0 otherwise. The matching
function is thus defined as the one that maximizes the matching score
(f ? x is the action of the transformation f on the feature x):

π̂ = arg max
π∈5

∑
i

α
(
f ? xi, yπ(i)

) . (2)

At the same time, we want to optimize the quality of matches and find
the transformation that superimposes the model onto the scene. This is
often done using least squares, with the convention that dist(x, ∗)= 0.
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f̂ = arg min
f∈G

∑
i

dist
(
f ? xi, yπ(i)

) . (3)

There is thus a joint search in the correspondence space (find π ∈5)
and in the transformation space (find f ∈ G). Each of these problems
taken independently is relatively simple, but solving both together is
much harder. In the remainder of this section, we investigate in the se-
quel the main algorithms used in image processing to solve this problem
and how to formulate them in terms of features.

3.1 Interpretation Trees
If we look at the equations, we find that searching for the transformation
f is linked to the matching solution π . The interpretation trees method
proposed in [13] relies on the dual method: looking for π in the cor-
respondence space 5 and computing a posteriori the transformation f
to validate the interpretation. The basic algorithm is thus to assume at
each node of the interpretation tree the match of an unused feature in
X. When we arrive at a leaf we validate or discard this interpretation by
looking for the transformation.

Several classical methods in artificial intelligence allow one to prune
the search in this exponential tree ((n+ 1)m leaf). One of the most inter-
esting is the introduction of geometric constraints with unary invariants.
Assume that our features are segments: the length of a segment in the
scene can only be inferior (modulo the error) to the length of the model
segment since the only modifications on the length are due to occlusion
and measurement errors: this is a unary constraint on the matches. Now
if two segment matches satisfy the unary constraints, the angle between
these segments in the model and in the scene should be almost identi-
cal: this is a binary constraint of invariance. For each type of feature, we
can similarly develop a set of unary, binary, and possibly higher-order
geometric constraints that will prune the interpretation tree and guar-
antee a local consistency during the depth-first search. The search of the
transformation will actually give the proof of the global consistency on
leaves. The introduction of measurement error is quite simple in this
scheme: we just have to propagate the error on features measurement
in the constraints computation. A complete study of these kind of tech-
niques is developed in [13], but the complexity remains O((n+ 1)m) in
the worst case.

3.2 Iterative Closest Point
This algorithm was introduced in [3] and [42]. It consists of the alter-
nate optimization of the matches and the transformation. Since matches
are computed from the distance between points, this algorithm can be
easily generalized to features: from an initial transformation fo, one iter-
ates the two following steps:

Matching: Each model feature xi is matched to its nearest neighbor
(NN) yj in the scene Y:

πt(j)= arg min
j

dist
(
ft ? xi, yj

)
, i.e., yπt(j) = NNY(ft ? xi).

Registration: This is usually done using least squares. We have
developed in [35] such methods on generic geometric features.
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The above matching criterion is generally not symmetric: we can have
yj = NNY(xi) while the reverse is false. To solve this problem, we have
introduced in [32] a symmetric version of the nearest neighbor where
we match xi to yj = NNY(xi) if and only if NNX

(
NNY(xi)

)= xi.
The usual problem of this algorithm is to choose a termination crite-

rion. Since we are using identified features (and not “continuous” fea-
tures such as points on curves or surfaces), the set of possible matches
is discrete, and each interpretation corresponds to a unique transforma-
tion. When the algorithm converges, we thus obtain not only the same
matches but also the same transformation in successive iterations. This
last characterization is computationally cheap and constitutes the termi-
nation criterion. (Adding a maximal number of iterations is also useful
in case the algorithm does not converge.)

This algorithm is very easy to implement, but it needs a very fast
nearest neighbor search in a manifold and an efficient registration com-
putation. Moreover, it can be very sensitive to the initial transformation,
and it tries to match the whole model with the whole scene. Thus, un-
less it is initialized with a very good transformation, it cannot find a very
small set of good matches among a lot of clutter (like in proteins). For
these reasons, it is often used as a verification algorithm after one of the
other algorithms presented here.

3.3 Hough Transform
This method was introduced by Paul Hough in 1962 to detect simple
geometric objects like lines from points by accumulating evidence in
their parameter space. The method was generalized for recognition in
the following way: let k be the minimum number of matches needed to
compute a unique transformation (or at least a finite number) between
the model and the scene. For each k-tuple of matches, we compute
this transformation (if it exists), and we accumulate evidence in the
transformation space to find the one that maximizes the number of
matches (and hence the number of k-tuples matches).

The accumulation stage can be done with a discretization of the
transformation space, which serves as an accumulator for the votes cast
by the above k-tuple transformations. A sweeping stage is then necessary
at the end to find the best transformation hypotheses. One can also keep
all the computed transformations in a list and use a clustering algorithm
(like in [11, 32]). An adaptive subdivision of the transformation space
was proposed in [5]. At each step, the region is either subdivided or
dismissed based on upper and lower bounds on the number of possible
matches in the region. However, the linear equations used to efficiently
compute these bounds seem difficult to generalize to generic geometric
features.

The Hough transform was particularly studied for the inclusion of
measurement errors; a synthesis can be found in [13]. The complexity
is O(mk · nk), but we need to store the transformation space in memory
and sweep it at the end of the algorithm to find the maximum. This can
be a serious drawback when it comes to 3-D since rigid body motions
have a dimension 6 and affine transformations a dimension 9.

3.4 Alignment or Prediction-Verification
This technique can be seen as a compromise between interpretation trees
and Hough transform: one first hypothesizes a k-tuple of matches that
allows one to compute a transformation. Then this hypothesis is verified
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by mapping the model onto the scene and searching for new matches in
a given error zone around the model features. The quality score of this
hypothesis is simply the number of matches found, or it can be more
elaborate. This technique was principally developed in [1, 20, 21].

In theory, one should repeat this scheme for all possible k-tuple of
matches and keep the best hypotheses. For instance with 3-D points,
we need three matches to specify a rigid transformation (k = 3). Thus,
there are C3

m =
(
m
3

)= m!
3!·(m−3)! ways to choose three points among m in

the model, C3
n =

(
n
3

)
ways in the scene, and 3! to match the two triplets.

Therefore, we have
(
m
3

) · (n3) · 3!=O(m3 · n3) alignments or hypotheses
to verify. In practice, one stops as soon as we estimate that an object is
recognized and registered. Moreover, we can use the three invariants of
the triplet (the distances between points) to index it in a hash table. This
allows one to retrieve in quasi-constant time the compatible triplets in
the scene. The complexity falls thus to O(m3 + n3) for the prediction
step. This use of the invariants of the k-tuple can be generalized to
geometric features. (See Section 3.6.)

The verification step is particularly important since it should reject the
bad hypotheses but keep the good ones. (See Section 6.) It is generally
realized with an iterative nearest neighbor with a threshold on the dis-
tance for matching. Refining both the transformation and the matches is
important if we want to stop as soon as we find a good solution. If we
test all hypotheses, we can refine only the best ones.

3.5 Geometric Hashing
This technique was introduced by [26, 41]. The idea is to pre-compile
the information about model objects in a hash table with an invariant
representation (with respect to the action of the transformation group
G). This representation should also be redundant and based on local
features to allow for the recognition in the presence of occlusions. At
recognition time, we need to compute only the corresponding represen-
tation of the scene and accumulate evidence for the matching part of the
scene with an object.

More precisely, the geometric hashing concerns the case of a subgroup
of affine transformations acting on k-D points: one can then define an
intrinsic coordinate system (or basis) of a model by choosing at most
k + 1 of its points and expressing the coordinates of the others in this
basis. For instance, two points are sufficient to define an orthonormal
basis in 2-D (in fact a point and a direction are enough), or three non-
aligned points in 3-D. We need exactly three points for an affine basis in
2-D and four points in 3-D. The coordinates of other points in this basis
are invariant with respect to a global motion of the object.

The idea is to index in a pre-processing step all possible basis in the
model by the coordinates of the other model points. (See Figures 4 and
5 for examples of hash tables.) At recognition time, one chooses an
image basis and computes the coordinates of the other points in it. These
coordinates being invariant, we retrieve for each point (thanks to the
hash table) the model bases having a point in the same configuration,
and we tally a vote for the matching of these model bases with the
current scene basis. If the scene basis belongs to an indexed object, the
number of votes for the corresponding model basis will be the number
of points of the object that are visible in the scene (minus the points
of the basis). The complexity is thus O(nk+1) in the worst case for the
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recognition if the access time of a hash table bucket is constant. This is
obtained by considering n votes for every of the nk possible scene bases.
The verification step is not taken into account here.

The use of a hash table gives a sublinear recognition complexity with
respect to a library of objects: one simply indexes all the objects in the
same hash table and adds in the information stored to which object each
basis belongs.

3.6 Geometric Invariant Indexing
The generalization of geometric hashing to geometric features other
than points is not so easy, contrary to the alignment or the Hough
transform methods. Indeed, the notions of basis and coordinates of
other points in such a basis are linked to the structure of vector space,
which is generally not available for geometric features. However, one
can conceive a similar algorithm using the invariants of a fixed number
of features instead of coordinates, the accumulation still taking place in
the correspondence space.

If we take for instance 3-D points, the equivalent of the geometric
hashing algorithm would be to use in the hash table the invariants of an
ordered 4-tuple of points (xi, xj , xk, xl) instead of the coordinates of xl in
a basis constructed from (xi, xj , xk). For the accumulation, it then seems
natural to replace the increment of a basis match by the increment of
all four individual matches: if (y′i, y′j , y′k, y′l) is a compatible 4-tuple of
points in the scene, we will now vote for each match (xi, y′i).

After this modification, it is no longer necessary to impose the use
of a 4-tuple of points: we can use a triplet of points or simply a pair.
The complexity is in this case reduced from O(n4) to O(n3) or O(n2).
However, we must be careful that decreasing the number of points
drastically reduces the selectivity of invariants, and the probability of
false positives becomes high very fast with the noise. The results of
such an algorithm can thus be absurd. (See Section 6.) If we consider
a triplet of points, we obtain an algorithm that is very close to the
Hough transform, except that the accumulation is in the correspondence
space instead of the transformation space. It is possible to combine both
approaches by clustering for instance the transformations associated
with each possible match.

This type of algorithm has been used in [6] with complex features
(points with local shape descriptors), in [24, 18] for 3-D curves using
differential invariants (principal directions and curvatures), in [40] for
3-D range data, and in [11, 12] to reduce the complexity of 3-D point-
based matching from O(n4) to O(n3). In this last case, a pseudo-basis
constituted of two points was replacing the standard three points basis
for accumulation. We have also used such an algorithm in [19, 32] with
3-D frame features3: we used in this case a pair of frames to index,
the invariants of such a pair being the rigid transformation from one
frame to another. With this 6-D invariant space, we have a quite selective
scheme and a complexity of O(n2) instead of O(n4) for points. However,
for the general feature case, the main problem is how to compute the
invariants of a k-tuple of features, which will be detailed in Section 5.1.

3. A frame is a point with an orthonormal trihedron and is equivalent to a Euclidean
coordinate system.
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4 Error Handling
All these recognition algorithms are quite simple in the theoretical case
of exact measurements. In practice, all our measurements are subject
to errors due for instance to the deformations of the acquisition sys-
tem and the image sampling in pixels and gray levels. The algorithms
have to be adapted to explicitly take into account the fact that the fea-
tures are inherently uncertain. For instance, in geometric hashing the
measurement error propagates into the computation of invariants, and
voting punctually in the hash table (just through the bin corresponding
to the computed invariant value) could lead us to miss a great number
of matches. We would then obtain false negatives which means that the
object is not recognized when it should be. The same thing can happen
with the alignment algorithm if the area search for a correspondent is too
small with respect to the measurement error of the features enlarged by
the uncertainty of the hypothesis transformation.

In this section, we analyze how measurement uncertainty should be
taken into account in order to avoid false negatives. This will ensure the
correctness of the recognition algorithms: objects will be recognized if
they are present in the scene.

4.1 Error or Compatibility Zones
To handle uncertainty, we assume that we know an estimation of the
measurement errors either as a bound on the values or as a probability
law.

Conservative error bounds The approach of Grimson and Hutten-
locher [14, 17] or Lamdan and Wolfson [27] is to propagate an error
bound in the invariant computation to obtain an error zone for the votes
in geometric hashing or for the search zone during alignment. Using this
error zone, we are ensured not to miss a possible match. It is not as-
sumed in this method that the error distribution is uniform but only that
the distribution has a compact support that is included in the error zone.
To be sure that we do not miss a possible match, we want to compute
a conservative error bound (an upper bound) during the operations we
perform on features. This fact ensures the correctness of the algorithm.
On the other hand, the recursive use of upper bounds ends by giving
error zones that are much larger than what is observed.

To illustrate this point, we have computed in [29] the conservative
propagation of error bounds for rigid alignment and geometric hashing
of 3-D points (Figure 2). We can see that the predicted error bound is
much larger than the values actually observed. In fact, we have estab-
lished in this case that

Mean error= Predicted error
13.2

and Max error<
Predicted error

2
.

The conservative bound for this relatively simple example is thus already
two times larger than the bound statistically observed. Moreover, the
computation of these conservative bounds is especially difficult, and
each operation needs a particular hand derivation of the bound.

Probabilistic error Another approach is to consider that we observe
the realization of some random vectors and propagate the first moments
of the distributions through all computations. This is especially well
adapted to introduce a quantitative estimation of the quality of the
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Figure 2. Maximal and mean ob-
served error for 3-D points due to
the uncertainty of the trihedron in
the basis for geometric hashing. Each
of the 500 values is computed as the
mean and maximal error for 1000
perturbations of a three-point ba-
sis. The x value is the corresponding
predicted maximal error.
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matches in the matching criterion. This is the core of the probabilistic
geometric hashing proposed by Rigoutsos and Hummel [37, 38].

According to the theory developed in the introduction, a random fea-
ture is approximated by its mean and its covariance matrix: x∼ (x, 6xx).
However, most probabilistic recognition methods assume that the error
distribution is Gaussian to combine probabilities in the matching score.
This assumption is consistent with our approximation since the Gaussian
is the distribution that minimizes the information when we only know
the mean and the covariance.4

However, the main problem of the Gaussian distribution is that its
support is infinite. Thus, there is an always non-zero probability of
matching any two features. This is catastrophic for the complexity of
the matching algorithms since we should theoretically explore the whole
correspondence space.

Truncated probabilistic error The usual solution [37] is to combine
the two approaches by bounding the admissible error using the Maha-
lanobis distance. (This corresponds to a χ2 in the Gaussian hypothesis.)
The error or compatibility zone around feature x∼ (x, 6xx) is thus:

Zν(x)=
{
z ∈M/µ2(x, z)= −→x̄zT ·6(−1)

xx · −→x̄z≤ ν2
}

, (4)

where ν2 is a (generally global) threshold that can be interpreted in the
Gaussian case as a χ2. It is interesting to compare with the previous
bounded error model:

Zε(x)=
{
z ∈M/ dist(x, z)2 = −→x̄zT · −→x̄z≤ ε2

}
(5)

where the threshold ε is metric and thus harder to choose than a thresh-
old without dimension. The truncated probabilistic model can thus be
seen as a generalization of the bounded error model where the infor-
mation matrix 6(−1)

xx is used as a local metric. Moreover, one can show
[10, chap. 5, p. 152] that propagating covariance matrices using the
Jacobians can be interpreted in a deterministic way as the first-order ap-
proximation of the error bound propagation.

4. By the way, it is using this very property that we have defined the Gaussian distribution
on a manifold in [35].
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4.2 Handling Uncertainty in Matching
Algorithms
We describe in this section how to modify the recognition algorithms in
order to make them handle an a priori known uncertainty on features. It
is, however, desirable to verify a posteriori after recognition and registra-
tion that our guess about feature uncertainty is good. One can also think
of iterating the whole process (matching, registration, and estimation of
the noise on features).

Interpretation trees To handle uncertainty in this algorithm, we just
have to propagate the uncertainty in the computation of unary, binary,
and higher-order invariants and perform the constraint satisfaction test
using a Mahalanobis distance between uncertain invariants.

Hough transform Assume that we have found a k-tuple of model fea-
tures and a k-tuple of scene features that have compatible invariants.
(This can be done using an invariant indexing technique.) We compute
the transformation f̂ between these k-tuples and its uncertainty 6ff .
We obtain in fact a probabilistic transformation f ∼ (f̂ , 6ff). To verify
if these k matches are correct, we use the Mahalanobis distance be-
tween matched features after registration; but since the transformation
is computed by minimizing these distances, we should not take into ac-
count the uncertainty of the transformation to obtain an unbiased result.
(Otherwise the Mahalanobis distances would be underestimated.) This
means that we test if µ2(f̂ ? xi, yi)≤ ν2 for each of the k matches.

Since we need at least k matches to compute the transformation, this
one is not reliable if at least one of the k tests fails. We reject in this
case the transformation. If all tests are passed, the transformation is a
possible one, and it is added in the accumulator with its uncertainty.

There are two main techniques for the accumulation. The most widely
known is to vote for the bin where our transformation falls in the sam-
pled transformation space. This is the origin of the term “accumulator.”
With the error handling, we now have to vote for all the bins of the accu-
mulators that intersect the compatibility zone Zν(f) of our probabilistic
transformation. This problem is not so easy to solve efficiently and will
be detailed in Section 5.4. We also have to sweep the sampled trans-
formation space at the end of the algorithm to find the maximum score
transformations. An alternative is to maintain during the algorithm a list
of the best transformations. (The question is then how many do we have
to keep.)

The second technique is to add each possible transformation f to a list
and afterward use a clustering algorithm to extract and merge the sets
of compatible transformations. We used a similar technique in [32].

Alignment The computation of the transformation between k features
and the verification of theses k matches is exactly the same as for the
Hough transform. The difference is that we now verify the hypothe-
sized transformation by looking for additional matches with the other
features. In this process, the uncertainty of the transformation has to
be taken into account. One then searches for each model feature xi the
nearest neighbor yj =NN(f ? xi) in the scene (according to the canonical
or the Mahalanobis distance and possibly with the symmetry constraint
on the nearest neighbor). The match is accepted if the following test is
passed:
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µ2(f ? xi, yj ) < ν2.

If the number of matches is sufficient for the hypothesized transfor-
mation, it is interesting to verify the global consistency of matches and
an improvement of the transformation. We can indeed seriously reduce
the transformation uncertainty using all matches.

ICP and global consistency verification If we have the matches (as
with alignment), the following step is to recompute the transformation
minimizing the Mahalanobis distance between all these matches. To im-
prove robustness, we can rule out the outliers by verifying once again
the Mahalanobis distance of the matches, but, since the new transfor-
mation is computed from these very matches, one has to do it without
the transformation uncertainty to be unbiased. The test is thus for each
match:

µ2(f̂ ? xi, yj ) < ν2.

The process can be iterated until convergence. To realize a real ICP from
this verification scheme, it is sufficient to recompute the nearest neigh-
bor of each model feature, keeping only those who pass the above test.

Hashing and geometric invariant indexing For geometric invariant
indexing, we need to propagate the feature uncertainty in the invariant
computation (as for the interpretation trees), and index these probabilis-
tic invariants with their error zone. This last step raises the same prob-
lems as for the indexing of probabilistic transformations in the Hough
transform. It will be detailed in Section 5.4.

Handling error in the geometric hashing algorithm is more complex.
Consider for instance the case of 3-D points: we need first to fix the way
we compute the basis from three points and estimate the uncertainty
of this local basis (i.e., the uncertainty of the transformation f from
the canonical basis to the local one) with respect to the uncertainty
of the three points. The best way to do this is unclear, even if a least
squares (between the three points and three fixed points in the canonical
basis) seems to be adapted. We have in this case already developed
the algorithm to get the registration and its uncertainty. Computing the
coordinates of other points in the local basis then corresponds to the
action of the probabilistic transformation f . In this process, we must
be careful to take into account the uncertainty of the transformation
while computing the uncertainty of the invariant coordinates (otherwise
a slightly large error of the basis features would rule out most of the
matches). The last modification is to index (and retrieve) as above our
probabilistic invariant coordinates with their error zones.

5 Some Key Problems
Up to now, we have formalized the main matching algorithms used on
points in terms of features and seen how to modify them in order to ex-
plicitly handle uncertain measurements. In this section, we investigate
some key problems that are raised by these algorithms and that consti-
tute the difficult part to implement either due to the fact that we are
using features or simply because of the uncertainty.

We have identified four main problems. For ICP, we know how to
compute the transformation and its uncertainty, but the problem is to
find efficiently the closest neighbor in a manifold (with a non-Euclidean
Riemannian metric). A related problem for the Hough transform is to
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cluster the transformations. Of course, the clustering of geometric fea-
tures can be of use for many other important algorithms. The other
algorithms (including the Hough transform) use more or less unary, bi-
nary, or higher-order invariants. The problem is not only to compute
them but also to compare them efficiently and reliably. Last but not least,
hashing is widely used to improve the algorithmic search for compatible
features or invariants. How can we do this in presence of error and in a
manifold?

5.1 n-ary Invariants: Shape Space
We have previously talked about unary, binary, or higher-order invariants
as the characteristic invariants of the shape of k ordered features. If we
can easily see that this notion corresponds to the distance for a pair of
(rigid) points and, for instance, the three interpoint distances in a triplet
of (still rigid) points, it is much harder to imagine what are the similarity
invariants of a 4-tuple of points or the affine invariants of five oriented
points.

We believe that an approach based on the shape theory is well
adapted to tackle this problem. This theory was principally developed
by Kendall and Le [23, 28] on points under similarities and rigid trans-
formations. The idea is to characterize the configuration space of a set
of k ordered features. By configuration, we mean what is invariant: the
shape. The method is the following: a k-tuple of features is an element
of Mk. To obtain its shape, we identify all k-tuples that can be identified
using a suitable transformation f ∈ G. The k-shape space is thus the quo-
tient space Ik =Mk/G that Kendall denotes by 6(M, G, k). One can also
see this as the “factorization” of a k-tuple of features into a shape i ∈ Ik
and a “position” f ∈ F ⊂ G of this shape in space.

With this approach, the first problem is to find a metric on the shape
space compatible with our metric on the manifold M and on the group
G. Roughly, this means that we want to have the same measurements on
invariants independently of the position of the original k-tuple in space,
and this is equivalent to finding a “factorization” of the metrics such that
Mk = G× Ik. With the metric on the invariant space, we can determine
geodesic and the exponential chart (the “most linear chart” with respect
to the metric) at each point of the manifold.

Then, from a theoretical point of view, we can compute the mean in-
variant and its covariance matrix and the Mahalanobis distance. From
a computational point of view, we need to find a way to implement the
exponential chart at each point of Ik as we no longer have a placement
function as in the homogeneous manifolds to identify things at feature
x with things at the origin. The problem is however simpler than for
features, since the basic operations on probabilistic invariants are re-
duced to

Translation between a k-tuple of features and the pair k-shape/posi-
tion: X ∈Mk↔ (i, f) ∈ Ik × G.
Distance between two k-shapes: dist(i1, i2).
Mahalanobis distance between two probabilistic k-shapes: µ(i1, i2).

From these basic operations, we can construct algorithms to merge
invariants, estimate the mean, etc. For efficient matching algorithms,
we also need to find the nearest neighbor in this manifold or index these
uncertain invariants.
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5.2 Clustering of Uncertain Geometric Features
We are interested here in the clustering of transformations for the Hough
transform. However, since the transformation group is a manifold, a
more general problem is the clustering of geometric features on a man-
ifold. The problem is somehow simplified with respect to the standard
clustering problem since we have an uncertainty estimation on our fea-
tures: we know thus the “scale” of the clusters. On the other hand, we
generally do not know the number of classes.

It is possible to generalize some classical techniques based on the
distance of points (see for instance [9, 22]) by replacing the distance be-
tween points with the Mahalanobis distance between uncertain features.
On the contrary, space sampling techniques are less likely generalizable
since we no longer have a vector space. (See also Section 5.4.)

We have used in [32] a very simple but rough technique: the infor-
mation (or its opposite value, the entropy) of a random feature f is
related to the log of the determinant of its covariance matrix. We can
thus choose the most informative feature among the set to cluster and
iteratively merge the closest feature to the current state estimate (ac-
cording to the Mahalanobis distance). Each used feature is removed from
the set. Once there are no more features to merge, we have obtained
one cluster represented by its mean feature and we iterate the cluster-
ing stage on the remaining features. In this process, an efficient way of
finding the nearest (Mahalanobis) neighbor would be an important im-
provement for the complexity. A more rigorous algorithm would be to
let the different clusters compete with each other and to compute the
mean feature of a cluster with a Mahalanobis distance minimization at
each step.

5.3 Nearest Neighbor in a Manifold
This is an old problem and it is well studied on points in computational
geometry. The corresponding notion is the Voronöı diagram. However,
constructing and using this diagram is complex, so most techniques rely
on space-partitioning methods such as k-D trees [36].

This last technique iteratively subdivides the space along each axis
in turn and relies on the equivalence between the Euclidean L2 norm
and the L∞ norm (maximum coordinate) which is separable along the
axes. This allows us to give upper and lower bounds on the Euclidean
norm with respect to the maximal difference between coordinates. Its
generalization to a Riemannian manifold seems difficult since there no
longer is a global coordinate system to define a L∞ norm and alternate
the search along the axes.

The Voronöı diagram can be generalized to a Riemannian manifold,
but very little work exists. One can cite [4, chap. 18] for a hyperbolic
manifold, but the determination of the diagram relies on the fact that the
manifold has a negative curvature and thus there exists a global diffeo-
morphism with Rn (in this case a projection). These kinds of techniques
are not applicable to positively curved manifolds such as spheres or pro-
jective spaces (which includes 3-D rotations). However, other techniques
are possible. Watson developed a method to compute the Voronöı dia-
gram on spheres Sn with their canonical Riemannian metric. Using the
very special properties of the exponential charts, we think that it is pos-
sible to compute the Voronöı diagram on any homogeneous manifold
with an invariant Riemannian metric. However, the efficiency of such a
construction for the nearest neighbor problem is not ensured.
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Figure 3. Voronöı diagram and
dual Delaunay triangulation on
the sphere S2, generated interac-
tively and in real time with the java
applet ModeMap of Dave Watson
(www.iinet.com.au/
∼watson/modemap.html).

To conclude on this problem, we note that none of these techniques
can apply for the nearest neighbor according to the Mahalanobis dis-
tance. Indeed, they rely on data preprocessing that makes use of the
metric, which is only known at query time with the Mahalanobis dis-
tance. (It uses the covariance of the query feature.)

5.4 Uncertain Indexing
In all the algorithms that make use of invariants we have the same
problem: how to retrieve efficiently the nearest or compatible invari-
ants among a predefined set. The “brute force” method is to compare
our query invariant with all the others, which has a linear complexity
with respect to the number N of indexed invariants. There is no pre-
processing stage, and the memory requirement is also O(N). There are
basically three techniques to reduce the complexity. We have investi-
gated in Section 5.3 the Voronöı diagram to find the nearest neighbor.
We can subdivide the space sampling methods in two: either the sam-
pling depends on the data, as in k-D trees, which generally gives a search
time of O(logN), or the space is sampled in a fixed way and the contents
of a bin can be retrieved in quasi-constant time with a hash table. In this
section we focus on this last technique.

In an ideal world with no noise on the data, we just have to determine
a space sampling and a hash function that transform the coordinates
of a bin into a code. This code indexes (through an array) the list of
data having the same code. This hash function should scatter as much
as possible the codes to obtain few empty lists and a very short mean list
length. (Ideally there should be one and only one data per code.)

The introduction of the error on our invariants raises some problems
in this algorithm: we now have to index or retrieve them using an error
zone that generally intersects several bins in the sampled space. We have
first to determine which bins. Next, all the bins create supplementary
entries in the hash table. We will no longer have N entries but much
more, for instance around 6N for the 2-D hash table of Figure 4. It is
then important to quantify the mean number of indexed bins per data
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Figure 4. Multidimensional data
hashing with error.
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Figure 5. Left: a 512 · 512 (synthetic)
2-D image. The two points used for
the basis are shown in bold with their
error zone (five pixels). Right: the
slice of the hash table corresponding
to the measured length of the
basis. One can see the sensitivity
of the invariant coordinates by
comparing the size of the error zones
in the image space (left) and in the
invariant coordinate space (right).

to have an idea of the mean number of objects by index (the mean
length of the list of objects for a given code). The real complexity of
hashing is proportional to these two factors. Since the hash function can
associate the same code to very different locations and the volume of the
compatibility zone is smaller than the indexed volume, it is moreover
necessary to verify the compatibility of the query feature and those
found in the corresponding bins of the hash table.

In [29], we have analyzed the complexity of the different types of
hashing used by recognition algorithms on points. Let us index for in-
stance points of Rd with an error zone bounded in norm by ε and a
Cartesian sampling with width l (such as in Figure 5). The mean num-
ber of indexed bins by point (i.e., intersecting the error zone) is about
n̄= (1+ 2 · ε/l)d. Using this value in a false positives analysis, we con-
cluded that l ' ε was a good trade-off. Thus, for 3-D points, we have a
mean number of nine indexed bins. For a fixed dimension, this is only
a constant multiplicative factor in the complexity of the algorithm, but
this factor is exponential with respect to the dimension. Hence, for the
(rigid) geometric hashing of 3-D points, using the three invariants
of the basis (the distance between the three points) and the coordinates
of the fourth point in this basis, we index in a 6-D space and we obtain
a mean number of index bins per point of 729!

Moreover, even if we assume the same metric error bound on all
points, its propagation through the computation of invariants gives a
bound that depends on the invariant position, as can be seen in Figure 5.
Therefore, an adaptative space sampling is sometimes preferable.

Up to now, we have only raised the problems for the simple invari-
ants of points. If we consider now a frame pair, the associated binary
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invariant is also a frame. (It is in fact the rigid transformation from one
frame to the other expressed in one of the frames.) The invariant space
is this time SO3 × R3 and no longer Rd. The first question is how to
sample regularly a space closing on itself such as the sphere or the set of
rotations SO3. This problem is linked to the way we compute the inter-
section of the error zone with the bins, which has to be very efficient for
the hashing to remain interesting.

The adaptation of hashing techniques to uncertain geometric features
and invariants is thus a difficult problem, and, unless new techniques
were to be designed, the speedup they were used for is not always
conserved. Efficient searching for compatible features or invariants is,
however, a crucial problem for the efficiency of recognition algorithms
based on geometric features.

6 Performance Analysis: False Positives
With the correct handling of measurement errors, we have ensured the
correctness of our recognition algorithms: there will be no (or very few)
false negatives. On the other hand, we now have a larger probability of
false positives (or phantom recognition). Indeed, using an error zone in-
stead of a unique feature allows us to match features that fall by chance
in this area, and, when this probability is sufficiently high, individual
false matches can combine themselves (conspiracy) to produce an im-
portant matching score. We then will estimate that we have recognized
an object that is not present.

There are two principal sources of false positives. The first one is that
we are looking for a local consistency that can be insufficiently con-
strained. For instance, this is the case when we use only unary and
binary invariants to predict global matches. A verification step is thus
needed to insure the global consistency of the matches. This verification
step can moreover improve the registration accuracy and rule out out-
liers. Since this step can be computationally expensive, we should limit
the number of false positives as much as possible.

The second source of false positives is less obvious and comes from
the simple modeling of the image (or the data) by features. Some im-
portant information can be dismissed in this process, and we can end
up with a correct recognition from a feature point of view (a globally
consistent matching) that is incorrect from the image or data point of
view. This problem is inherent to the ascendent organization of informa-
tion in image processing but can be minimized by using more-adapted
and more-informative features. For instance, we will see in Section 6.2
that adding trihedra to 3-D points to form frames allows us to get rid of
more than 80% of the individual false matches even with a very noisy tri-
hedron (a standard deviation of 90◦!). In real applications (registration
of medical images from “extremal points” [34]), the standard deviation
of the trihedron is about 10◦, and the probability of false positives us-
ing frames drops off drastically with respect to points (Figure 7). In
other experiments in molecular biology [32], we observed that using
frames instead of points could rule out some biologically nonsensible
matches.

In the following, we present a new method to analyze the probability
of false positives for some matching methods. Then, we tackle a more
general problem: the computation of the intrinsic complexity of the
recognition problem, independently of the method used.
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6.1 Problem Formulation
The probability of obtaining a false positive has been mainly studied in
[15, 16, 27, 17] for recognition problems from a library of exact models
based on points and lines. Here, we still consider that the model is exact
but based onm geometric feature instead of points. The scene consists of
n noisy features. In the model and in the scene, τ features are in the same
configuration (up the noise). The (m− τ) and (n− τ) other features are
supposed to be randomly distributed in the model image Im and the
scene image Is. In fact, if the meaning of this sentence is quite clear
for points, it needs to be detailed for features. By “image,” we mean
the set of possible measurements of our features in the real image. For
instance in a 3-D image, the position of a frame is constrained to be
in the image volume U⊂ R3 but the trihedron part could be anything.
Thus, the image (from a frame point of view) is I= SO3 ×U⊂M. The
random distribution of features in an “image” I is of course the uniform
(i.e., invariant) distribution on this set.

To compute the false positives probability, we also need some hy-
potheses about the matching criterion. Here, we use one of the simplest:
the criterion is the number of matches. A set of matches is accepted if its
score after verification is greater than a given threshold. The matching
algorithms being modified in the previous section not to miss a match,
we can take τ for this threshold.

6.2 Selectivity: Probability of a (Single)
False Match
Let f be a hypothesized transformation from the model to the scene: the
exact feature x is matched with the random one y if the transformed
feature f ? x is in the error zone Z(y). This error zone can be based on a
truncated probabilistic model (Equation 4) or on a bounded error model
(Equation 5).

We call selectivity the probability of accepting this match if one of
the features is an outlier (its position is random and uniform in the
image). By symmetry, we assume that feature x is the outlier. Then, the
probability of a false match is the conditional probability:

P(f ? x↔ y)= P ((f ? x) ∈Z(y)|x ∈ Im
)

.

The uniform distribution on the set Im is given by the invariant mea-
sure dM on the feature manifold (see [33] for a discussion), normalized
by the volume of the set V(Im)=

∫
Im
dM. Thus, the selectivity is

P(f ? x↔ y)=
∫
(f?Im)∩Z(y)

dM

V(Im)
= V

(
(f ? Im) ∩Z(y)

)
V(Im)

.

If the volume V(Z(y)) of the error zone is small with respect to the image
volume V(Im), we can consider that the transformed image f(Im) either
contains the whole error zone or does not intersect it at all. This allows
us to approximate the above probability by

P(f ? x↔ y)= εV
(
Z(y)

)
V(Im)

where
{
ε = 1 if f (−1) ? y ∈ Im
ε = 0 otherwise.

A desirable property for our “error volume” Z(y) is to be compara-
ble at every point since we usually fix the same bound for error on all
the points. This means that, for any feature y′, there exists a transfor-
mation f such that y′ = f ? y and Z(y′)= f ? Z(y). The error volume is
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said to be homogeneous. A stronger hypothesis is that for every trans-
formation f, the error volume on the transformed point is the transfor-
mation of the error volume: Z(f ? y)= f ?Z(y). The volume is said to be
isotropic in this case, and is completely determined by its shape around
the origin. (See [35] for an analysis of noise models.) In both cases
(homogeneity and isotropy), the volume of the error volume is invari-
ant and can be computed at the origin. In the case of a homogeneous
probabilistic model, it depends only on the covariance at the origin
6 = J (fy)(−1) ·6yy · J (fy)−T:

V
(
Zν(y)

)= V0 =
∫
ExT·6·Ex≤ν2

dM(Ex).

Example with frames To keep this example as simple as possible, we
consider here a bounded error model on the position and a separated
one on the orientation. Thus, two frames are matched if the distance
between their points is less than a threshold d0 and if the rotation
needed to adjust their trihedra has an angle less than a threshold θ0
(this angle is θ = ‖r(−1)

x ◦ ry‖). This error zone is isotropic. The volume
is thus invariant and we can compute it at the origin: a frame f = (r, t)
is in the error volume Z(Id) if θ = ‖r‖ < θ0 and ‖t‖ < d0. Using the
invariant measure on rigid transformations dM(r, t) = sin2(‖r‖/2)

‖r‖2 dr dt ,
we can compute the volume of the error zone:

V0 =
∫
θ<θ0

∫
‖t‖<d0

dM(r, t)=
(∫

θ<θ0

sin2(θ/2)
θ2 dr

)
·
(∫
‖t‖<d0

dt

)

V0 =
[
2π(θ0 − sin(θ0)

] · [4π
3
d3

0

]
.

If we assume a cubic image of side l (256 for instance), this gives a Eu-
clidean volume VI = l3 for points in which trihedra are not constrained:
the rotation volume is 2π2. Finally, we obtain the basic probability of
false match:

P(f ? x↔ y)= ε · η with η =
(
θ0 − sin θ0

π

)
4
3

(
d0

l

)3

.

We have isolated in the first term the probability of false match due
to the trihedra only, which reflects the gain in selectivity when using
frames instead of points. This function is plotted in Figure 6 and shows
very interesting results: even for a bound of θ0 = π/2 = 90 deg, more
than 80% of the random matches are rejected. For a more realistic bound
of θ0 = π/10= 18 deg, the probability of a false match drops to 0.0016:
we would have to divide the bound on the position by 10 to obtain an
equivalent selectivity using points only.

We will see in the rest of this section that it is sometimes useful to
assume that the image is spherical, for instance with a diameter d =√

3 · l. The volume of the (frame) image in this case is V = 4 · π ·
(d/2)3/3 and the selectivity becomes:

η =
(
θ0 − sin θ0

π

) (
2 · d0

d

)3

.
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Figure 6. Basic probability of a false
match for trihedra with a bound
on the angle for the adjustment
rotation of theta. Since the formula
of the selectivity is multiplicative
for frames, this curve is also the
gain in selectivity when using frames
instead of just points (the ratio of the
selectivity of frames over the one of
points). theta
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6.3 Proportion of False Positives
(Hough and Alignment)
In this section, we investigate some basic false positives analysis for the
Hough transform and the alignment algorithm. Since many variants of
these algorithms exist, the purpose is not to give a precise number of
false positives but to explain with practical examples what techniques
can be used. These techniques will be generalized in the next section to
the analysis of the intrinsic number of false positives, independently of
the algorithm used.

6.3.1 Probability of Choosing a “Correct Basis”
in the Model
For the Hough transform and the alignment method, we begin by finding
the possible matches of k features (k being the minimal number of
matches to determine uniquely a transformation). By reference to the
alignment algorithm, we call it a hypothesis. A hypothesis is correct if
the k matches are all correct. One false match is sufficient to give an
incorrect transformation.

There are Amk =
(
m
k

) · k! possible sets of k ordinated features in the
model, but only Aτk are correct. Thus, the probability of choosing an
incorrect “basis” is (with an approximation for k� τ):

p(m,k) = 1− Aτk

Amk
= 1− τ ! · (m− k)!

m! · (τ − k!) ' 1−
(
τ

m

)k
.

6.3.2 Number of “Compatible Bases”
in the Scene
Assume that we have chosen a basis in the model. A scene basis is
compatible if there exists a transformation f that superimposes the k
model basis features with the k scene basis features.

Let us investigate the case of a fixed (or known) transformation f.
Assuming that the distribution of scene features is uniform, the proba-
bility that no features fall in one of the error zones of the transformed
model basis is (1− ε · η)n. Thus, the probability of finding at least one
match in the scene for each model basis feature (under the transforma-
tion f) is

pk(f)=
k∏
i=1

(1− (1− εi · η)n) with εi =
{

1 if f ? xi ∈ Is
0 otherwise.

Now, we just have to integrate over all possible transformations to
obtain the mean number of compatible bases in the scene. We note that
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the expression above is null if one of the εi is null. Thus, we can rewrite
it as pk(f)= (1− (1− η)n)∏k

i=1 εi and the integral becomes:

Pk =
∫

f∈G
pk(f) · dG= (1− (1− η)n)k ·

∫
f∈G

k∏
i=1

εi(f) · dG.

An upper bound of the value of the right term α is obtained by only
asking for the intersection of the images:

k∏
i=1

εi(f)= 1 H⇒ f ? Im ∩ Is 6=∅.

In the case of 3-D rigid transformations, we can obtain a rough estima-
tion of this bound as follows: let d be the image diameter (for instance
d =√3 · l for a cubic image of side l). Assuming the images are spherical,
and taking the origin at the center, we can make any rotation followed
by any translation of length less than d and the images still intersect. On
the other hand, any translation of length greater than d separates the
two images. Thus, we can bound our integral by

α ≤ 2 · π2 ·
∫
‖t‖<d

dt = 8
3
· π3 · d3 = (2 · π · d)

3

3
= (2 · π · l)3.

Thus, given a model basis, the mean number (nonnormalized probabil-
ity) of corresponding bases in the scene image is

Pk = α · (1− (1− η)n)k = α · (n · η)k with α ≤ (2 · π · d)
3

3
.

6.3.3 Hough Transform: Proportion
of False Transformations
Ideally, we should compute the mean number of true and false hypothe-
ses in each bin of the transformation space. To simplify the problem, we
just compute the percentage of good hypotheses. Roughly, this amounts
to assuming a uniform distribution of both good and false hypotheses in
the transformation space.

We have Aτk correct hypotheses. But for each (correct or incorrect)
model base, we find a mean number of Pk false hypotheses, which give
Pk · Amk false hypotheses. Thus, the proportion of false transformations
in the accumulator is

PHough = Pk · Amk
Aτk + Pk · Amk

=
(

1+ Aτk

Pk · Amk

)(−1)

'
(

1+ 1
α

(
τ

η ·m · n
)k)(−1)

.

6.3.4 Probability of Accepting a Verification
For the alignment algorithm, we have to verify each hypothesis. Given
a hypothesis, k features are already used to constitute the scene basis.
Thus, there are n− k error zones in the scene. The probability that one
of them− k model features avoids all the error zones is (1− η)n−k. Thus,
the probability that it falls in at least one the error zone is

p = 1− (1− η)n−k ' (n− k) · η.
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The probability to match exactly j features among the m − k model
features is the binomial

B(m−k,p)(j)=
(
m− k
j

)
pj(1− p)m−k−j .

Thus, the probability of accepting a hypothesis is the sum of the
probabilities to have more than τ matches:

q =
∑
j≥τ

B(m−k,p)(j)= 1−
τ∑
j=0

(
m− k
j

)
pj(1− p)m−k−j

= Ip(τ + 1,m− τ),
where Ip(a, b) is the normalized incomplete Beta function.

Assuming that p� 1, we can approximate the binomial B(m−k,p) by
the Poisson distribution of parameter λ= (m− k) · p:

q ' 1− e−λ
τ∑
j=0

λj

j !
with λ' (n− k) · (m− k) · η.

6.3.5 Alignment: Proportion of False Positives
We have Amk possible bases in the model, and a mean number of Pk
false hypotheses for each one, each hypothesis being accepted with a
probability q. Thus, we accept a mean number of Amk · Pk · q incorrect
matchings. We also have Aτk correct hypotheses that will give correct
matchings. Thus, the proportion of false positives is

Palign = q · Pk · Amk
Aτk + q · Pk · Amk

=
(

1+ Aτk

q · Pk · Amk

)(−1)

'
(

1+ 1
α · q

(
τ

η ·m · n
))(−1)

.

The probability q can be directly interpreted as the filtering ratio of the
verification step.

6.4 Intrinsic Probability of False Positives
In the previous section, we try to characterize the way two algorithms
act by propagating step by step the probability of incorrect matches. One
can also ask for the intrinsic probability of false positives, independently
of the algorithm used: what is the probability to obtain a score τ if the
model and the scene are in fact constituted ofm and n features randomly
(uniformly) distributed in the images?

In fact, we have developed in the previous section the basic tools to
answer this question. Indeed, finding τ matches means that there exists
a transformation f such that τ model features fall in the error zones
of the scene features. Thus, we just have to compute the probability of
obtaining τ matches for a given transformation, and then integrate this
probability for all possible transformations.

We have n error zones in the scene. Given a transformation f, the
probability for one model feature to fall in at least one of these zones is
p' η · n. Thus, the probability that exactly j of the mmodel features fall
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Figure 7. Qualitative estimation of
the number of false positives in-
volving at least x matches in MR
images of 2,500 features. Compari-
son between frames and points: we
need roughly five times more point
matches than frame matches to ob-
tain the same probability (10 frames
and 56 point matches for a proba-
bility of 10−10). The actual match
found involves about 500 features,
and its probability of being a false
positive is thus practically zero.
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in a scene error zone is the binomial B(m,p)(j). Therefore, the probability
of matching at least τ of them is

q =
∑
j≥τ

B(m,p)(j)= Ip(τ + 1,m)' 1− e−λ
τ∑
j=0

λj

j !
,

with λ=m · p = n ·m · η.

To obtain the mean number of false positives, we just have to integrate
over all possible transformations, which amounts to multiplying it by
α. Finally, with our spherical image of diameter d, the probability of
matching τ features among m and n random features is

8= α · q ' (2 · π · d)
3

3
·
1− e−λ

τ∑
j=0

λj

j !

 with λ= n ·m · η. (6)

This equation is valid only when λ = n · m · η� 1. Moreover, as our
analysis is very qualitative, we can trust it only for very small values.
However, notice that the influence of the integration over admissible
transformations on the number of false positives is linear. This is to
be compared with the exponential influence of the selectivity η in the
accepting probability q. Hence, the estimation of α does not need to
be really accurate (or could be adjusted a posteriori from experiments).
This effect is visible in Figure 7: the difference in selectivity between
points and frames induces very different false positives probabilities,
whereas a variation on α would produce only a small vertical shift of
the curves in logarithmic scale.

6.4.1 Application Example in Medical Imaging
In the case of the MR images of the associated demo, the volume im-
ages are 256 · 256 · 165 mm and we typically extract 2,500 extremal
points (modeled by semi-oriented frames). Among them, about 500 are
matched in a registration.

Frame selectivity Combining the error on the model and on the scene
features, we obtain a roughly diagonal covariance matrix:

VIDERE 1:2 Toward a Generic Framework for Recognition 82



6 = DIAG(0.005, 0.006, 0.065; 0.45, 0.60, 0.165).

On such a small error zone, we can approximate the invariant measure
on frames by the Lebesgue measure:

sin2(θ/2)
θ2 · dθ · dt ' (1+O(θ2)) · dθ · dt

4
.

Thus, the volume of the error zone defined by a χ2 limit of ν2 is

V0 =
∫
xT·6(−1)·x≤ν2

dx

4
.

To compute this integral, we make the change of variable x = ν ·3 · y,
where 3 is a square root of 6. We get

V0 = 1
4
·
∫
yT·y<1

ν6 · | det(3)| · dy = ν6 ·
√

det(6) · π
3

6
· 1

4
.

For a χ2 bound of ν2 = 16, this gives V0 ' 1.56.
The total volume of the image is 256 · 256 · 165 = 1.08107 for the

frame position and
∫
‖r‖≤π

sin2(‖r‖/2)
‖r‖2 · dr = 2 · π2 for the frame trihedron.

In fact, extremal points are modeled using semi-oriented frames, and we
have to divide this volume by 2. Thus the image volume is

V(I)= 256 · 256 · 165 · π2 = 1.067 108

Thus, the selectivity is: η = V0
V(I) = 1.46× 10−8.

Point selectivity In the case of points, the noise model becomes
isotropic with a standard deviation σ = 0.50. We use a 3-D χ2 of ν2 = 6.
The volume of the error zone is now V0 = ν3 · σ 3 · 4

3 · π ' 21.7, and
the image volume is V(I)= 1.08× 107. Thus, we obtain a selectivity of
ηpt = 2.01× 10−6. This is a loss of two orders of magnitude with respect
to frames!

Probability of false positives To obtain an upper bound on the num-
ber of false positives, we take as image diameter d =√3 · l with l = 256,
which gives an integration factor α = (2 · π · l)3 = 4.16× 109. The num-
ber of features is n=m= 2,500. We plot in Figure 7 the probability of a
random match of τ features using Equation 6. In both cases (frames and
points), the probability of a false positive involving 500 matches (the ob-
served value in real images) is null at the machine accuracy. However,
the difference between points and frames is visible for smaller sets of
matches. For instance, if we decide that a match is not a false positive if
its probability to be so is less than 8= 10−10, we accept matches made
of at least 10 frames or 56 points. In fact, we need roughly five times
more matches using points than using frames to obtain the same proba-
bility of false positives! The interest of using frames instead of points is
clear.

Moreover, complex geometric features do have more invariants than
simple features, which can considerably reduce the complexity of match-
ing. We were for instance able to reduce the complexity of the 3-D sub-
structure matching problem from O(n4) to O(n2) using frames instead
of points. Using geometric features more informative than points is thus
crucial to increase the robustness of recognition algorithms and reduce
their complexity.

VIDERE 1:2 Toward a Generic Framework for Recognition 83



6.4.2 Application Example in Molecular Biology
In [32], we use frames to model amino acids in proteins. (See the
html demo.) In the example of this article, the radius of the protein
is about 20 Å, which gives an “image volume” of VI = 4

3 · π · r3 · (2 ·
π2) ' 661500 for frames and VI = 4

3 · π · r3 ' 33510 if we use just
points. We use a diagonal covariance matrix with standard deviations
σr = 15o = 0.15 rad for the trihedron and σt = 0.35 Å for the position.
The χ2 values are 16 for frames and 8 for points. Thus, the volume of
the error zones are V0 = χ6 · σ 6

r · σ 6
t · π

3

24 = 4.8 × 10−2 for frames and
V0 = χ3 · σ 3

t · 4·π
3 = 4.06. Finally, we obtain the following selectivities:

ηf r = 7.26× 10−7 and ηpt = 1.2× 10−4.

The integration factor alpha is α= (8 · π · r)3/3= 4.2× 107, and we have
65 and 105 amino acids in the two proteins. With these values, we need
to match at least 5 frames or 20 points to obtain a probability of false
match less than 10−10, and the main substructures we found in common
score 22, 16, and 13 matches. In this case, using frames is critical to
ensure the significance of our matching results.

6.5 Discussion: Using the False Positives Analysis
to Improve the Algorithms
When we tackle a new problem, the first application of this analysis is to
provide the intrinsic complexity of the recognition problem. Depending
on the type, the error model, and the number of features used, we can
compute the threshold τ on the number of matches to use in order to
have a given probability of false positives (for instance 8 = 10−10). If
this threshold is well above the number of matches we expect, we can
proceed and choose an algorithm with a low-complexity basis. Other-
wise (as in the above example with proteins), we expect any algorithm
to reach its maximal complexity and possibly give false positives. In this
case, a solution is to model the images by more-complex geometric fea-
tures, i.e., to take into account more information in the feature-based
recognition process.

However, we should notice that the false positive analysis we pre-
sented is based on several limitative assumptions (exact model, uniform
distribution of features, etc.) which are hardly ever verified in real cases.
For instance, in medical images of the head, extremal points are not uni-
formly distributed in the image, but more or less uniformly distributed
on the surface of the brain and the skull, which can be roughly con-
sidered as spheres. Thus, the performance analysis we presented should
not be considered as quantitative estimations but only as indicative of a
general behavior.

A very interesting extension would be to compute the probability
of false positives online, during the recognition algorithm itself. This
would allow us to take into account the specific distribution of the
model and scene features. In our generic framework for feature-based
recognition, this could be done by adding a basic operation on features
computing the selectivity of matches using the covariance matrix and
other operations to propagate this probability through the computations,
as we did for the uncertainty. Doing so, we could evaluate the quality of a
match at any stage of the algorithm and give up or delay the processing
of bad hypotheses. This should be related with probabilistic matching
techniques developed in [38].
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As far as a specific recognition algorithm is concerned (for instance
the Hough transform or the alignment method), we could extend the
false positive analysis to compute the mean number of hypotheses to
verify before finding a good one, the mean complexity of the algorithms,
etc. However, these computations rely on the specific settings of these
algorithms, and we cannot develop the analysis for all approaches: we
leave it to the reader to analyze his own algorithm. We believe that
such an analysis may help to discriminate between different options or
settings of an algorithm depending on the application context.

7 Conclusion
We have formalized in this article the main matching algorithms in terms
of geometric features and showed how to modify them in order to incor-
porate explicitly and rigorously the uncertainty of measurements. The
drawback of the correctness of the algorithms is the presence of false
positives. We developed a new method to analyze the probability of false
positives in two particular algorithms and generalized it to the evalua-
tion of the intrinsic complexity of the matching problem, independently
of the method used. Doing so, we showed that using more-informative
features, such as frames instead of points, can drastically reduce this
probability and allow for the use of lower-complexity matching methods.

For a computational point of view, we have identified four still-open
problems to implementing these generic matching algorithms. The first
one is linked to the structure of the space of n-ary invariants, and we
have formalized it with the shape-space theory. We believe that it is
not only possible to characterize, in that way, the manifold of invari-
ants but also a suitable metric structure. The second problem concerns
the clustering of features on a manifold, and more particularly with un-
certainty information. The method we use to solve this problem can
certainly be improved. The last two key points are linked to the efficiency
of searching algorithms. This is for the first part the search of the near-
est neighbor, with respect to the Riemannian metric or the Mahalanobis
distance, and for the other part the search for all the compatible features
or invariants in the χ2 sense. We have observed that hashing techniques
raise some important problems because of measurement uncertainty and
of the non-Euclidean topology of the concerned manifolds. These prob-
lems turn crucial with invariants of features with high dimension. There
is perhaps a trade-off to be found between adaptative space sampling
and hashing methods.

In conclusion, generic, correct, and robust recognition algorithms
on uncertain geometric features are possible. However, from a com-
putational point of view, we need to design speed-up techniques for
efficiency.
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