Recap of the Last Class

- **Hardware protection**
 - kernel and user mode

- **System components**
 - process management, memory management, I/O system, file and storage, networking, ...

- **Operating system architectures**
 - monolithic architecture, microkernel
 - ...

Layered Structure

- **Layered structure**
 - The operating system is divided into a number of layers (levels), each built on top of lower layers.
 - The bottom layer (layer 0) is the hardware.
 - The highest (layer N) is the user interface.
 - Decreased privileges for higher layers.

- **Benefits**
 - more reliable
 - more secure
 - more flexibility

- **Disadvantage**
 - Weak integration results in performance penalty (similar to the microkernel structure).

Virtual Machines

- **A virtual machine**
 - **Virtualization:** It is a piece of software that provides an interface identical to the underlying bare hardware.
 - **Multiplexing:** It provides several copies of this interface on top of a single piece of hardware.
 - **Resource management:** The resources of the physical computer are shared to create the virtual machines.
 - e.g., CPU scheduling can create the appearance that each piece of upper-layer software has its own processor.

- **It is not an operating system in the strict sense**
 - It is a resource manager, but not an extended machine
VM Models

- **Non-VM**:
 - User programs
 - OS
 - Hardware

- **Native VM**:
 - User programs
 - OS
 - VM monitor
 - Hardware

- **Hosted VM**:
 - User programs
 - OS
 - VM monitor
 - Native OS
 - Hardware

Usage of Virtual Machines

- Running several different OSes on a single machine
- Education
- Research and development of operating systems and computer architecture
- Enhanced reliability and security
- Allow general management of “machines” at software level

Outline

- **Process**
 - Process concept
 - A process’s image in a computer
 - Operations on processes

- **Thread**
 - Thread concept
 - Multithreading models
 - Types of threads

Process and Its Image

- An operating system executes a variety of programs:
 - A program that browses the Web
 - A program that serves Web requests

- Process – a program in execution.

- A process’s state/image in a computer includes:
 - User-mode address space
 - Kernel data structure
 - Registers (including program counter and stack pointer)

- Address space and memory protection
 - Physical memory is divided into user memory and kernel memory
 - Kernel memory can only be accessed when in the kernel mode
 - Each process has its own exclusive address space in the user-mode memory space (sort-of)
User-mode Address Space

User-mode address space for a process:
- **Text**: program code, instructions
- **Data**: initialized global and static variables (those data whose size is known before the execution)
- **BSS** (block started by symbol): uninitialized global and static variables
- **Heap**: dynamic memory (those being malloc-ed)
- **Stack**: local variables and other stuff for function invocations

```
0xffffffff

Stack

Heap

BSS

Data

Text
```

Process Control Block (PCB)

OS data structure (in kernel memory) maintaining information associated with each process.
- Process state
- Program counter
- CPU registers
- CPU scheduling information
- Memory-management information
- Accounting information
- Information about open files
- maybe kernel stack?

Process State

- As a process executes, it changes state
 - new: The process is being created.
 - ready: The process is waiting to be assigned to a process.
 - running: Instructions are being executed.
 - waiting: The process is waiting for some event to occur.
 - terminated: The process has finished execution.

```
new

ready

running

terminated
```

Process Creation

- When a process (parent) creates a new process (child)
 - Execution sequence?
 - Address space sharing?
 - Open files inheritance?
 - ...
 - ...
- UNIX examples
 - `fork` system call creates new process with a duplicated copy of everything.
 - `exec` system call used after a `fork` to replace the process' memory space with a new program.
 - child and parent compete CPU like two normal processes.
 - Copy-on-write
Process Tree on a Linux System

- Parent process creates children processes, which, in turn create other processes, forming a tree of processes.

```
init (pid=1)
OS
  daemon x
  daemon y
KDE-init
  user 1
  shell 1a
  shell 1b
  shell 2c
  ssd
  user 2
```

CPU Switch From Process to Process

- When can the OS switch the CPU from one process to another?
- Which one to switch to? - scheduling

Queues for PCBs

- Ready queue - set of all processes ready for execution.
- Device queues - set of processes waiting for an I/O device.
- Process migration between the various queues.

Process Termination

- Process executes last statement and gives the control to the OS (exit).
 - Notify parent if it is waiting.
 - Deallocate process' resources.
- The OS may forcefully terminate a process.
 - Software exceptions
 - Receiving certain signals
Processes and Threads

- Thread – a program in execution; without a dedicated address space.
- OS memory protection is only applied to processes.

Why Use Threads?

- Multithreading is used for parallelism/concurrency. But why not multiple processes?
- Memory sharing.
- Efficient synchronization between threads
- Less context switch overhead

User/Kernel Threads

- What is really happening when the execution of one thread switches to another?
 - save the registers (including the SP) of the old thread;
 - restore the registers of the new thread;
 - set the new PC appropriately for the new thread;
- Does this need help from the OS kernel?
- Can you do it in C/Java?
- Does process switching need help from the OS kernel?
- User threads
 - Thread data structure is in user-mode memory
 - scheduling/switching done at user mode
- Kernel threads
 - Thread data structure is in kernel memory
 - scheduling/switching done by the OS kernel

Disclaimer

- Parts of the lecture slides contain original work of Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Andrew S. Tanenbaum, and Gary Nutt. The slides are intended for the sole purpose of instruction of operating systems at the University of Rochester. All copyrighted materials belong to their original owner(s).