
A Realistic Evaluation of Memory Hardware Errors
and Software System Susceptibility

Xin Li Michael C. Huang Kai Shen
University of Rochester

{xinli@ece, mihuang@ece, kshen@cs}.rochester.edu

Lingkun Chu
Ask.com

lchu@ask.com

Technical Report #949
Department of Computer Science, University of Rochester

September 3, 2009

Abstract

Memory hardware reliability is an indispensable part of
whole-system dependability. Its importance is evidenced
by a plethora of prior research work studying the impact
of memory errors on software systems. However, the ab-
sence of solid understanding of the error characteristics
prevents software system researchers from making well rea-
soned assumptions, and it also hinders the careful evalu-
ations over different choices of fault tolerance design. In
this paper, we present our realistic memory hardware er-
ror traces collected from production computer systems with
more than 800 GB memory for around nine months. Based
on the traces (including detailed information on the error
addresses and patterns), we explore the implications of dif-
ferent hardware ECC protection schemes so as to identify
the most common error causes and approximate error rates
exposed to the software level. Lastly, we investigate the soft-
ware system susceptibility to some major error causes, with
the particular goal to validate, question, and augment re-
sults of prior system studies.

Key Words: reliability, memory hardware errors, soft-
ware/hardware interaction.

1 Introduction

Memory hardware errors are an important threat to com-
puter system reliability [31] as VLSI technologies con-
tinue to scale [6]. Past case studies suggested that hard-
ware faults [29,34] and particularly memory errors [24,32]
are significant contributing factors to whole-system fail-
ures. Understanding memory hardware errors is an impor-
tant component in developing an overall system dependabil-
ity strategy. Recent software system studies have attempted

to examine the impact of memory hardware errors on com-
puter system reliability [11,23] and security [13]. Software
system countermeasures to these errors have also been in-
vestigated [27].

Despite its importance, our collective understanding
about the rate, pattern, impact, and scaling trends of mem-
ory hardware errors is still somewhat fragmented and in-
complete. For instance, while transient (or soft) errors re-
ceived a thorough treatment in the literature [3, 26, 35–37],
non-transient errors (including permanent and intermittent
errors) have received less attention. Existing research on
non-transient hardware failures often utilize synthetic error
models [21]. The scarcity of realistic error traces is partly
due to the fact that collecting field data requires access to
large-scale facilities and these errors do not lend themselves
to accelerated tests as transient errors do [37]. The two stud-
ies of non-transient errors that we are aware of [10,30] pro-
vide no result on specific error locations and patterns.

In an effort to acquire valuable error statistics in real-
world environments, we have monitor memory hardware
errors in three groups of computers—specifically, a rack-
mounted Internet server farm with more than 200 machines,
about 20 university desktops, and 70 PlanetLab machines.
We have collected error tracking results on over 800 GB
memory for around nine months (from November 30, 2006
to September 11, 2007). Our error traces, probably the only
public memory hardware error traces with detailed error
addresses and patterns, are available through a link at the
USENIX computer failure data repository [9].

One important discovery from our error traces is that
non-transient errors are at least as significant a source of
reliability concern as transient errors. In theory, perma-
nent hardware errors, whose symptoms persist over time,
are easier to detect. Consequently they ought to present
only a minimum threat to system reliability in an ideally-

1



maintained environment. However, some non-transient er-
rors are intermittent [10] (i.e., whose symptoms are unstable
at times) and they are not necessarily easy to detect. Further,
the system maintenance is hardly perfect, particularly for
hardware errors that do not trigger obvious system failures.
Given our discovery of non-transient errors in real-world
production systems, a holistic dependability strategy needs
to take into account their presence and error characteristics.

We conduct trace-driven studies to understand hardware
error manifestations and their impact on the software sys-
tem. First, we extrapolate the collected traces into gen-
eral statistical error manifestation patterns. We then per-
form Monte Carlo simulations to learn the error rate and
particularly error causes under different memory protection
mechanisms (e.g., single-error-correcting ECC or stronger
Chipkill ECC [12]). To achieve high confidence, we also
study the sensitivity of our results to key parameters of our
simulation model.

Further, we use a virtual machine-based error injection
approach to study the error susceptibility of real software
systems and applications. In particular, we discovered the
previous conclusion that most memory hardware errors do
not lead to incorrect software execution [11, 23] is not ap-
propriate for non-transient memory errors. We also vali-
dated the failure oblivious computing model [28] using our
web server workload with injected non-transient errors.

The rest of this paper is organized as follows. Section 2
provides a brief background on memory errors. Section 3
presents our collected raw error data from production sys-
tems. Section 4 analyzes error manifestation rate and lead-
ing error causes using Monte Carlo simulations. Section 5
then evaluates the software system susceptibility to memory
hardware errors using error injection experiments. Finally,
Section 6 concludes the paper.

2 Background

Terminology In general, a fault is the cause of an error,
and errors lead to service failures [20]. Precisely defining
these terms (“fault”, “error”, and “failure”), however, can
be “surprisingly difficult” [2], as it depends on the notion
of the system and its boundaries. For instance, the conse-
quence of reading from a defective memory cell (obtaining
an erroneous result) can be considered as afailure of the
memory subsystem, anerror in the broader computer sys-
tem, or it may not lead to any failure of the computer sys-
tem at all if it is masked by subsequent processing. In our
discussion, we use error to refer to the incidence of hav-
ing incorrect memory content. The root cause of an error
is the fault, which can be a particle impact, or defects in
some part of the memory circuit. Note that an error does
not manifest (i.e., it is a latent error) until the corrupt loca-
tion is accessed.

An error may involve more than a single bit. Specifi-
cally, we count all incorrect bits due to the same root cause
as part of one error. This is different from the concept of a
multi-bit error in the ECC context, in which case the multi-
ple incorrect bits must fall into a single ECC word. To avoid
confusions we call these errors word-wise multi-bit instead.

Transientmemory errors are those that do not persist and
are correctable by software overwrites or hardware scrub-
bing. They are usually caused by temporary environmen-
tal factors such as particle strikes from radioactive decay
and cosmic ray-induced neutrons.Non-transienterrors, on
the other hand, are often caused (at least partially) by in-
herent manufacturing defect, insufficient burn-in, or device
aging [6]. Once they manifest, they tend to cause more
predictable errors as the deterioration is often irreversible.
However, before transitioning into permanent errors, they
may put the device into a marginal state causing apparently
intermittenterrors.

Memory ECC Computer memories are often protected
by some form ofparity-check code. In a parity-check code,
information symbols within a word are processed to gen-
eratechecksymbols. Together, they form the coded word.
These codes are generally referred to as ECC (error correct-
ing code). Commonly used ECC codes include SECDED
and chipkill.

SECDED stands forsingle-error correction, double-
error detection. Single error correction requires the code
to have a Hamming distance of at least 3. In binary codes,
it can be easily shown thatr bits are needed for2r − 1 in-
formation bits. For double-error detection, one more check
bit is needed to increase the minimum distance to 4. The
common practice is to use 8 check bits for 64 information
bits forming a 72-bit ECC word as these widths are used in
current DRAM standards (e.g., DDR2).

Chipkill ECC is designed to tolerate word-wise multi-
bit errors such as those caused when an entire memory de-
vice fails [12]. Physical constraints dictate that most mem-
ory modules have to use devices each providing 8 or 4 bits
to fill the bus. This means that a chip-fail tolerant ECC
code needs to correct 4 or 8 adjacent bits. While correcting
multi-bit errors in a word is theoretically rather straightfor-
ward, in practice, given the DRAM bus standard, it is most
convenient to limit the ECC word to 72 bits, and the 8-bit
parity is insufficient to correct even a 4-bit symbol. To ad-
dress this issue, one practice is to reduce the problem to
that of single-bit correction by spreading the output of, say,
4 bits to 4 independent ECC words. The trade-off is that a
DIMM now only provides 1/4 of the bits needed to fill the
standard 64-data-bit DRAM bus, and thus a system needs a
minimum of 4 DIMMs to function. Another approach is to
useb-adjacentcodes with much more involved matrices for
parity generation and checking [7]. Even in this case, a typ-

2



ical implementation requires a minimum of 2 DIMMs. Due
to these practical issues, chipkill ECC remains a technique
used primarily in the server domain.

3 Realistic Memory Error Collection

Measurement results on memory hardware errors, partic-
ularly transient errors, are available in the literature. Ziegler
et al. from IBM suggested that cosmic rays may cause tran-
sient memory bit flips [35] and did a series of measurements
from 1978 to 1994 [26, 36, 37]. In a 1992 test for a ven-
dor 4Mbit DRAM, they reported the rate of 5950 failures
per billion device-hour. Published results on non-transient
memory errors are few [10,30] and they provide little detail
on error addresses and patterns, which are essential for our
analysis.

To enable our analysis on error manifestation and soft-
ware susceptibility, we make efforts to collect realistic raw
error rate and patterns on today’s systems. Our efforts are
in two fronts. First, we perform long-term monitoring on
large, non-biased sets of production computer systems. Sec-
ond, we pursue outside reports of potential memory failure
manifestation and investigate the error natures and patterns.
Due to the rareness of memory hardware errors, the error
collection can require enormous efforts. A general under-
standing of memory hardware errors is likely to require the
collective and sustained effort from the research commu-
nity as a whole. We are not attempting such an ambitious
goal in this study. Instead, our emphasis is on therealismof
our production system error collection. As such, we do not
claim general applicability of our results.

3.1 Production System Error Monitoring

We monitor memory errors in three environments—a set
of 212 production machines in a server farm at Ask.com [1],
about 20 desktop computers at Rochester computer science
department, and around 70 wide-area-distributed Planet-
Lab machines. Preliminary monitoring results (of shorter
monitoring duration, focusing exclusively on transient er-
rors, with little result analysis) were reported in anotherpa-
per [22]. Here we provide an overview of our latest mon-
itoring results on all error types. Due to factors such as
machine configuration, our access privileges, and load, we
obtained uneven amount of information from the three er-
ror monitoring environments. Most of our results were ac-
quired from the large set of server farm machines, where
we have access to the memory chipset’s internal registers
and can monitor the ECC-protected DRAM of all machines
continuously. Below we focus our result reporting on the
data obtained in this environment.

All 212 machines from the server farm use Intel E7520
chipset as memory controller hub [18]. Most machines have

4 GB DDR2 SDRAM. Intel E7520 memory controller is
capable of both SECDED or Chipkill ECC. In addition to
error detection and correction, the memory controller at-
tempts to log some information about memory errors en-
countered. Unfortunately, this logging capability is some-
what limited—there are only two registers to track the ad-
dresses of two distinct errors. These registers will only cap-
ture the first two memory errors encountered. Any subse-
quent errors will not be logged until the registers are reset.
Therefore, we periodically (once per hour) probe the mem-
ory controller to read out the information and reset the reg-
isters. This probing is realized through enhancements of
the memory controller driver [5], which typically requires
the administrative privilege on target machines.

Recall that when a memory cell’s content is corrupted
(creating a latent error), the error will not manifest to our
monitoring system until the location is accessed. To help
expose these latent errors, we enable hardware memory
scrubbing—a background process that scans all memory
addresses to detect and correct errors. The intention is to
prevent errors from accumulating into more severe forms
(e.g., multi-bit) that are no longer correctable. It is typi-
cally performed at a low frequency (e.g., 1.5 hours for every
1 GB) [18] to minimize the energy consumption and con-
tention with running applications. Note that scrubbing does
not help exposefaults—writing varying values into memory
does that. Since we monitored the machines for an extended
period of time (9 months), the natural usage of the machines
is likely to have exposed most (if not all) faults.

We collected error logs for a period of approximately 9
months (from November 30, 2006 to September 11, 2007).
In the first 2 months we observed errors on 11 machines.
No new errors were seen for 6 months and then 1 more er-
roneous machine appeared in the most recent month of our
monitoring. We choose 6 erroneous machines with distinct
error patterns and Figure 1 demonstrates how the errors are
laid out on the physical memory arrays. Based on observed
patterns, all four memory error modes (single-cell, row, col-
umn, and whole-chip [4]) appear in our log. Specifically,
M10 contains a single cell error, M7 and M12 represent
a row error and a column error respectively. Finally, for
machine M8, the errors are spread all over the chip which
strongly suggests faults in the chip-wide circuitry rather
than individual cells, rows, or columns. Based on the pat-
tern of error addresses, we categorize all error instances into
appropriate modes shown in Table 1.

While the error-correction logic can detect errors, it can-
not tell whether an error is transient or not. We can,
however, make the distinction by continued observation—
repeated occurrences of error on the same address are vir-
tually impossible to be external noise-induced transient er-
rors as they should affect all elements with largely the same
probability. We can also identify non-transient errors by

3



Error Pattern

Column Address

R
ow

 A
dd

re
ss

0 512 1024 1536 2048
0

2048

4096

6144

8192

10240

12288

14336

16384
Error Pattern

Column Address

R
ow

 A
dd

re
ss

0 512 1024 1536 2048
0

2048

4096

6144

8192

10240

12288

14336

16384
Error Pattern

Column Address

R
ow

 A
dd

re
ss

0 512 1024 1536 2048
0

2048

4096

6144

8192

10240

12288

14336

16384

Machine M1 Machine M7 Machine M8
Error Pattern

Column Address

R
ow

 A
dd

re
ss

0 512 1024 1536 2048
0

2048

4096

6144

8192

10240

12288

14336

16384
Error Pattern

Column Address

R
ow

 A
dd

re
ss

0 512 1024 1536 2048
0

2048

4096

6144

8192

10240

12288

14336

16384
Error Pattern

Column Address

R
ow

 A
dd

re
ss

0 512 1024 1536 2048
0

2048

4096

6144

8192

10240

12288

14336

16384

Machine M9 Machine M10 Machine M12

Figure 1. The visualization of error patterns on physical memory devices. Each cross represents an erroneous cell
at its row/column addresses. The system address to row/column address translation is obtained from the official Intel
document [18].

Machine Single-cell Row Column Whole-chip
M1 2 11 1
M2 1
M3 1 (transient)
M4 1
M5 1 (transient)
M6 1
M7 1
M8 1
M9 1
M10 1
M11 1
M12 1
Total 7 (2 transient) 14 2 2

Table 1. Collected errors and their modes.

recognizing known error modes related to inherent hard-
ware defects: single-cell, row, column, and whole-chip [4].
For instance, memory row errors will manifest as a series
of errors with addresses on the same row. Some addresses
on this row may be caught on the log only once. Yet, the
cause of that error is most likely non-transient if other cells
on the same row indicate non-transient errors (logged multi-
ple times). Take M9 in Figure 1 as an example. Altogether,
there are five distinct error addresses recorded in our trace,
two of which showed up only once and the rest were all
recorded multiple times. Since they happen on the same
row, it is highly probable that they are all due to defects in

places like the word line. We count them as a row error.

3.2 Investigation of Reported Failures

We also investigate outside reports of potential memory
failures. Because these reports come from biased machine
samples (those with suspicious failure symptoms), such er-
ror results are not amenable for general statistical analy-
sis. Rather, it only serves the purpose to illustrate the broad
scope of systems on which memory errors may manifest.

Here we provide an example of such investigation. We
followed a local student’s report of memory failure on
a medical System-on-Chip platform. The faulty chip is
a Microchip PIC18F452, equipped with three kinds of
memory—32KB program memory, 256 bytes EEPROM
for static data, and 1.5 KB SRAM for volatile data. The
chip was used to monitor heart rate of neonates and it re-
ported mysterious rate drops of 64. Using the “in-circuit
debugger”, we were able to attribute the failure cause to a
memory bit stuck at ‘1’ at the 23rd byte in the SRAM.

4 Error Manifestation Analysis

We analyze how device-level errors would be exposed
to software. We are interested in the error manifestation
rates and patterns (e.g., multi-bits or single-bit) as well as
leading causes for manifested errors. We explore results

4



DRAM technology DDR2
DIMM No. per machine 4
Device No. per DIMM 18
Device data width x4
Row/Column/Bank No. 2

14/211/4
Device capacity 512 Mb
Capacity per machine 4 GB
ECC capability None, SECDED, Chipkill

Table 2. Memory configuration for our server farm ma-
chines.

under different memory protection schemes. This is useful
since Chipkill ECC represents a somewhat extreme trade-
off between reliability and other factors (e.g., performance
and energy consumption) and may remain a limited-scope
solution. In our memory chipset (Intel E7520) for example,
to provide the necessary word length, the Chipkill design
requires two memory channels to operate in a lock-stepping
fashion, sacrificing throughput and power efficiency.

4.1 Evaluation Methodology

We use a discrete-event simulator to conduct Monte-
Carlo simulations to derive properties of manifested errors.
We simulate 500 machines with the exact configuration as
the Ask.com servers in Section 3. The detailed configura-
tion is shown in Table 2. We first use the error properties
extracted from our data to generate error instances in differ-
ent memory locations in the simulated machines. Then we
simulate different ECC algorithms to obtain a trace of man-
ifested memory errors as the output. Our analysis here does
not consider software susceptibility to manifested errors,
which will be examined in Section 5. Below, we describe
several important aspects of our simulation model, includ-
ing temporal error distributions, device-level error patterns,
and the repair maintenance model.

• We consider transient and non-transient errors sepa-
rately in terms of temporal error distribution. Since
transient errors are mostly induced by random external
events, it is well established that their occurrences fol-
low a memoryless exponential distribution. The cumu-
lative distribution function of exponential distribution
is F (t) = 1 − e−λt, which represents the probabil-
ity that an error has already occurred by timet. The
instantaneous error rate for exponential distribution is
constant over time, and does not depend on how long
the chip has been operating properly.

The non-transient error rate follows a “bathtub” curve
with a high, but declining rate in the early “infant
mortality” period, followed by a long and stable pe-
riod with a low rate, before rising again when device
wear-out starts to take over. Some study has also sug-
gested that improved manufacturing techniques com-

bined with faster upgrade of hardware have effectively
made the wear-out region of the curve irrelevant [25].
In our analysis, we model 16 months of operation and
ignore aging or wear-out. Under these assumptions,
we use the oft-used Weibull distributions which has
the following cumulative distribution function:F (t) =
1−e(t/β)α

. Theshape parameterα controls how steep
the rate decreases, and thescale parameterβ deter-
mines how “stretched out” the curve is. Without con-
sidering the wear-out region, the shape parameter in
the Weibull distribution is no more than 1.0, at which
point the distribution degenerates into an exponential
distribution. The temporal error occurrence informa-
tion in our data suggested a shape parameter of 0.11.

• We then consider device-level error patterns. For tran-
sient errors, prior studies and our own observation all
point to the single-bit pattern. For non-transient errors,
we have the 10 distinct patterns in our trace as tem-
plates. When a non-transient error is to be generated,
we choose one out of these templates in a uniformly
random fashion. There is a problem associated with
using the exact template patterns—error instances gen-
erated from the same templates are always injected on
the same memory location and thus they would always
be aligned together to cause an uncorrectable error in
the presence of ECC. To address this problem, we shift
the error location by a random offset each time we in-
ject an error instance.

• Our model requires a faulty device repair maintenance
strategy. We employ an idealized “reactive” repair
without preventive maintenance. We assume an er-
ror is detected as soon as it is exposed to the software
level. If the error is diagnosed to be non-transient,
the faulty memory module is replaced. Otherwise the
machine will undergo a reboot. In our exploration,
we have tried two other maintenance models that are
more proactive. In the first case, hardware scrubbing
is turned on so that transient errors are automatically
corrected. In the second case, we further assume that
the memory controller notifies the user upon detecting
a correctable non-transient error so that faulty mem-
ory modules can be replaced as early as possible. We
found these preventive measures have a negligible im-
pact on our results. We will not consider these cases in
this paper.

Below, we provide evaluation results using the above de-
scribed model (Section 4.2). Due to the small number of
errors in the collected error trace, the derived rate and tem-
poral manifestation pattern may not provide high statistical
confidence. To achieve high confidence, we further study
the sensitivity of our results to two model parameters—the

5



1 2 3
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Operational Duration (years)

C
um

ul
at

iv
e 

F
ai

lu
re

 R
at

e 
(in

 F
IT

)

(A) No ECC

 

 
Transient
Cell
Row
Column
Row−column
Chip

1 2 3
0

200

400

600

800

1000

1200

1400

1600

1800

Operational Duration (years)

C
um

ul
at

iv
e 

F
ai

lu
re

 R
at

e 
(in

 F
IT

)

(B) SECDED ECC

 

 
Row
Row−column
Chip

Figure 2. Failure rates and breakdown causes for no ECC and SECDED ECC, with varying machine operational durations.

Weibull distribution shape parameter (Section 4.3) and the
error rate over time (Section 4.4).

4.2 Base Results

Here we present the simulation results on failures. The
failure rates are computed as the average of the simulated
operational duration. We describe our results under differ-
ent memory protection schemes.

Figure 2(A) illustrates the failure rates and the break-
down of the causes when there is no ECC protection. In
this case, any error will be directly exposed to software and
cause a failure. As a result, we can study the errors in iso-
lation. With our measurement, the transient error rate is
2006FIT 1 for each machine’s memory system. Depend-
ing on the operational time of the machines, the average
non-transient error rates would vary, and so are the corre-
sponding failure rates. Overall, for machines without ECC
support, both transient and non-transient errors contribute
to the overall error rate considerably.

SECDED ECC can correct any word-wise single-bit er-
rors. Of the errors in our trace, this capability will correct
all but one whole-chip error, one row error, and one row-
column error. These three cases all have multiple erroneous
bits (due to the same root cause) in one ECC word, pre-
venting ECC correction. Theoretically, a failure can also
occur when multiple independent single-bit errors happen
to affect the same ECC word (such as when a transient
error occurs to an ECC word already having a single-bit
non-transient error). However, since errors are rare in gen-
eral, such combination errors are even less probable. In our
simulations, no such instance has been encountered. Fig-
ure 2(B) summarizes the simulation results.

1FIT is a commonly used unit to measure failure rates and 1 FIT equals
one failure per billion device-hour. To put the numbers intoperspectives,
IBM’s target FIT rates for servers are 114 for undetected (orsilent) data
corruption, 4500 for detected errors causing system termination, and 11400
for detected errors causing application termination [8]. Note that these
rates are for the whole system including all components.

When using the Chipkill ECC, as expected, the memory
system becomes very resilient. We did not see any uncor-
rected errors. This result echoes the conclusion of [12].

4.3 Shape Parameter Sensitivity

To reach high confidence in our results, we consider a
wide range of the Weibull shape parameters for the non-
transient error temporal distribution and study the sensi-
tivity of our results to this parameter. We use a machine
operational duration of 16 months, which is the age of the
Ask.com servers at the end of our data collection.

Prior failure mode studies in computer systems [14, 34],
spacecraft electronics [15], electron tubes [19], and inte-
grated circuits [17] pointed to a range of shape parame-
ter values in 0.28–0.80. Given this and the fact that the
Weibull distribution with shape parameter 1.0 degenerates
to an exponential distribution, we consider the shape pa-
rameter range of 0.1–1.0 in this sensitivity study.

In both ECC mechanisms, the non-transient error rate de-
pends on the Weibull shape parameter. The lower the shape
parameter, the faster the error rate drops, and the lower the
total error rate for the entire period observed. Note that the
transient error rate also fluctuates a little because of the non-
deterministic nature of our Monte-Carlo simulation. It’s
apparent the change of transient error rates do not corre-
late with the shape parameter. For no-ECC, as Figure 3(A)
shows, for machines in their first 16 months of operation,
the difference caused by the wide ranging shape parameter
is rather insignificant.

In the case of SECDED shown in Figure 3(B), the impact
of the Weibull shape parameter is a bit more pronounced
than in the case of no ECC but is still relatively insignificant.
Also, even though error rates are significantly reduced by
SECDED, they are still within a factor of about five from
those without ECC.

6



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

Weibull Shape Parameter (α)

F
ai

lu
re

 R
at

e 
(in

 F
IT

)

(A) No ECC

 

 
Transient
Cell
Row
Column
Row−column
Chip

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

Weibull Shape Parameter (α)

F
ai

lu
re

 R
at

e 
(in

 F
IT

)

(B) SECDED ECC

 

 
Row
Row−column
Chip

Figure 3. Failure rates and breakdown causes for no ECC and SECDED ECC, with varying Weibull shape parameter.

1%−lower Observed 1%−upper
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Device−level Error Rates

F
ai

lu
re

 R
at

e 
(in

 F
IT

)

(A) No ECC

 

 
Transient
Cell
Row
Column
Row−column
Chip

1%−lower Observed 1%−upper
0

500

1000

1500

2000

2500

3000

Device−level Error Rates

F
ai

lu
re

 R
at

e 
(in

 F
IT

)
(B) SECDED ECC

 

 
Row
Row−column
Chip

1%−upper
0

0.005

0.01

0.015

0.02

Device−level Error Rates

F
ai

lu
re

 R
at

e 
(in

 F
IT

)

(C) Chipkill ECC

 

 
Transient on Chip

Figure 4. Manifested errors when input device-level error rates are the originally observed and 1%-lower/upper-bounds.

4.4 Statistical Error Rate Bounds

Due to the small number of device-level errors in our
trace, the observed error rate may be quite different from
the intrinsic error rate of our monitored system. To account
for such inaccuracy, we use the concept ofp-value bounds
to provide a range of possible intrinsic error rates with sta-
tistical confidence.

For a given probabilityp, thep-value upper bound (λu)
is defined as the intrinsic error rate under whichPr{X ≤
n} = p. Heren is the actual number of errors observed in
our experiment.X is the random variable for the number
of errors occurring in an arbitrary experiment of the same
time duration. And likewise, thep-value lower bound (λl)
is the intrinsic error rate under whichPr{X ≥ n} = p.
A very smallp indicates that givenn observed errors, it is
improbable for the actual intrinsic error rateλ to be greater
thanλu or less thanλl.

Givenp, the probability distribution of random variable
X is required to calculate thep-value for our data. Thank-
fully, when the memory chips are considered identical, we
can avoid this requirement. This is because in any time in-
terval, their probability of having an error is the same, say
q. Let N be the total number of memory chips operating,
then the actual number of errors happening in this period,
X , will be a random variable which conforms to binomial

distribution:PN,q{X = k} =
(

N
k

)

qk(1− q)N−k. WhenN

is very large (we simulated thousands of chips), we can ap-
proximate by assumingN approaches infinity. In this case
the binomial distribution will turn into Poisson distribution.
For the ease of calculation, we shall use the form of Poisson

distribution:Pλ{X = k} =
e−λλk

k!
, whereλ = q ·N is the

expectation ofX .

Based on the analysis above and the observed error rates,
we have calculated the 1% upper and lower bounds. For
instance, the transient error rate in non-ECC memory sys-
tem is 2006 FIT as mentioned earlier. The correspond-
ing 1%-upper-boundand 1%-lower-bound are 8429 FIT and
149 FIT respectively. The bounds on the various mani-
fested error rates, derived from different raw error rates,are
shown in Figure 4. From left to right, the bars show the
1%-lower-bound, the originally observed rate, and the 1%-
upper-bound. As can be seen, for manifestations caused by
non-transient errors, the two 1% bounds are roughly 2x to
either direction of the observed rate. This range is narrow
enough that there is little impact to the qualitative conclu-
sions.

For Chipkill ECC, the 1%-upper-bound offers a better
chance to observe failures in the outcome of our simulation.
With this increased rate, we finally produced a few failure
instances (note there were none for Chipkill in the base sim-

7



ulations done in previous sub-sections). The patterns of the
failures are shown in Figure 4(C). All of the failures here are
caused by a transient error hitting an existing non-transient
chip error.

4.5 Summary

We summarize our major findings of this part of the
study: 1) In terms of the absolute failure rate, with no ECC
protection, error rates are at the level of thousands of FIT
per machine. SECDED ECC lowers the rates to the neigh-
borhood of 1000 FIT per machine. Chipkill ECC renders
failure rates virtually negligible. 2) Non-transient errors are
significant (if not dominant) causes for all cases that we
evaluated. Particularly on SECDED ECC machines, mani-
fested failures tend to be caused by row errors, row-column
errors, and whole-chip errors. 3) Word-wise multi-bit fail-
ures are quite common.

5 Software System Susceptibility

A memory error that escaped hardware ECC correction
is exposed to the software level. However, its corrupted
memory value may or may not be consumed by software
programs. Even if it is consumed, the software system and
applications may continue to behave correctly if such cor-
rectness does not depend on the consumed value. Now we
shift our attention to the susceptibility of software systems
and applications to memory errors. Specifically, we inject
the realistic error patterns from our collected traces and ob-
serve the software behaviors. Guided by the conclusion of
Section 4, we also take into account the shielding effect of
ECC algorithms.

There is a rich body of prior research on software sys-
tem reliability or security regarding memory hardware er-
rors [11,13,21,23,27,28]. One key difference between these
studies and ours is that all of our analysis and discussions
ultimately root in the realism of our collected error trace.In
this section, we tailor our software susceptibility evaluation
in the context of recent relevant research with the hope of
validating, questioning, or augmenting prior results.

5.1 Methodology of Empirical Evaluation

To run real software systems on injected error patterns,
we must accomplish the following goals. First, every read
access to a faulty location must be supplied with an erro-
neous value following the injection pattern. This can be
achieved by writing the erroneous value to each individual
faulty address at the time of injection. Second, for every
write access to a faulty location, if the error is non-transient,
we must guarantee the erroneous value is restored right af-
ter the write. The injection is then followed by error man-

ifestation bookkeeping. The bookkeeping facility has to be
informed whenever a faulty address is accessed so that it
would log some necessary information. The key challenge
of such error injection and information logging is to effec-
tively track and manipulate all the accesses to locations in-
jected with errors (ortracked locations).

We base our tracking method on aPage Access Con-
trol approach proposed by [33], with some performance en-
hancements. The basic idea of this approach is to identify
the pages that contain the tracked memory locations, and
then apply page access protection in the page table. Once
the control is applied, an access to a tracked location will
raise a page protection fault so that the system will get noti-
fied of the access. To make the access complete and resume
the application, we simply remove the page access control
temporarily and single-step the current instruction. At the
end of the single-stepping, we restore the control.

If the error injection and monitoring mechanisms are
built into the target system itself (as in [23]), these mech-
anisms may not behave reliably in the presence of injected
memory errors. To avoid this potential problem, we uti-
lize a virtual machine-based architecture in which the target
system runs within a hosted virtual machine while the error
injection and monitoring mechanisms are built in the un-
derlying virtual machine monitor. We enable the shadow
page table mode in the virtual machine memory manage-
ment. Error injections only affect the shadow page tables
while page tables within the target virtual machine are not
affected. In order to understand software system suscepti-
bility to memory hardware errors, we log certain informa-
tion every time an error is activated. Specifically, we record
the access type (read or write), access mode (kernel or user),
and the program counter value. For kernel mode accesses,
we are able to locate specific operating system functions
from the program counter values.

Our experimental environment employs Xen 3.0.2
and runs the target system in a virtual machine with
Linux 2.6.16 operating system. We examine three ap-
plications in our test: 1) the Apache web server run-
ning the static request portion of the SPECweb99 bench-
mark with around 2 GB web documents. 2) MCF from
SPEC CPU2000—a memory-intensive vehicle scheduling
program for mass transportation; and 3) compilation and
linking of the Linux 2.6.23 kernel. The first is a typi-
cal server workload while the other two are representative
workstation workloads (in which MCF is CPU-intensive
while kernel build involves significant I/O).

5.2 Evaluation on Failure Severity

Two previous studies [11, 23] investigated the suscepti-
bility of software systems to transient memory errors. They
reached similar conclusions that overall, memory errors do

8



not pose a significant threat to software systems. In partic-
ular, Messeret al. [23] discovered that of all the errors they
injected, on average 20% were accessed, among which 74%
are overwritten before being really consumed by the soft-
ware. In other words, only 5% of the errors would cause ab-
normal software behaviors. However, these studies limited
their scope for single-bit transient errors only. Our findings
in Section 4 show non-transient errors are also a significant
cause of memory failures. When these errors are taken into
account, the previous conclusions may not stand intact. For
example, non-transient errors may not be overwritten, and
as a result, a portion of the 74% overwritten errors in [23]
would have been consumed by the software system if they
had been non-transient.

Table 3 summarizes the execution results of our three
benchmark applications when non-transient errors are in-
jected. Since our applications all finish in a short time (a
few minutes), we consider these non-transient errors as per-
manent during the execution. In total we had 12 different
error patterns. M3 and M5 are transient errors and therefore
we do not include them in this result. M8 is so massive that
as soon as it is injected, the OS crashes right away. We also
exclude it from our results.

The table includes results for both cases of no ECC and
SECDED ECC. Since errors are extremely rare on Chipkill
machines (see conclusions of Section 4), here we do not
provide results for Chipkill. For no ECC, briefly speaking,
out of the 27 runs, 13 have accessed memory errors and 8
did not finish with expected correct results. This translates
to 48% of the errors are activated and 62% of the activated
errors do lead to incorrect execution of software systems.
In the SECDED case, single-bit errors would be corrected.
Most errors (except M1 and M7) are completely shielded by
the SECDED ECC. However, for the six runs with error pat-
terns M1 and M7, five accessed the errors and subsequently
caused abnormal behaviors.

Overall, compared to results in [23], non-transient errors
evidently do cause more severe consequences to software
executions. The reason for the difference is twofold— 1)
non-transient errors are not correctable by overwriting and
2) unlike transient errors, non-transients sometimes involve
a large number of erroneous bits. To demonstrate reason
#1, we show in Table 4, when these errors are turned into
transient ones (meaning they can be corrected by overwrit-
ten values), quite a few of the execution runs would finish
unaffected.

5.3 Validation of Failure-Oblivious Com-
puting

In this section we attempt to validate the concept of
failure-oblivious computing [28] with respect to memory
hardware errors. It is based on the premise that in server

Application Kernel build Web server MCF
No ECC

M1 (Row-Col error) AC WO AC
M2 (Row error) OK
M4 (Bit error) OK
M6 (Chip error) AC KC WO
M7 (Row error) WO WO
M9 (Row error) OK
M10 (Bit error) OK
M11 (Bit error)
M12 (Col error) WO

SECDED ECC
M1 (Row-Col error) AC WO WO
M7 (Row error) WO WO

Table 3. Error manifestation for each of our three applica-
tions. The abbreviations in the table should be interpreted
as follows, with descending manifestation intensity: KC—
kernel crash; AC—application crash; WO—wrong output;
OK—program runs correctly. The blank cells indicate the
error was not accessed at all.

Application Kernel build Web server MCF
No ECC

M1 (Row-Col error) OK WO AC
M2 (Row error) OK
M4 (Bit error) OK
M6 (Chip error) OK KC OK
M7 (Row error) WO OK
M9 (Row error) OK
M10 (Bit error) OK
M11 (Bit error)
M12 (Col error) WO

SECDED ECC
M1 (Row-Col error) OK WO OK
M7 (Row error) WO OK

Table 4. Error manifestation for each of our three appli-
cations, when the errors are made transient (thus cor-
rectable by overwrites). Compared to Table 3, many of the
runs are less sensitive to transient errors and exhibit no
mis-behavior at the application level.

workloads, error propagation distance is usually very small.
When memory errors occur (mostly they were referring to
out-of-bound memory accesses), a failure-oblivious com-
puting model would discard the writes and supply the read
with arbitrary values and try to proceed. In this way the
error occurred will be confined within the local scope of a
request and the server computation can be resumed without
being greatly affected.

The failure-oblivious concept may also apply to memory
hardware errors. It is important to know what the current
operating system does in response to memory errors. With-
out ECC, the system is obviously unaware of any memory
errors going on. Therefore it is truly failure-oblivious. With
ECC, the system could detect some of the uncorrectable er-
rors. At this point the system can choose to stop, or to con-

9



Application No ECC SECDED ECC
M1 (Row-Col error) 15 8
M2 (Row error) 0 0
M3 (Transient error) 0 0
M4 (Bit error) 0 0
M5 (Transient error) 0 0
M7 (Row error) 2 1
M9 (Row error) 0 0
M10 (Bit error) 0 0
M11 (Bit error) 0 0
M12 (Col error) 1 0

Table 5. Number of requests affected by the errors in
SPECweb99-driven Apache web server. We request
14400 files in each run.

tinue execution (probably with some form of error logging).
The specific choices are machine dependent.

For our web server workload, we check the integrity
of web request returns in the presence of memory errors.
Table 5 lists the number of requests with wrong contents
for each non-transient error. The worst case is M1, which
caused 15 erroneous request returns (or files with incor-
rect content). However, this is still a small portion (about
0.1%) in the total 14400 files we have requested. Our result
suggests that, in our tested web server workload, memory-
hardware-error-induced failures tend not to propagate very
far. This shows the promise of applying failure-oblivious
computing in the management of memory hardware errors
for server systems.

5.4 Discussion on Additional Cases

Though error testing data from the industry are seldom
published, modern commercial operating systems do advo-
cate their countermeasures for faulty memory. Both IBM
AIX [16] and Sun Solaris [32] have the ability to retire
faulty memory when the ECC reports excessive correctable
memory errors. Our results suggest that with ECC protec-
tion, the chances of errors aligning together to form an un-
correctable one is really low. However, this countermeasure
could be effective against those errors that gradually de-
velop into uncorrectable ones by themselves. Since our data
does not have timestamps for most of the error instances, it
is hard to verify how frequently these errors occur. On Chip-
kill machines [16], however, this countermeasure seems to
be unnecessary since our data shows that without any re-
placement policy, Chipkill will maintain the memory failure
rate at an extremely low level.

A previous security study [13] devised a clever attack
that exploits memory errors to compromise the Java virtual
machine (JVM). They fill the memory with pointers to an
object of a particular class, and through an accidental bit
flip, they hope one of the pointers can point to an object of
another class. Obtaining a class A pointer actually pointing

to a class B object is enough to compromise the whole JVM.
In particular, they also provided an analysis of the effective-
ness of exploiting multi-bit errors [13]. It appears that they
can only exploit bit flips in a region within a pointer word
(in their case, bit 2:27 for a 32-bit pointer). In order for an
error to be exploitable, all the bits involved must be in the
region. The probability that they can exploit the error de-
creases with the number of erroneous bits in the word. Con-
sidering that the multi-bit errors in our collected error trace
are mostly consecutive rather than distributed randomly, we
can be quite optimistic about successful attacks.

Another previous study [27] proposed a method to pro-
tect critical data against illegal memory writes as well as
memory hardware errors. The basic idea is that software
systems can create multiple copies of their critical data. If
a memory error corrupts one copy, a consistency check can
detect and even correct such errors. The efficacy of such
an approach requires that only one copy of the critical data
may be corrupted at a time. Using our collected realistic
memory error patterns, we can explore how the placement
of multiple critical data copies affects the chance for simul-
taneous corruption. In particular, about half of our non-
transient errors exhibit regular column or row-wise array
patterns. Therefore, when choosing locations for multiple
critical data copies, it is best to have them reside in places
with different hardware row and column addresses (espe-
cially row addresses).

6 Conclusion

In this paper, we have presented a set of memory hard-
ware error data collected from production computer systems
with more than 800 GB memory for around 9 months. We
discover a significant number of non-transient errors (typi-
cally in the patterns of row or column errors). Driven by the
collected error patterns and taking into account various ECC
protection schemes, we conducted a Monte Carlo simula-
tion to analyze how errors manifest at the interface between
the memory subsystem and software applications. Our ba-
sic conclusion is that non-transient errors comprise a sig-
nificant portion of the overall errors visible to software sys-
tems. In particular, with the conventional ECC protection
scheme of SECDED, transient errors will be almost elim-
inated while only non-transient memory errors may affect
software systems and applications.

We also investigated the susceptibility of software sys-
tem and applications to realistic memory hardware error
patterns. In particular, we find that the earlier results that
most memory hardware errors do not lead to incorrect soft-
ware execution [11,23] may not be valid, due to the unreal-
istic model of exclusive transient errors. At the same time,
we provide a validation for the failure-oblivious computing
model [28] on our web server workload with injected mem-

10



ory hardware errors.

Acknowledgments

We would like to thank Tao Yang and Alex Wong at
Ask.com who helped us in acquiring administrative access
to Ask.com Internet servers. We would also like to thank
Howard David at Intel for kindly interpreting the memory
error syndromes. This work was supported in part by the
National Science Foundation (NSF) grants CCR-0306473,
ITR/IIS-0312925, CNS-0509270, CNS-0615045, and CCF-
0621472. Kai Shen was also supported by an NSF CA-
REER Award CCF-0448413 and an IBM Faculty Award.

References

[1] Ask.com (formerly Ask Jeeves Search). http://www.ask
.com.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr.
Basic concepts and taxonomy of dependable and se-
cure computing. IEEE Trans. Dependable Sec. Comput.,
1(1):11–33, 2004.

[3] R. Baumann. Soft errors in advanced computer systems.
IEEE Design and Test of Computers, 22(3):258–266, May
2005.

[4] M. Blaum, R. Goodman, and R. Mceliece. The reliability of
single-error protected computer memories.IEEE Trans. on
Computers, 37(1):114–118, 1988.

[5] EDAC project. http://bluesmoke.sourceforge.net.
[6] S. Borkar. Designing reliable systems from unreliable com-

ponents: the challenges of transistor variability and degra-
dation. IEEE Micro, 25(6):10–16, Nov.–Dec. 2005.

[7] D. Bossen.b-adjacent error correction.IBM Journal of Re-
search and Development, 14(4):402–408, 1970.

[8] D. Bossen. CMOS soft errors and server design. In2002 Re-
liability Physics Tutorial Notes – Reliability Fundamentals,
pages 121.07.1 – 121.07.6, Dallas, Texas, Apr. 2002.

[9] USENIX computer failure data repository. http://cfdr.usenix
.org.

[10] C. Constantinescu. Impact of deep submicron technology on
dependability of VLSI circuits. InInt’l Conf. on Dependable
Systems and Networks, pages 205–209, Bethesda, MD, June
2002.

[11] C. da Lu and D. A. Reed. Assessing fault sensitivity in MPI
applications. InSupercomputing, Pittsburgh, PA, Nov. 2004.

[12] T. J. Dell. A white paper on the benefits of chipkill correct
ECC for PC server main memory.White paper, 1997.

[13] S. Govindavajhala and A. W. Appel. Using memory errors
to attack a virtual machine. InIEEE Symp. on Security and
Privacy, pages 154–165, Berkeley, CA, May 2003.

[14] T. Heath, R. P. Martin, and T. D. Nguyen. Improving cluster
availability using workstation validation. InACM SIGMET-
RICS, pages 217–227, Marina del Rey, CA, June 2002.

[15] H. Hecht and E. Fiorentino. Reliability assessment of space-
craft electronics. InAnnu. Reliability and Maintainability
Symp., pages 341–346. IEEE, 1987.

[16] D. Henderson, B. Warner, and J. Mitchell. IBM POWER6
processor-based systems: Designed for availability.White
paper, 2007.

[17] D. P. Holcomb and J. C. North. An infant mortality and long-
term failure rate model for electronic equipment.AT&T
Technical Journal, 64(1):15–31, January 1985.

[18] Intel E7520 chipset datasheet: Memory controller
hub (MCH). http://www.intel.com/design/chipsets
/E7520E7320/documentation.htm.

[19] J. H. K. Kao. A graphical estimation of mixed Weibull pa-
rameters in life-testing of electron tubes.Technometrics,
1(4):389–407, Nov. 1959.

[20] J. Laprie. Dependable computing and fault tolerance: Con-
cepts and terminology. In15th Int’l Symp. on Fault-Tolerant
Computing, pages 2–11, Ann Arbor, MI, June 1985.

[21] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S.
Adve, and Y. Zhou. Understanding the propagation of hard
errors to software and implications for resilient system de-
sign. In13th Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 265–
276, Seattle, WA, Mar. 2008.

[22] X. Li, K. Shen, M. Huang, and L. Chu. A memory soft
error measurement on production systems. InUSENIX An-
nual Technical Conf., pages 275–280, Santa Clara, CA, June
2007.

[23] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic,
D. J. F. Lie, D. Mannaru, A. Riska, and D. S. Milojicic. Sus-
ceptibility of commodity systems and software to memory
soft errors.IEEE Trans. on Computers, 53(12):1557–1568,
2004.

[24] B. Murphy. Automating software failure reporting.ACM
Queue, 2(8):42–48, Nov. 2004.

[25] F. R. Nash. Estimating Device Reliability: Assessment of
Credibility. Springer, 1993. ISBN 079239304X.

[26] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P.
Muhlfeld, C. J. Montrose, H. W. Curtis, and J. L. Walsh.
Field testing for cosmic ray soft errors in semiconductor
memories.IBM J. of Research and Development, 40(1):41–
50, 1996.

[27] K. Pattabiraman, V. Grover, and B. G. Zorn. Samurai: Pro-
tecting critical data in unsafe languages. InThird EuroSys
Conf., pages 219–232, Glasgow, Scotland, Apr. 2008.

[28] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebee. Enhancing server availability and se-
curity through failure-oblivious computing. In6th USENIX
Symp. on Operating Systems Design and Implementation,
pages 303–316, San Francisco, CA, Dec. 2004.

[29] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. InInt’l
Conf. on Dependable Systems and Networks, pages 249–
258, Philadelphia, PA, June 2006.

[30] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors
in the wild: a large-scale field study. InACM SIGMETRICS,
pages 193–204, 2009.

[31] Sun Microsystems server memory failures.
http://www.forbes.com/global/2000/1113/0323026a.html.

11



[32] D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro. As-
sessment of the effect of memory page retirement on sys-
tem RAS against hardware faults. InInt’l Conf. on Depend-
able Systems and Networks, pages 365–370, Philadelphia,
PA, June 2006.

[33] R. Wahbe. Efficient data breakpoints. In5th Int’l Conf.
on Architectural Support for Programming Languages and
Operating Systems, pages 200–212, Boston, MA, Oct. 1992.

[34] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked Windows
NT system field failure data analysis. InPacific Rim Intl.
Symp. on Dependable Computing, pages 178–185, Hong
Kong, China, Dec. 1999.

[35] J. Ziegler and W. Lanford. Effect of cosmic rays on com-
puter memories.Science, 206(16):776–788, Nov. 1979.

[36] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos,
H. Muhlfeld, and C. Montrose. Cosmic ray soft error rates of
16-Mb DRAM memory chips.IEEE Journal of Solid-State
Circuits, 33(2):246–252, Feb. 1998.

[37] J. F. Ziegler et al. IBM experiments in soft fails in computer
electronics (1978–1994).IBM J. of Research and Develop-
ment, 40(1):3–18, 1996.

12


