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Classical film restoration is based
on special copying machines to
improve the quality of safekeeping
copies. Only a small class of defects
can be removed by such a process,
because the unit of manipulation is
always the physical film strip. With
help of digital image-processing
techniques, the restoration process
can be adapted for each frame or
even pixel and also for many kinds
of defects.

This paper presents algorithms
for automatic and semiautomatic
defect detection and removal in
digital image sequences. First, an
overview about typical defects
in the 35 mm film domain is
given. Then robust, full automatic
algorithms to detect dust, dirt,
and image vibration in noisy
and disturbed environments
are shown. To make possible
expert user interaction with
intermediate analysis data,
detection and removal of defects
are separated into a two-step
approach. Automatic algorithms
for dust and dirt removal and for
image-sequence stabilization
are presented as well as a
semiautomatic algorithm for flicker
and mold reduction. Finally, the
algorithms are demonstrated and
evaluated using several short film
sequences.

Keywords: Digital film restoration,
global motion estimation, dust,
dirt, jitters, mold, flicker, local color
variation, global color variation,
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1 Introduction
Two main reasons exist for film restoration. First, all the material in the
film and TV archives (approximately 2.2 billion meters of film (UNESCO,
1992)) represents a record of the history of the artistic and cultural
development of all aspects of life in this century. This historic treasure
must be preserved. In order to do so, original films have to be recorded
on time-proof media (modern films or digital supports), and, in order
to keep a copy as close as possible to the original, a restoration phase is
necessary.

The second reason is economic. The communication market is devel-
oping very fast, thanks to new communication media, such as multime-
dia, video on demand, and satellite and cable TV. This growth opens a
new market for film and TV archives, but without a restoration phase,
these archives are only partly useable. Thus, preservation as well as
restoration is a key factor for film and TV archives.

Classical film restoration is based on special copying machines to
improve the quality of safekeeping copies. Only a small class of defects
can be removed with such a process, because the unit of manipulation
is always the physical film strip. Classical film restoration equipment
can handle a few defects, i.e., limited dust and dirt removal, limited
scratch removal, and global color-shift reduction. The current advantage
of classical film restoration is the low total cost of restoration (copying)
per meter of film.

With help of digital image-processing techniques, the restoration
process can be adapted for each frame—and even for each pixel—and
also for each defect class. Defects that can be handled by digital film-
restoration techniques are for example dust and dirt removal, noise
reduction, image stabilization, scratch removal, flickering reduction, lo-
cal color-shift reduction, and missing frame reconstruction.

Several current manual and semiautomatic systems for digital film
restoration are the Cineon system by Kodak, the Domino system by
Quantel, the Flame system by Discreet Logic, and the Matador system by
Avid. Their need for a high human involvement during the restoration
process leads to high costs per meter of restored film. The algorithms
presented in this paper are fully automatic or semiautomatic and thus
they are more suitable for cost-effective film restoration.

It has been shown that motion information is essential for the auto-
matic detection of many defects as well as for the automatic restoration
of image sequences. An overview on motion analysis and applications on
image-sequence processing is given in [1] and [2]. A contribution to ob-
ject tracking during an entire scene can be found in [3] and [16], which
also present a robust temporal integration technique.

A Markov random-field-based motion-field segmentation technique is
used in [17] and [24] to detect and remove degradations such as dirt,

1. Joanneum Research, Institute of Informa-
tion Systems & Information Management,
Steyrergasse 17, A-8010 Graz—Austria.
{schallauer,haas}@joanneum.ac.at
2.Tu-Graz, Institute for Computer Graphics
and Vision, Münzgrabenstraße 11, A-8010
Graz—Austria. pinz@icg.tu-graz.ac.at.

Copyright © 1999
Massachusetts Institute of Technology
mitpress.mit.edu/videre.html

VIDERE 1:3 Automatic Restoration Algorithms for 35 mm Film 60



scratches, and fingerprints. A 3-D autoregressive model is presented in
[18] to restore dirt and sparkle areas.

A group in Switzerland (University of Basel and Federal Institute of
Technology Zurich) is dealing with the restoration and reconstruction
of faded color photographs. The basic idea builds on the introduction
of a mathematical bleaching model [8] and uses electronic imaging
methods to reconstruct the bleached originals [9]. The work has lately
been extended to restoration of old movie films, the first results of which
are presented in [10].

Automatic restoration demands automatic cut and scene detection
within the film material. Some research has already been done: Cornell
University has introduced a new algorithm, producing acceptable results
(see [14, 15]). Additional research from the video-processing domain is
given in [25] and [26]. In [27], four automatic techniques for detection
of cuts are compared.

In 1995, the AURORA (AUtomated Restoration of ORiginal film and
video Archives) project launched in the European Commissions ACTS-
programme. The project’s aim is to develop a method for real-time video
restoration.

Following, we describe a complete, digital, film-restoration system
developed by Joanneum Research (Section 2). This paper focuses on
algorithms for defect detection and removal. An overview of common
defects is given in Section 3, and the subsequent sections describe in
detail modules for one-frame defect detection and removal (Section 4),
for image vibrations detection and stabilization (Section 5), and for
temporal brightness and color variation reduction (Section 6).

After presenting detailed experimental results, we conclude that the
algorithms presented in this paper can be successfully used in a modu-
lar manner to obtain satisfactory results with minimal human operator
interaction.

2 Restoration System
The digital restoration process includes everything from scanning the
film, processing the image sequence, and printing the restored sequence.
(See Figure 1.) This process should be automated as far as possible.

In the acquisition process, information is transformed from the analog
to the digital domain. The acquired data consist of the image sequence
itself, technical attributes of the scanned film (e.g., scanning parameter,
calibration data), and art-historical annotations (background informa-
tion like director, copyright owner, where the film was found, etc.). All
these data are stored in a digital film archive (DFA), which has a pur-
pose and functionality similar to a conventional film archive. The DFA

Figure 1. Digital restoration system.
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is realized by a powerful multimedia database, together with a storage
management system for large binary objects [5, 7]. Every step of the
restoration process is recorded in a log (which is also stored in the DFA)
in order to provide a transparent processing history for the operator.

In the preparation phase, a first semiautomatic analysis of the image
sequence is obtained. This analysis includes generating an image pyra-
mid for each frame, partitioning the image sequence into scenes (the
recognition of cuts), and detecting massive frame defects. Scenes are
the units for all further analysis steps. An expert is aided by the analysis
software in deciding which classes of defects are analyzed for a distinct
scene.

The detection of defects is the central step in the restoration process.
Each scene is investigated with respect to local motion, global motion,
and the defects that should be eliminated (like dust, dirt, or image
vibrations). The results of this analysis are stored in the DFA and are
suggested to the expert, who can follow the suggestions or can correct
analysis data before the defects are removed. Defect removal depends
on the defect class. From an algorithmic point of view, removing defects
is an easy task in comparison to detecting them. The desired scenes of
an image sequence are printed again on film or stored on a digital mass-
storage medium.

The remainder of this paper deals with the tasks of defect detection
and removal as emphasized in Figure 1.

3 Defects Overview
The required algorithms for analysis and restoration of image sequences
depend on the kind of defect.

Dust and dirt (Figure 2) are the most frequent defects in histori-
cal films. Possible reasons for dust and dirt are an improper storage
environment or pollution during the duplication process. One signif-
icant characteristic of all these defects is that the pollution is local
on the film material; thus, they occur in only one frame of the image
sequence. The visible effect in a movie is the appearance of bright
or dark spots. (See MPEG-1.)
Image vibrations originate in the limited mechanical accuracy of
film-transporting systems in movie cameras or duplication equip-
ment and in the unstable camera attachment during the shooting.
Image vibrations are superimposed on regular camera motions like
pan, tilt, zoom, or rotation. (See MPEG-2.)
Flicker (Figure 3) is visible global brightness or color variation from
one frame to the next. (“Global” means that the variation is homoge-
nous inside a frame.) Flicker is typical for historical black-and- white
film, and, in this case, it is caused by the irregular exposure time

Figure 2. Appearances of one-frame
defects.
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Figure 3. Global brightness variation
caused by early movie cameras
(flicker).

Frame NR. 1 2 3 4 5

Figure 4. Local brightness variation
caused by mold.

Frame NR. 1 2 3 4 5

Figure 5. Local discontinuous defects
caused by mold.

Frame NR. 1 2 3 4 5

of early movie cameras (MPEG-3). Flicker can be caused in mod-
ern cameras by interferences between the lighting and the exposure
during the shooting.
Mold results from an improper storage environment for the film ma-
terial. Very often the brightness or color variation caused by mold
appears periodically every twenty to thirty frames, depending on
the inhomogeneous storage environment (e.g., long-term influence
of moisture from one side of the film reel). Different chemical reac-
tions cause different types of mold: lightening by mold (Figure 4),
darkening by mold, and local discontinuous defects by mold (Fig-
ure 5).

Mold causes local brightness or color variations over a few frames
of an image sequence. (“Local” in this context means that the varia-
tion is inhomogeneous inside a frame.) (See MPEG-4.)
Scratches (Figure 6) appear in the direction of the film strip over
more than one frame of the film, and are caused by film transport
or by the developing process, when there are particles in the de-
veloper’s machine. Scratches caused by film transport are exactly
parallel to the film-strip perforation, but scratches caused by parti-
cles in the developer’s machine can change their position up to 5%
of the film width during a few frames of the image sequence. (See
MPEG-5.)
Heavily disturbed or missing frames have their origin in the long
storage time or the improper storage environment of the film mate-
rial.
Captions and logos appear on a whole scene of the movie and are
created in the duplication step.
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Figure 6. Scratches caused by film
transport.

Frame NR. 1 2 3 4 5

4 One-Frame Defects
4.1 Detection of One-Frame Defects
As can be seen from Figure 2, dust and dirt can have very different
appearances. Features like shape, brightness, or size are not significant
for dust and dirt. A significant characteristic of these defects is that the
pollution is local on the film material; thus, they occur only in one frame
of the image sequence. We call them one-frame defects.

Such defects can be detected automatically by observing the bright-
ness along motion trajectories. (A motion trajectory for one point of a
moving object is shown in Figure 7.) Following this trajectory, the object
characteristics like brightness or color are rather constant from frame to
frame. However, when a motion trajectory intersects a one-frame defect,
the object characteristics change significantly. This property is the basis
for the detection of such defects.

The detection scheme (Figure 8) is based on a three-frame algorithm
that uses the two neighbors of the center frame Ik, for which the one-
frame defects are detected. First, motion is compensated for in the neigh-
boring frames (module MC). This corresponds to an estimation of the
motion trajectories. Motion estimation is performed by a robust two-
frame block-matching algorithm, which is presented in [20] and [21].
The necessary local motion warping scheme (Figure 9) is as follows:

Figure 7. One motion trajectory of a
moving nondefected object.
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Figure 9. Local motion warping by
subpixel interpolation.
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Each pixel (x, y) is displaced by the row and column disparity of the
estimated local motion (disp.x, disp.y) and does not necessarily coincide
with the sampling grid of the resulting image IW because of the subpixel
accuracy of the disparities. Interpolation between the neighboring pixels
of the displaced pixel coordinate (x + disp.x, y + disp.y) is performed.

The intensity value in the warped image IW on grid coordinate (i, j)
is given by

IW(i, j)=
∑
n∈Aij wnIn(x, y)∑

n∈Aij wn
with wn ≈ (1− di)(1− dj)

where Aij is a 2× 2 area centered on the (i, j) pixel in the warped image
IW , and Wn is the weight of the nth point with intensity In(x, y) from
image I .

Motion compensation of the two neighboring frames results in the
motion-compensated image sequence, where the moving image parts
coincide spatially with that of the center frame. This image sequence
is then used to build up three classification images in the following way:

d−1(x, y)= |Ik(x, y)− IWk−1(x, y)|
d+1(x, y)= |Ik(x, y)− IWk+1(x, y)|
d+−1(x, y)= |IWk+1(x, y)− IWk−1(x, y)|

Classification of one-frame defects is achieved pixel by pixel:

Mask(x, y)= d−1(x, y) > th1 and d+1(x, y) > th1 and

d+−1(x, y) < th2

The upper limit of the values th1 and th2 is determined by the min-
imum object-defect contrast that should be detected. The gray-value
difference between recognizable defects in the center frame and objects
in the neighboring frames was found in a range from 30 to 150, using
eight-bit quantization. The lower limit of the values th1 and th2 is given
by the possible gray-value change of an object along the motion trajec-
tory caused by local lighting changes or by global brightness variations.
For flicker, a frame-to-frame gray-value difference up to 15 was found.
These limits determine the values th1 and th2 in a range from 15 to 30
using eight-bit quantization. Changes of th1 and th2 inside this range
cause only marginal changes in the number of classified pixels.

On the classified one-frame defects, a postprocessing step is required.
The real area, which is occluded by a defect, is larger than the area
of the classified pixels. This is caused by the gray-value distribution of
such defects. In the center area of a bright or dark spot, the gray-value
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difference to the neighboring frames is significant, while, at the border,
this difference decreases to zero. Therefore, the border pixels of a bright
or dark spot are not classified by the method described above. To get the
optimal mask size for replacement of one-frame defects, the resulting
mask of the classification is enlarged by morphological dilation. It was
found that the amount of dilation depends on the size of the defects. An
example of the final one-frame defect mask is shown in Figure 11.

An important question is how this algorithm deals with occlusions
in the image sequence. When only two consecutive frames of an image
sequence are used for detecting one-frame defects, it is not possible to
distinguish between defects and occluding regions because of the cov-
ered or uncovered background problem. (See [2], Chapter 5, page 78.)
When using three or more consecutive frames of the image sequence, it
is possible to reconstruct the whole image content of the center frame,
since uncovered background can be reconstructed by image content of
either the preceding or subsequent frame(s) The scheme for detecting
one-frame defects sets a mask pixel only if there is no image-content
similarity from the center frame Ik in forward and in backward direc-
tions and if there is an image-content similarity between the preceding
frame Ik−1 and the subsequent frame Ik+1. Two of these three conditions
are not fulfilled for occluding areas; thus, they are suppressed in the used
classification scheme of one-frame defects.

4.2 Removal of One-Frame Defects
The removal of one-frame defects has two requirements: image structure
and image brightness must be estimated for the regions occluded by the
defects. Missing image structures that are caused by a large defect area
must be replaced. In addition, brightness must be corrected because of
flickering and local brightness variations from frame to frame. Image
structure estimation from the surroundings of a defect is possible only if
the defect area is very small (pixel range) and therefore the probability
of difficult structure in this area is low. If the defect area increases, image
content of the preceding and subsequent frame must be used to estimate
image structures for this region.

The first task is to estimate image structures for areas that are oc-
cluded by defects. Structure information of the preceding frame Ik−1 and
the subsequent frame Ik+1 is used to find the image content, which is
then used in frame Ik to replace dust or dirt. First, the image content
of the neighboring frames must be registered with the image content of
the center frame, because of image vibration and local motion. For this
task, the motion-compensation (MC) scheme, presented in Section 4.1,
is used.

It turns out that motion information in the region of a defect is not
reliable. For the two-frame motion estimator, it is not possible to match
image content of the neighbor frame with dust or dirt in the center
frame. Therefore, motion disparities (motion vectors) from the neighbor
frame to the center frame are pointing outside the defect; thus, the
disparities are not reliable in the region of a defect. The influence of
this effect grows with the size of the defect. To overcome this problem,
disparities are interpolated in such areas. For this reason, a disparity
mask is prepared by dilating the one-frame defect (OFD) mask with
respect to the defect size. Bigger defects influence the motion disparities
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in a wider range than smaller ones. Disparity interpolation for each pixel
inside the area given by the disparity mask is done by an eight-direction
linear interpolation of the reliable disparities outside the area given by
the disparity mask.

After the disparities are corrected, the neighbor frames are registered
with the center frame by applying the local motion warping scheme
presented in Section 4.1, resulting in the correctly warped neighbor
images IW

k−1 and IW
k+1. These two images now contain image structures

of the neighboring frames in areas where the center frame Ik is occluded
by defects. A structure image is prepared by taking the average of IW

k−1
and IW

k+1 for each pixel in these images. The structure image is then used
for the final replacement of defects in the center frame IW

k+1.
The second requirement of an automatic algorithm for defect replace-

ment is to estimate the brightness of replaced areas. We want to replace
the defect area by motion-compensated image content of the neighbor
frames (the structure image). Brightness correction is necessary because
of flickering from frame to frame or local brightness variations inside a
frame. Therefore, an algorithm is designed where brightness correction
is done separately for each defect and in the region of the defect locally
for each pixel. The task is now to fit the brightness of the structure im-
age (which provides image content for the defect replacement) and the
brightness of the defect surrounding center image Ik. When the bright-
ness is not fitted, a gray-value discontinuity can appear between regions
of replaced image content and regions of original image content. As a
border of the surroundings, we choose the border indicated by the OFD
mask, since defect replacement is also done for areas that are indicated
by the OFD mask.

The brightness-correction image is prepared in the following manner:
First, the frame difference between the structure image and frame

Ik is calculated. Then, defect areas, indicated by the OFD mask, are
interpolated in this difference image. The gray-value difference between
the structure image and the original Ik is estimated from the surrounding
of a defect and is then interpolated to the inner part of the defect
region. Interpolation is done by a scheme similar to that for disparity
interpolation. The brightness-correction image is applied in the final
defect-removal step.

The final replacement of one-frame defects is straightforward:

ICorr
k (x, y)

=


Ik(x, y) for {(x, y) | OFD(x, y)= false}
Structure Image(x, y)
+ Brightness Correction(x, y) for {(x, y) | OFD(x, y)= true}

Defect areas, which are indicated by the OFD mask, are replaced by the
brightness-corrected structure image; nondefect areas are taken from the
original frame Ik. The final results are shown in Figure 10 and Figure 11.
The upper parts show a detail in three consecutive frames of the original
sequence, while, in the lower parts, defect-replaced images are visible.
In Figure 10, the image-structure estimation is shown. In Figure 11,
the difference between images with and without brightness correction
appear mostly at the border of replaced areas, which are indicated by
the OFD mask.
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Figure 10. Removal of one-frame de-
fects by image-structure estimation
with the content of the neighboring
frames.

Ik−1 Ik Ik+1

Ik after OFD removal.

Figure 11. Detection and removal
of one-frame defects. Comparison
of brightness corrected and non-
brightness corrected defect replace-
ment.

Ik−1 Ik Ik+1

Ik after OFD removal
without Brightness Correction.

One frame defect-
mask.

Ik after OFD removal
with Brightness Correction.

5 Image Vibrations
Although image vibration is a typical defect of historical movies, it is al-
ready appearing in a reduced form in modern ones. Vibrations originate
from the limited accuracy of the film transporting system in the movie
camera or in the duplication machine. A second reason can be an un-
stable camera attachment during the shooting. The effect is that all the
image content is moving from frame to frame on the image plane with
a limited degree of freedom, which can be described as a 2-D motion
problem. One way of describing 2-D motion involves the use of motion
models, which are specified by a set of motion parameters. Motion pa-
rameters provide a very efficient means to describe 2-D motion when
compared with dense motion fields (represented by one motion vector
(disparity) per pixel). Our four-parameter motion model is capable of
describing translation, rotation, and scaling, which fits our requirement
to model pan, tilt, rotation, and zoom in an image sequence.

The basic algorithm is applied in conjunction with motion-compen-
sated iteration and a multiresolution approach to improve the accuracy
and the measuring range of the method. First, we assume that the
motion parameters are the same everywhere within one frame. Then, a
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local motion mask is introduced to exclude locally moving objects from
the area of interest for the global parameter estimation algorithm. The
result is that the dominant object with its dominant motion is tracked
through an image sequence. Dominant motion includes image vibration,
but camera pan, tilt, rotation, and zoom are also estimated.

Finally, image-sequence stabilization is done by filtering the dominant
motion with respect to possible camera motions.

5.1 Image Vibration Detection
Two approaches can be used to estimate global motion parameters.
One goes through the stage of estimating optical flow for a distinct
number of points of interest, and the other one estimates the motion
parameters directly from the image sequence. In the first approach, the
correspondence between pixels or features in two successive frames has
to be established to fit the desired motion model to the motion found for
the feature points. The problem is to find good feature points, especially
if image content is heavily disturbed or very noisy.

In the second approach, the correspondence problem is avoided. Mo-
tion parameters are estimated by using low-level information only. The
algorithm is a differential algorithm making use of the spatial and tem-
poral gradient of an image. In the case of defective and noisy film, this
second approach is the more robust.

The global motion estimation algorithm used is proposed in [4],
which defines the following four-parameter motion model:

x′ = a1x − a2y + a3

y′ = a2x + a1y + a4
(1)

A pixel at (x, y) in frame k moves to the new position (x′, y′) in frame
k + 1. The core of the parameter estimation algorithm is a differential
technique based on a Taylor series expansion of the image signal result-
ing in a simpler first-order derivative equation.

Ik(x, y)− Ik+1(x, y)= (a1 − 1)
(
Gx(x, y)x +Gy(x, y)y

)
+ a2

(
Gy(x, y)x −Gx(x, y)y

)
+ a3Gx(x, y)

+ a4Gy(x, y)

(2)

where

Gx(x, y)= 1
2

(
∂Ik+1(x, y)

∂x
+ ∂Ik(x, y)

∂x

)

Gy(x, y)= 1
2

(
∂Ik+1(x, y)

∂y
+ ∂Ik(x, y)

∂y

)

Variables a1, . . . , a4 are the motion parameters that we want to esti-
mate; the rest are measurable quantities. Image gradients Gx(x, y) and
Gy(x, y) are approximated by half the difference of the two neighboring
pixels of the current pixel. Since there are four unknowns in the equa-
tion, we need at least four equations, or four pixels, to solve for the
motion parameters. Usually, the algorithm is applied to a large number
of pixels, and the motion parameters are estimated by linear regression.

In our implementation, we apply this algorithm to all pixels of two
successive frames, except a small border to avoid possible problems.
Motion parameters are estimated by a linear regression function lfit(),
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Figure 12. Multiresolution iteration.
(Compare [6], page 890.)

adapted from Numerical Recipes ([22], pages 671–680). They provide
linear regression by default only for the two-dimensional case and not
for a multidimensional fit as in our case.

5.2 Motion-Compensated Iteration
The amount of motion must be small with respect to the image gradient
for the result in Equation (2) to hold because of simplifications that were
made there before in the derivation. Two approaches can be used to
fulfill this condition.

The first is to suppress high-frequency parts in the images by low-pass
filtering.

In the second approach, a good initial estimate must be obtainable
in such a manner that the difference between an initial estimate and
the true parameters is sufficiently small. To get a good initial estimate,
a multiresolution iteration scheme is used. (See Figure 12.) The motion
parameter estimate is first obtained from a low-resolution representa-
tion. The magnitude of motion in this case is less than in full resolution.
First, a pyramid is built up for the image pair Ik and Ik+1. The initial
motion vector M0 = (a1, a2, a3, a4) is set to (1.0, 0.0, 0.0, 0.0), which
corresponds to no scaling, no rotation, and no translation between the
image pair. The first motion vector estimate�M1 is done at the top level
of the pyramid. The initial motion vector M0 is now updated with �M1
to obtain the better result M1. In the next-lower level (Level=1), the
representation of the image Ik is warped with the parameters M1, so
that the already found but inaccurate motion between the image pair
is compensated. The following parameter estimation between the reg-
istered images, the warped image Ik and image Ik+1, provides only a
small motion vector difference �M2, which is used to update the mo-
tion estimate M1 of the previous pyramid level, resulting in a new, more
accurate, motion vector M2. This scheme is continued until the bottom
pyramid level is reached. Warping of an entire image with the motion
parameters a1, . . . , a4 is done by calculating the displacements of the
four corner points (by Equation (1)), which are then used to apply lin-
ear interpolation to all image points inside these four corner points with
a standard function from [23].
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During the multiresolution iteration process, an update scheme for
motion parameters is used (compare [4], page 75):

The update (â1, â2, â3, â4) and the initial estimate (aI1, aI2, aI3, aI4) can
be combined to form a better estimate (aN1 , aN2 , aN3 , aN4 ) by using the
following equations:

aN1 = â1a
I
1 − â2a

I
2

aN2 = â2a
I
1 + â1a

I
2

aN3 = â1a
I
3 − â2a

I
4 + â3

aN4 = â2a
I
3 + â1a

I
4 + â4

(3)

5.3 Local Motion Exclusion
In the motion-compensated iteration scheme, we assumed that the mo-
tion parameters are the same everywhere within the whole image, but in
practice this assumption rarely holds. Moving objects undergo different
motions. What we want to find is the object with the biggest region of
support in the image (the dominant object). The task is now to prepare
a local motion mask to exclude local moving objects from the region of
support of the dominant object. A segmentation of the dominant object
can be done in the scheme mentioned above by searching the region
of support of an already found motion. This region is then used in the
parameter estimation computation (2) to exclude those pixels from the
estimation that are not in the region, resulting in a more accurate mo-
tion estimation for the dominant object. The region of support detection
is applied in each iteration step of the pyramid algorithm; thus, the local
motion mask is refined from higher levels down to the lower ones. Once
a motion has been determined, we would like to identify the region be-
longing to the motion. (The local motion mask is given by regions not
having this motion.) To simplify the problem, the two images are regis-
tered using the detected motion. The motion of the corresponding region
is canceled after registration, and the tracked region is stationary in the
registered images. The segmentation problem is reduced to identify sta-
tionary regions in the registered images. The absolute difference of the
registered images Ik and Ik+1 is a good base for this segmentation task.

The intensity difference caused by motion is also affected by the mag-
nitude of the gradient in the direction of the motion. Small motion of an
edge causes high gray-value difference when the motion is perpendicu-
lar to the edge. Only fast motion should be detected. Therefore, rather
than using only the gray-value difference as a motion measure for classi-
fying pixels, the gray-value difference scaled by the gradient magnitude,
is used:

Diff Scaled(x, y)= |Ik(x, y)− Ik+1(x, y)|
1+ ∇Ik(x, y)

Let Ik(x, y) and Ik+1(x, y) be the intensities of pixel (x, y) of the two
registered images, and let ∇Ik(x, y) be the spatial intensity gradient,
which is estimated by the sobel operator. The constant 1 is used to avoid
numerical instabilities. The local motion mask is given by:

MaskLocal Motion(x, y)= Smooth(Diff Scaled(x, y)) > thres

Because of scaling by the gradient magnitude, a mask pixel is set
only if the motion of a local moving object is wider than the high
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gradient area of this object. Filtering is necessary because of noisy image
content (which should not be detected as local motion). The threshold is
given by the local-to-dominant object contrast (actually detected in the
image.)

Once motion has been determined, we would like to measure the
reliability of the motion parameters. Image stabilization is possible only
when reliability of the already found motion parameters is high. An
approach for this task is proposed in [3]. With the help of the optical
flow equations, a reliability measure is derived, indicating the amount
of motion between the two registered images for each pixel.

The reliability of the finally found motion parameters is given by the
percentage of all image pixels that are not set in the local motion mask
and for which the reliability measure is lower than 0.1 (the displacement
between the registered images is lower than 0.1 pixel). Typically, the
reliability is in the range from 1% (if the dominant object has few
gradient areas) to 20% (for a structured dominant object).

The algorithm for detection of the dominant object described above
is extended to track an object throughout long image sequences. The
technique is proposed in [3] (page 9): “This is done by temporal inte-
gration, without assuming temporal motion constancy. For the tracked
dominant object a dynamic internal representation image is constructed.
This image is constructed by taking a weighted average of recent frames,
registered with respect to the tracked motion (to cancel its motion). This
image contains, after a few frames, a sharp image of the tracked object,
and a blurred image of all the other objects. Each new frame is compared
to the internal representation image of the tracked object rather than to
the previous frame.”

Let Ix denote the image sequence. The internal representation image
of the tracked dominant object is denoted by Avx and is constructed as
follows:

Av0 = I0
Avk+1 = (1− w) · Ik+1 + w · register[Avk, Ik+1]

(4)

where register[P ,Q] denotes the registration of images P andQ accord-
ing to the motion of the tracked dominant object computed between
them, and 0<w< 1 (currentlyw= 0, 7).Avx therefore maintains sharp-
ness of the tracked object while blurring other objects in the image.
An example of the evolution of an internal representation image of the
tracked dominant object is shown in Figure 13. The scene contains more
objects: the dominant background object and a local moving object in
the foreground. The tracked background remains sharp, while the local
moving foreground object gradually blurs out. This effect enforces track-
ing of the already found sharp background, while local moving objects
can be detected more reliably by the segmentation scheme mentioned
above.

5.4 Image Vibration Stabilization
Image-vibration detection results in the vibration disparity signals. Four
dominant motion parameters are always estimated between two consec-
utive frames in the image sequence; thus, four vibration disparity signals
are generated for a whole scene. (One of them can be seen in Figure 22.)

First, the real image vibration must be found. The vibration dispar-
ity signals describe the change of vibration from one frame to the next
(the derivation of vibration) through an entire scene; therefore, image
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Figure 13. Evolution of the internal
representation of the tracked dom-
inant object, the background. (See
MPEG-6.)

a) Part of the internal
representation image after one
frame, Av1 .

b) After two frames, Av2 . c) After three frames, Av3 .

vibration is given by discrete integration of this signal. The four resulting
vibration signals correspond to the real visual effect of vibration when
watching a movie. The task is then to filter these vibration signals ap-
propriately and to register the original frames with the position given by
the four filtered vibration signals.

The image-vibration signal can be derived from the vibration disparity
signal by integrating the vibration disparities over a whole scene by
(combining the dominant motion parameters of consecutive frames by
Equation (3)). In our context, the initial estimates are the four dominant
motion parameters from frame Ik to Ik+1, the update estimates are the
motion parameters from frame Ik+1 to Ik+2, and the better estimates are
then the combined or integrated motion parameters from frame Ik to
Ik+2. The integrated motion parameters up to frame Ik+2 are combined
with the dominant motion parameters between Ik+2 and Ik+3 to get the
integrated motion parameters for frame Ik+3, and so on. By extending
this scheme from four frames to the entire scene, the image-vibration
signal is prepared. (The four sequences of integrated dominant motion
parameters are called the image-vibration signals, since these signals
correspond to the real image content translation, rotation, and zoom
in a movie scene. One signal is shown in Figure 23.)

After the vibration signals are prepared they must be filtered to ob-
tain the desired correction parameters for image-sequence stabilization.
Different filter types from linear low-pass filters to nonlinear filters such
as the median operator are possible. As can be seen from Figure 23, im-
age vibration is a stochastic process, where image position is different
from a mean position for a number of frames, or “peaks”. The filtered
signal should follow the main course of the raw signal, but peaks over a
few frames should be suppressed. For this task, we are using a nonlinear
median filter. The median filter size can be chosen in such a way that
peaks of distinct length in the signal can be filtered. A peak of length
n-frames can be filtered by a median operator with a width of approxi-
mately 2n. For example, for filtering of a 0.25 sec. peak (six frames) in
the image-vibration signal, a median filter of a width of at least 12 is
required. The median filter is capable of removing vibration peaks up to
a distinct length. In addition to the nonlinear median filter, a linear low-
pass filter with a high cutoff frequency is applied to the signal to filter
high-frequency components, which remain after median filtering.

The dominant motion includes not only image vibration but also tilt
or pan from camera motion. An algorithm that is able to handle image
stabilization during fast camera motion is presented in [19]. The median
filter and linear filter width is estimated by the general course of the
vibration signal. When the general course indicates the beginning or
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end of a camera pan or tilt, the filter width is reduced to avoid smooth-
filtered vibration signals.

After filtering the four vibration signals, each image in the sequence
must be warped to the position given by the filtered vibration signals.
The difference between the raw vibration signals and the filtered vibra-
tion signals must be compensated for by Equation (3). In this context,
the initial estimates are the four vibration-signal parameters, the up-
date estimates are the four desired update parameters, and the better
estimates are the four filtered vibration-signal parameters. The task is
now to find the four update parameters that, when combined with the
vibration-signal parameters, give the filtered vibration-signal parame-
ters. After transforming Equation (3),

â1 = a
N
1 a

I
1 + aN2 aI2

(aI1)
2 − (aI2)2

â3 = aN3 − â1a
I
3 + â2a

I
4

â2 = a
N
2 − â1a

I
2

aI1
â4 = aN4 − â2a

I
3 − â1a

I
4.

The four update parameters (â1, â2, â3, â4) are calculated for each frame
in the scene. Warping an entire image with these parameters is done
by calculating the displacements of the four corner points (by Equation
(1)), which are then used to apply linear interpolation to all image
points inside these four corner points. The result is a stabilized image
sequence (see MPEG-12), whose dominant motion corresponds to the
filtered image-vibration signals.

6 Temporal Brightness and Color-Variation
Reduction
As can be seen from the defects overview, there are two main causes for
brightness and color variations, namely flicker and mold. Their various
effects can be characterized by the following properties:

Temporal support stands for the number of consecutive frames that
must be corrected. This property varies from one frame in the case
of flicker (Figure 3) up to ten frames in the case of mold (Figure 4).
Amount of variation: We distinguish between minor and major
variations. Minor variations occur when the histogram shift between
a “correct” and a brightness-varied frame is in maximum about 10%
of the full gray-value range (typical for flicker, see Figure 3). Ma-
jor varying histograms of brightness-varied frames are compressed
either in the range of high gray values (e.g., lightening by mold,
see Figure 4) or in the range of low gray values (e.g., darkening by
mold).
Locality of variation is subdivided into global and local variations.
Global variation is when the brightness or color variation is constant
within one frame (typical for flicker, see Figure 3). Local variation
is when the brightness or color variation is not constant within
a frame. Within this category, we have to distinguish between a
spatially continuous change of brightness or color (e.g., lightening
by mold, see Figure 4) and a spatially discontinuous change of
brightness or color (e.g., local defects by mold, see Figure 5).
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The most common brightness and color variations are flicker and
lightening by mold, but there are rare variations of darkening by mold
and local defects by mold.

In principle, at least two strategies can be used to overcome the tem-
poral brightness and color variations. The first is to segment, track,
and brightness (color)-correct all objects through an entire scene. This
method promises good results, but object segmentation enforces motion
estimation and thus is a time-consuming task. Also, the object segmen-
tation itself has to be very reliable in heavily disturbed image sequences,
or false corrections can occur.

The second strategy, proposed here, can handle all categories men-
tioned above, except local defects by mold. (These variations with a
spatially discontinuous change of brightness or color are partially han-
dled by the one-frame defect detection and removal. See section 4.1
and 4.2).

Section 6.1 explains the base algorithm for correcting spatially global
brightness and color variations with a temporal support of more than
one frame. Section 6.2 explains an extended algorithm of Section 6.1,
which can also handle spatially local brightness and color variations.

6.1 Temporal Global Brightness
and Color Correction
For brightness or color correction a two-step approach was chosen. First,
good frames (called reference frames) are determined, and then the
gray-value distribution (in the case of monochrome images) or the three
gray-value distributions (in the case of color images) of all remaining
frames in the image sequence are corrected.

The reference frames can be detected either automatically or semiau-
tomatically, depending on the number of defects and depending on the
image content. Experiments have shown that the distance from one ref-
erence frame to the next should be in the range of five to twenty frames.

The distance between reference frames is limited by the amount of
image content change. The reason for this limitation is the assumption
that image content does not vary significantly between reference frames.
If this condition holds, then the gray-value distributions of two consec-
utive reference frames are similar, and, thus, the gray-value distribution
of a nonreference frame can be estimated by the gray-value distributions
of the closest reference frames in the image sequence. If there is, for ex-
ample, a camera pan or fast motion in the scene, the distance from one
reference frame to the next should be as small as possible, to hold the
condition of similar reference frames.

The main idea behind the algorithm is as follows.

Histogram-equalized images of identical content already appear at
equal brightness. All frames of the histogram-equalized image se-
quence in Figure 14 appear at equal brightness (and also if there
are global brightness variations between the frames in the original
image sequence in Figure 14).
To achieve the characteristics of the reference frames, the inverse
histogram equalization functions of the nearest reference frames
should be applied. TRlast is the histogram equalization transforma-
tion function of the last reference frame, and TRnext is the same
one of the next reference frame inside the scene. A linear combi-
nation of the inverse TRlast and TRnext functions is used to avoid
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Figure 14. Scheme of temporal
brightness and color correction. A
two-step histogram transformation
procedure is used. First, all frames in
the image sequence are histogram
equalized. Then a nonreference
frame is corrected by the inverse
histogram equalization function of
the nearest reference frames inside
the scene.
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discontinuities over time. The closer the actual frame is to the last
reference frame, the higher the influence of the inverse TRlast func-
tion. This procedure allows one to follow the changes of the gray-
value distribution from one reference frame to the next, since the
used histogram-transformation functions of the reference frames are
weighted according to the distance from the actual processed frame.
The inversion of the histogram equalization function is estimated by
a standard routine from [23].

This temporal gray-value distribution correction scheme can be ap-
plied only to image sequences with global brightness or color variations,
since the correction is working on the whole image area. The temporal
global brightness and color correction scheme is suitable for the correc-
tion of flicker.

6.2 Temporal Local Brightness
and Color Correction
The temporal global brightness and color-correction algorithm must be
adapted to apply to image sequences with local varying gray-value distri-
butions (e.g., shown by lightening by mold, see Figure 4). To handle such
spatially local variations, the two-step histogram transformation proce-
dure is first applied to small regions of the actual processed frame. The
resulting gray-value distribution-corrected regions are then merged to
give the whole gray-value distribution-corrected image. Temporal local
brightness and color correction is accomplished by the following steps:
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Figure 15. Weighting function for
overlapping tiles.

Divide actual frame and reference frames into a distinct number of
overlapping tiles.
Apply the temporal global brightness or color correction scheme to
each tile.
Merge the temporal brightness or color-corrected tiles to a resulting
image.

In the division step, a small tile size (and thus a high number of tiles)
would be necessary to handle spatially local brightness or color shifts,
but the minimal size of the tiles depends on the amount of image content
motion from the last reference frame to the next. If motion is high and
the tile size small, the condition of similar gray-value distributions in
the reference frame tiles and the corresponding actual frame tile is not
fulfilled, and thus the temporal local brightness and color correction
algorithm itself results in brightness or color shifts. To avoid this effect,
a solution is to adapt the size of compared tiles automatically by the
amount of motion. To do so, the image area of the actual processed
frame is first divided into a fixed number of overlapping tiles (e.g., 15
in x-direction and 10 in y-direction), called the “base tiles”. Then, for
each base tile, a virtual tile size is estimated. This virtual tile size is used
in the temporal global brightness or color correction scheme instead
of the base tile size. For regions with low local motion, the virtual tile
size is as small as the base tile size, and, thus, the spatial correction of
brightness or color shifts is local. Otherwise, for regions with high local
motion from one reference frame to the next, the virtual tile size must be
increased, and, thus, the spatial correction of brightness or color shifts
can be done only in a more global style. The adaptation of the virtual tile
size is controlled automatically by local motion accumulation between
reference frames. The local motion estimation can be done very fast,
since the necessary spatial resolution is low.

In the merging step, the overlapping base tiles must be combined. An
overlap of approximately 30% of the base tile size is necessary. When
the gray-value distribution variation is local in the base tile, the gray-
value distribution correction is an estimation for the whole base tile
size. Without overlapping base tiles, a gray-value discontinuity between
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spatially neighboring tiles would occur. To avoid this, overlapping gray-
value distribution-corrected base tiles are weighted according to Figure
15 when the result image is built up. Tiles are overlapping in x- and in
y-directions.

This temporal gray-value distribution-correction scheme can be ap-
plied to image sequences with local brightness or color variations like
lightening by mold (see Figure 4) or darkening by mold, but global vari-
ations like flicker (see Figure 3) can also be handled.

7 Results
In order to test the algorithms and gain experience in handling the
process flow, several scenes were selected and restored. The restored
and reprinted scenes were reviewed by film experts in order to judge the
quality of the digital restoration. The test sequences were taken from the
film Le mort qui tue (1913/14, director Louis Feuillade, from the series
Fantomas) and from Opernball (1956, director E. Marischka).

For testing and viewing in video resolution, a tele-cine copy of the
35 mm film was used. A single-frame recorder (Pronto Video from DIVI)
was used as the interface (buffer for a 3 min. clip) between a digital
Betacam VCR and the 64 GByte hard disk system. For high-resolution
images, DLT tapes were taken as transfer and backup media for 10 min.
of B/W film. The reprint was done by an AGFA Forte camera together
with an Oxberry cine module. Five DEC Alpha workstations (450 MHz)
computed the defect analysis and restoration process for the whole 110
min. of Opernball, with an average throughput of 20 sec. per frame.

The close cooperation with film experts shows that a film-restoration
system must be able to restore distinct defect classes. Because of art-
historical reasons, the user (a film expert) decides which defect classes
should be restored. To fulfill this requirement, the algorithms used for a
digital film-restoration system are built up in a modular manner. Basic
algorithmic modules are, for example, local and global motion estima-
tion. Additional algorithmic modules are required for each defect class
shown in the defects overview.

A typical restoration task for a scene of Opernball includes the follow-
ing algorithmic modules: global color variation reduction, local motion
analysis, global motion analysis, local color-variation reduction, scratch
removal, one-frame defect detection and removal, noise suppression,
and image-sequence stabilization. To get reliable motion estimates for
this moldy film, the global color variation reduction is required before
motion estimation. After motion information is available, the local color-
variation reduction algorithm can be applied. The resulting image se-
quence is used for all further restoration steps.

The quality of the digital restoration is tested in two ways. First, film
experts certify a good restoration quality regarding the visual appear-
ance of restored image sequences. Second, the quality of distinct algo-
rithms is studied in an objective way. For this reason, representative test
scenes were taken for each defect class.

For the detection of one-frame defects, two test scenes were used: the
so-called “cellar scene” from the B/W film Le mort qui tue and the “pi-
ano scene” from the color film Opernball. The cellar scene (see MPEG-7)
from the Le mort qui tue is low defected (low flicker, medium num-
ber of contrast-rich dust and dirt areas, no scratches, and low noise).
Because of flicker, the global color (brightness) variation reduction al-
gorithm is applied before one-frame defect detection. The piano scene
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Figure 16. Total number
of detected one-frame
defects.
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Figure 17. Well-detected,
wrongly-detected, and
not-detected one-frame
defects.
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a) Cellar scene: 88 % of not detected defects are caused
by very low contrast, 12 % are more frame defects.
44 % of wrong detected defects are caused by lighting
changes, 56 % are caused by occlusion of fast moving
objects.

b) Piano scene: 95 % of not detected defects are caused
by very low contrast, 5 % are more frame defects. 32
% of wrong detected defects are caused by lighting
changes, 68 % are caused by occlusion of fast
moving objects.

(see MPEG-4) from the Opernball is heavily defected (much mold, high
number of low-contrast dust and dirt areas, scratches, and high noise).
Because of mold, the local color-variation reduction algorithm is applied
before one-frame defect detection. A split screen of the original and the
one-frame defect replaced image sequence is given for the cellar scene
(see MPEG-8) and for the piano scene (see MPEG-9).

The total number of detected one-frame defects for both scenes is
shown in Figure 16. Noticeable are the peaks in the curve for the pi-
ano scene. This high number of defects for certain frames originates
in the moldy material (see Figure 18). Moldy areas have a compressed
gray-value distribution. By applying the required local color-variation
reduction algorithm, this gray-value distribution is widened, and dust,
dirt, and noise are increased in moldy areas.

Figure 17 shows detailed results for the cellar and the piano scenes.
For every tenth frame of both image sequences, the well-detected, the
wrongly-detected, and the not-detected defects were classified manually.
The not-detected defects originate mainly in very low contrast of de-
fects, and are removed well by the noise-suppression module. The small
remainder of not-detected defects have their origin in the fact that they
occur over several frames and thus are not detected with the one-frame
defect detection scheme. The wrongly-detected defects can be split into
two groups: defects detected due to massive lighting changes from frame
to frame, and defects detected in occluding areas of fast-moving objects.
In the cellar scene (see Figure 17a), fast-moving objects appear from
frame number 130 to 250 and in the piano scene, from frame num-
ber 90 to 120. The presented one-defect detection scheme decreases the
amount and the size of wrongly-detected occlusion areas. Because of the
fast motion of objects, the replaced wrong-defect area produces low dis-
turbances in the optical flow; nevertheless, additional work is necessary
for reliable detection of occlusion areas in heavily defected image se-
quences.

For testing the temporal local or global color correction scheme, the
piano scene from the color film Opernball is used. Two versions of this
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Figure 18. Temporal color
variations. The red and the
blue channel are especially
disturbed by mold.
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Figure 19. Comparison of
different color correction
schemes. Temporal local
color correction eliminates
mold in the best way.

0

10

20

30

40

50

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

Frame number

R
ed

C
h

an
n

el
E

rr
o

r

No Colour Correction
Global Colour Correction
Local Colour Corrrection

Figure 20. Local color variation
caused by mold.

scene are available, a very defected one and a well-stored reference
version. Figure 18 shows the pixel value average of each image channel
for the defected-scene version.

After manual reference frame determination, the temporal global
color-correction scheme and the temporal local color correction-scheme
are applied separately to the defected-scene version. An error value
is calculated for both correction schemes by taking the channel aver-
age of the pixel differences from the reference image sequence and the
respective restored image sequence. The restored-image sequence and
the reference-image sequence are spatially registered before error-value
calculation by a global motion-compensation scheme to avoid false dif-
ferences caused by different image-sequence sampling. Figure 19 shows
the error value of the red channel, calculated for the original defected-
image sequence (red curve), for the temporal global color-corrected
image sequence (blue curve), and for the temporal local color-corrected
image sequence (green curve). Because of different quantization of the
reference-image sequence and the defected-image sequence all curves
show a bias of about fifteen quantization steps (eight-bit quantization is
used for one image channel).

The temporal global color-correction scheme is unable to handle spa-
tially local color variations caused by mold. (See Figure 19, the blue
curve for frame number 155 to 160.) The temporal local color-correction
scheme can handle this situation well, indicated by the constant course
of the green curve in Figure 19. A small part of the defected piano scene
is shown in Figure 20; results of the temporal local color-correction are
given in Figure 21; and a split screen of both image sequences is shown
in MPEG-10.

For testing the image-vibration detection scheme, a test pair was
prepared by shifting an image in the x and y directions. The translation
in x (a3) and in y (a4) was chosen with 2.0 pixels at the raw image
size. (In this case, the image was not scaled or rotated.) The dominant
motion parameter estimation algorithm is then applied on this image

VIDERE 1:3 Automatic Restoration Algorithms for 35 mm Film 80



Figure 21. Image sequence from
Figure 20 after temporal local color
correction.

Frame NR. 264 265 266 267 268 269

Table 1. Dominant motion estima-
tion results of an x- and y-shifted
test image pair.

a1 a2
a3 a4

a) Ground truth 1.0 0.0 2.0 2.0

b) Low pass filter
Level / Type / Width

1 / Box / 9 1.00002 0.00001 1.96 1.95
1 / Box / 7 1.00005 0.00001 1.94 1.94
1 / Box / 5 1.00005 0.00004 1.93 1.91
1 / Box / 3 1.00004 0.00012 1.89 1.82

c) Multi-resolution iteration with low pass filter
Level / Type / Width

4 / Box / 5 0.99884 0.00027 2.46 2.35
3 / Box / 7 0.99987 0.00008 2.05 2.11
2 / Box / 9 1.00003 0.00002 1.96 1.96
1 / Box / 9 1.00002 0.00002 2.01 1.99

Figure 22. Vibration-
disparity signal in y
direction.

pair at the half resolution (pyramid level one), first only with varying
box filter sizes from width three to nine. No multiresolution iteration
scheme was used in this first test. As can be seen in Table 1(b), the
accuracy increases when the filter size increases, but it is relatively far
away from the ground truth parameters (Table 1(a)). In a second test,
the multiresolution iteration was running from level 4 down to level
1 with experimentally determined box filter sizes. The result is much
closer to the optimal ground truth parameter than when using low-pass
filtering only.

For demonstrating the image-vibration filtering algorithm, the “bas-
ket” scene (see MPEG-11) from the film Le mort qui tue is used. This
image sequence contains image vibrations as well as camera motions.
The image vibration detection scheme results in the four image-vibration
disparity signals. One of them is shown in Figure 22. Dominant ob-
ject motion is estimated by the proposed image-vibration stabilization
scheme. The corresponding dominant object-vibration signal is shown
in Figure 23, and a split screen of the original basket scene and the
vibration-stabilized image sequence is shown in MPEG-12.
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Figure 23. Image vibration
of the dominant object in
y direction, before (raw)
and after filtering.

8 Conclusions
Digital image-sequence restoration can handle a variety of defect classes
that cannot be processed by classical film-restoration equipment. This
paper presents algorithms for

dust and dirt detection and replacement,
temporal local color correction, and
image-vibration detection and image-vibration stabilization.

Each of these algorithms constitutes a module in our restoration sys-
tem that can be activated on demand (e.g., if image vibration is present
in a scene).

Algorithms for handling dust and image vibration are designed ac-
cording to a two-step approach, which allows expert user interaction
with intermediate analysis data. Intermediate data are the one-frame
defects masks for dust and dirt processing and the four vibration sig-
nals for image vibrations. Intermediate data can give hints for an expert
user. The final decision whether analysis results are good or not remains
with the skilled operator.

One-frame defects can be detected reliably with the presented algo-
rithm in a fully automatic way. Further work must be done in determin-
ing occlusion areas to avoid false detections.

During the fully automatic removal phase of one-frame defects, it is
necessary to correct the image characteristics like brightness or color
of those image areas, which are then pasted into a defect area. Other-
wise, natural changing image characteristics like flicker produce visible
replacement defects in the pasted area. Image structure inside the re-
placed defect area is estimated by motion-compensated image structure
of neighbor frames and thus provides full spatial resolution. One-frame
defect detection can fail in two cases: 1) small, fast-moving objects can
be removed erroneously, (more-sophisticated individual motion-tracking
algorithms would be required), and, 2) the rather unlikely case that one-
frame defects (dust) occur at identical positions in consecutive frames
(very high amount of dust). These more-frame defects would require an
extension of our algorithm that also considers frames Ik−i and Ik+i(i > 1)
to restore frame Ik.

The proposed semiautomatic temporal global brightness and color-
correction algorithm is able to correct flicker in a very robust way with
minimum time and effort. The temporal local brightness and color-
correction algorithm can correct color and brightness variations caused
by mold. A compromise between time consumption and possible locality
of mold correction is found. Problems can occur if there is a large change
in content between two reference frames (high amount of fast motion
in the scene), which can lead to wrong changes in color caused by our
correction algorithm. One possible remedy is to increase the number of
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reference frames (if a sufficient amount of good frames is available).
While our algorithm implements a motion-adaptive behavior, improved
algorithms would require motion segmentation and tracking of object
color, which is computationally far more complex.

Image-vibration detection is accomplished by dominant object track-
ing through an entire scene. Motion of the dominant object between
consecutive frames is modeled with only four parameters for the entire
image, resulting in a very robust behavior against local image distur-
bances and noise. In addition to image vibrations, camera motions like
pan, tilt, zoom, and rotation are estimated directly with the same algo-
rithm. Image stabilization detects stationary or moving dominant objects
by median filter width adaptation during the vibration filter process. The
proposed algorithm is very robust and fails only in rare cases where im-
age content prevents the detection of a dominant object.

Future work will be in the development of new image-processing
algorithms for the detection of additional defect classes like scratches or
subtitles. Increasing the speed of existing algorithms is now in progress
with the ESPRIT project FRAME, in cooperation with the Vienna Centre
for Parallel Computing (VCPC).

Today, at least 10% of the 2.2 billion meters of film that are conserved
in the world film archives need to be restored. In addition to classical film
restoration, a digital film-restoration system will be the most powerful
tool for this restoration work. Besides the film market, spinoffs in the
area of HDTV (format conversion, compression), video restoration, and
multimedia application can also be seen.
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